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Abstract
Background—Circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1),
soluble P-selectin (sP-selectin), and soluble E-selectin (sE-selectin) have been associated with
variation at the ABO locus. To evaluate these associations and the effect sizes, we performed a
meta-analysis with new and previous reported data for polymorphism rs579459.

Methods and Results—Compared with major allele homozygotes, heterozygotes and minor
allele homozygotes had 4.6% (95%CI=3.4–5.8%, p=7.3×10−14) and 7.2% (95%CI=4.7–9.7%,
p=1.5×10−8), respectively, lower sICAM-1 levels (n=33,671). An allele dose dependent
association also was observed for sP-selectin (n=4,921), with heterozygotes and minor allele
homozygotes having 11.5% (95%CI=7.2–15.8%, p=1.7×10−7) and 18.6% (95%CI=9.1–28.1%,
p=1.2×10−4), respectively, lower levels than in major allele homozygotes. A larger effect size,
again consistent with an additive genetic model, was seen for sE-selectin (n=2,860) whose level
was 25.6% (95%CI=19.0–32.2%, p=2.1×10−14) lower in heterozygotes and 43.3% (95%CI=36.9–
49.3%, p=4.3×10−42) lower in minor allele homozygotes, than in major allele homozygotes.

Conclusions—The data support the association of variation at the ABO locus with sICAM-1,
sP-selectin and sE-selectin levels.
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Leukocyte recruitment plays an important role in inflammatory diseases.1 It typically begins
with leukocyte rolling on the endothelium, followed by leukocyte attachment to endothelial
cells and subsequently trans-endothelial migration. Rolling involves the interaction of
leukocytes with P-selectin and E-selectin on endothelial cells, whilst leukocyte attachment
to endothelial cells is mediated by intercellular adhesion molecule-1 (ICAM-1) and vascular
cell adhesion molecule-1.1

Blood contains soluble forms of ICAM-1 (sICAM-1), P-selectin (sP-selectin) and E-selectin
(sE-selectin), generated by shedding of ectodomains of the membrane-bound forms of these
molecules or produced from transcript variants lacking the transmembrane domain.2
Increased circulating levels of sICAM-1, sP-selectin and/or sE-selectin have been associated
with a number of diseases such as coronary heart disease and diabetes.3–7 The levels of
sICAM-1, sP-selectin and sE-selectin are under genetic influences, with heritability
estimates being 0.24–0.63, 0.45–0.70, and 0.50–0.64, respectively.8–10 Genome-wide
association studies of sICAM-1, sP-selectin and sE-selectin levels have shown that they are
associated with single nucleotide polymorphisms (SNPs) at the ABO locus.11–14

Interestingly, genome-wide association studies of coronary heart disease (CHD) have
revealed an association between CHD and variation at the ABO locus.15;16

To more robustly evaluate the associations of sICAM-1, sP-selectin and sE-selectin with the
ABO locus, and more reliably estimate the effect sizes, we performed a meta-analysis. We
included new data from the Bruneck Study, data from several reported studies,11–14 and
additional data from one of these reported studies.11

Methods
To identify association studies of SNPs at the ABO locus in relation to levels of sICAM-1,
sP-selectin and/or sE-selectin, we performed systematic searches of PubMed, scanned the
reference lists of original reports, and communicated with authors of the included studies.
The electronic searches combined search terms related to polymorphisms at the ABO locus
(e.g. ABO, polymorphism, SNP, variation, and variant) and ICAM-1, P-selectin, or E-
selectin. The searches identified four publications. In two of these publications,12;13 SNP
rs579459 showed the strongest association with sP-selectin or sE-selectin levels among all
tested SNPs at the ABO locus. In another study (in which rs579459 was not directly
typed),11 SNP rs507666 had the most significant association with sICAM-1 levels among all
tested SNPs at this locus. In the fourth study (which also did not type rs579459 directly),14

SNP rs651007 was the top SNP at the ABO locus associated with sICAM-1 and sE-selectin
levels. An analysis using the SNAP program (http://www.broadinstitute.org/mpg/snap/) with
data from the 1000 Genomes Project showed that rs579459 was in perfect linkage
disequilibrium (LD) with rs651007 and in near perfect LD (r2=0.96) with rs507666, in
individuals of European ancestry.

We genotyped the Bruneck cohort17 for SNP rs579459 using the KASPar method.
sICAM-1, sP-selectin, and sE-selectin levels in the Bruneck cohort had been measured by
enzyme-linked immunosorbent assay as described previously.17;18 The Bruneck Study was
approved by the local ethics committee and all participants gave their written informed
consent.
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We performed a meta-analysis with data from the Bruneck cohort and the four reported
studies11–14 as well as additional data from one of these reported studies, the WGHS study11

for which ethic approval was granted by the institutional review board. For the meta-
analysis, we only used summary statistic data from the cohorts and did not receive
individual participant data. The meta-analysis included seven datasets for sICAM-1, four for
sP-selectin, and four for sE-selectin. For the meta-analysis, data of unadjusted mean and
standard deviation of sICAM-1, sP-selectin and sE-selectin levels according to genotypes
were provided by authors of three of the previous studies11;12;14 where this information was
not available in the papers, and were extracted from the report of the other study.13 With the
use of the StatsDirect and Comprehensive Meta Analysis Version 2.0 software, we
performed meta-analysis of weighted mean difference (wmd) in the percentage of and the
unbiased standardized effect size (estimator d19) for each adhesion molecule, comparing
minor allele homozygotes to heterozygotes and separately minor allele homozygotes to
major allele homozygotes. The StatsDirect software provided the pooled mean effect size
estimate (wmd+ or d+) with a 95% confidence interval, a chi-square statistic and probability
of this pooled effect size being equal to zero.19 Consistency of findings across studies was
assessed by the I2 statistic.20 Evidence of publication bias was assessed using funnel plots
and the Egger test.21 Possible reasons for heterogeneity were investigated by meta-
regression analysis.

Results and Discussion
The characteristics of study subjects are summarized in Table 1. A total of 33,671 subjects
were available for the meta-analysis of sICAM-1, 4,921 for sP-selectin, and 2,860 for sE-
selectin.

The meta-analysis showed that sICAM-1 levels were 4.6% (95% CI 3.4–5.8%) lower in
heterozygotes and 7.2% (4.7–9.7%) lower in minor allele homozygotes, than in major allele
homozygotes (p=7.3×10−14 and p=1.5×10−8, Figure 1A). Similarly, an allele dose
dependent association was observed for sP-selectin, with heterozygotes and minor allele
homozygotes having 11.5% (7.2–15.8%) and 18.6% (9.1–28.1%), respectively, lower levels
than in major allele homozygotes (p=1.7×10−7 and p=1.2×10−4, Figure 1B). An allele dose
dependent association also was seen for sE-selectin whose level was 25.6% (19.0–32.2%)
lower in heterozygotes and 43.3% (36.9–49.3%) lower in minor allele homozygotes, than in
major allele homozygotes (p=2.1×10−14 andp=4.3×10−42, Figure 1C). Standardized effect
size was larger for sE-selectin than for sICAM-1 and sP-selectin (Supplemental Figures S1
to S3). We noted heterogeneity (Supplemental Table 1) which a meta-regression analysis
indicated was not attributed to differences among individual studies in age, sex, type of
subjects (population-based or diabetics), number of subjects (n>1000 or <1000), type of
blood sample used (plasma or serum) or which SNP studied, although the meta-regression
analysis had low power due to the relatively small numbers of individual studies. There was
no evidence of publication bias. We observed correlations between sICAM-1, sP-selectin
and sE-selectin levels (Supplemental Table 2).

SNP rs507666 is located within the ABO gene, and SNP rs579459 and rs651007 are in its
proximity. The ABO gene encodes a glycosyltransferase that transfers sugar residues to the
H antigen and determines the ABO blood group.22 Group A has two subtypes, i.e. A1 and
A2, respectively. It has been shown that the A1 subtype has over 30-fold higher transferase
activity than the A2 subtype.23 The A1 allele is perfectly tagged by the minor allele of SNP
rs507666.11 SNP rs507666 is in near perfect LD (r2=0.96) with rs579459 and rs651007.
Thus, the associations of these SNPs with sICAM-1, sP-selectin and sE-selectin levels may
represent an effect of the ABO group A1 subtype. It has been suggested that the increased
glycosyltransferase activity in individuals carrying the A1 allele might have an effect on the
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shedding, clearance or secretion of adhesion molecules, thereby influencing their levels in
the circulation.11;12

Adhesion molecules are crucial to platelet leukocyte interaction and leukocyte migration
into the vessel wall and thus important players in the atherosclerosis process underlying
CHD.2;24 In a number of previous studies increased CHD risk has been associated with high
sICAM-1, sP-selectin and sE-selectin levels.3;5;6 Unexpectedly, variants at the ABO locus
conferring elevated CHD risk15;16;25, like the minor allele of SNP rs57945916, were
associated with decreased levels of soluble adhesion molecules in our meta-analysis. One
possible explanation for this seeming paradox may be that soluble adhesion molecules,
although elevated in the case of endothelial dysfunction, actually compete with leukocyte
adhesion to the endothelium (competition to cell surface adhesion molecules). Another
possibility may be that the lower levels of soluble adhesion molecules might arise because
of lower shedding of ectodomains, potentially leaving higher levels of intact cell surface
adhesion molecules to recruit leukocytes to the blood vessel wall. To date, it is not known
whether elevated levels of soluble adhesion molecules in vascular high-risk patients
represent an epiphenomenon of vessel wall pathology, a true risk factor or a counter-
regulatory per se protective mechanism as indicated by preliminary experimental data16.
Experimental studies are required to further elaborate the pathophysiological role of soluble
adhesion molecules and to clarify whether the prominent alterations in sICAM-1, sP-selectin
and sE-selectin observed in this study are relevant to the recently discovered association
between ABO SNPs and CHD risk.

Some limitations to our study warrant mentioning. First, the mechanism underlying the
association of SNPs at the ABO locus with sICAM-1, sP-selectin and sE-selectin levels has
remained unclear. Second, since SNP rs579459 is in strong LD with a number of other SNPs
at this locus, it remains unknown which SNP is the causal variant. Third, since this study
was conducted in individuals of European ancestry, the findings may not be generalizable to
other races/ethnicity.

In conclusion, our study provides compelling evidence of an allele dose dependent
association of variation at the ABO locus with circulating sICAM-1, sP-selectin and sE-
selectin levels. These results contribute to the knowledge of genetic influences on these
adhesion molecules which play important roles in many inflammatory diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Weighted mean difference by genotype in soluble intercellular adhesion molecule-1
(sICAM-1), soluble P-selectin (sP-selectin), and soluble E-selectin (sE-selectin) levels. Data
shown are weighted mean difference ± 95% confidence interval in circulating levels of
sICAM-1 (panel A), sP-selectin (panel B) and sE-selectin (panel C), comparing
heterozygotes or minor allele homozygotes, to major allele homozygotes, in a random-
effects model.
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