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† Background The trailing edges of species ranges are becoming a subject of increasing interest as the environ-
ment changes due to global warming. Trailing edge populations are likely to face extinction because of a decline
in numbers and an inability to evolve new adaptations with sufficient speed. Discussions of character change in
the trailing edge have focused on physiological, exomorphic and phenological traits. The mating pattern within
populations has not been part of the discourse, in spite of the fact that the mating pattern may affect the ability of
populations to respond to environmental change and to maintain their sizes. In this paper, the case is made that a
substantial increase in self-fertilization rates may occur via plastic responses to stress.
† Scope and Conclusions Small populations on the trailing edge are especially vulnerable to environmental change
because of inadequate levels of cross-fertilization. Evidence is presented that a deficiency of cross-seed production is
due to inadequate pollinator services and a paucity of self-incompatibility alleles within populations. Evidence also
is presented that if plants are self-compatible, self-fertilization may compensate in part for this deficiency through a
stress-induced increase in levels of self-compatibility and stress-induced alterations in floral morphology that elevate
self-pollination. Whereas increased self-fertility may afford populations the time to adapt to their changing environ-
ments, it can be concluded that increased selfing is not a panacea for the ills of environmental change, because it will
lead to substantial reductions in genetic diversity, which may render adaptation unlikely.

Key words: Environmental change, mating system, phenotypic plasticity, self-fertilization, self-pollination,
trailing edge.

INTRODUCTION

The globe is experiencing a warming trend that is unparalleled in
recent history (IPCC, 2007). Bioclimatic envelop models, which
are based on the observation that species are niche conservative
(Prinzing et al., 2001; Ackerly, 2003; Wiens and Graham, 2005),
indicate that global warming will be accompanied by major dis-
placement in species’ ranges, with species spreading into higher
latitudes or elevations (Ohlemüller et al., 2006; Jump and
Peñuelas, 2005; Thuiller et al., 2008; Jump et al., 2009).
Indeed, changes in distributions have already begun.

Distributional changes are brought about by boundary
expansion on the leading edge of a range and contraction on
the trailing or rear edge of a range. The trailing edge is charac-
terized by negative growth in population size, a reduction in
population number and an increase in interpopulation distances
(Hampe and Petit, 2005). If the environment continues to
deteriorate, all populations in a region will be extirpated, and
the trailing edge will shift in the direction of species expan-
sion. If the rate of global warming is as forecasted, theoretical
treatments indicate that most populations on the trailing edge
will be unable to adapt to a deteriorating environment, and
that they will go extinct (Lynch and Lande, 1993; Bürger
and Lynch, 1995; Lynch, 1996). The position of the trailing
edge changes in concert with systematic environmental altera-
tion as opposed to ‘standard’ edges that are not moving in a
given direction over time.

As the globe warms, populations at and near the trailing
edge will be under strong pressure to adapt to new climatic

conditions, especially reduced precipitation (Ackerly, 2003;
Jump et al., 2009). In response, edge populations may
evolve physiological, morphological and life history attributes
which better attune them to arid environments.

Discussions of character change in the trailing edge have
focused on physiological, exomorphic and phenological traits
(Davis and Shaw, 2001; Ackerly, 2003; Hampe and Petit,
2005; Jump et al., 2009). The mating pattern within popu-
lations has not been part of the discourse, in spite of the fact
that the mating pattern may affect the ability of populations
to respond to environmental change and to maintain their
sizes. The purpose of this paper is to highlight how the level
of self-fertilization may increase at and near the retracting
boundary of self-compatible plant species as a result of
environment-induced changes within flowers and plants as a
whole, a decline in the level of cross-pollination, and selection
for greater self-fertility. Heightened self-fertility has important
implications for population survival during environmental
change because it provides a measure of reproductive assur-
ance. This paper complements a recent discussion by Eckert
et al. (2010) on plant mating-system change in response to
anthropogenic habitat modification.

ENVIRONMENT-ENHANCED
SELF-FERTILIZATION

Environments that deviate from those to which a species is
well-adapted may affect the penchant for selfing through
their influence on the self-incompatibility (S) locus (Levin,
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1996; Good-Avila et al., 2008). The level of self-fertility in
weakly self-fertile (pseudo-compatible) species may be elev-
ated when plants are exposed to reduced light intensities
[e.g. Oenothera organensis (Emerson, 1940) and Petunia
hybrida (Flaschenreim and Ascher, 1980)]. High temperatures
also may heighten self-fertility [e.g. Lilium longiflorum
(Ascher and Peloquin, 1970), Brassica oleracea (Johnson,
1971), Lycopersicon peruvianum (Hogenboom, 1972),
Petunia hybrida (Takahashi, 1973), Cichorium sativum
(Eenick, 1981) and Convolvulus arvensis (Westwood et al.,
1997)]. Even exposure to saline spray may increase the level
of pseudo-self-compatibility [e.g. Brassica napus (Fu et al.,
1992) and Senecio squalidus (Hiscock, 2000)].

Self-fertility in inhospitable environments also may be
increased in some species through a change in flower develop-
ment. One common alteration is a reduction in stigma–anther
separation [reduced herkogamy; e.g. Lycopersicon esculentum
(Rick et al., 1977), Datura wrightii (Elle and Hare, 2002),
Arabidopsis thaliana (Brock and Weinig, 2007), Mimulus gut-
tatus (van Kleunen, 2007) and Eichhornia paniculata
(Vallejo-Marin and Barrett, 2009)], which results in higher
levels of self-pollination. The reduction in herkogamy is
mediated by a reduction in flower size, which is a common
response to harsh growing conditions [e.g. Polemonium
viscosum (Galen, 2000), Epilobium angustifolium (Carroll
et al., 2001) and Rosemarinus officinalis (Herrera, 2005)]. In
some species, reduced flower size in marginal habitats is due
to accelerated floral growth rate [e.g. Clarkia xantiana
(Runions and Geber, 2000; Mazer et al., 2004]. Even herbiv-
ory may increase anther–stigma proximity and increase the
level of autogamy (cf. Penet et al., 2009).

Some species regularly produce cleistogamic flowers
(diminutive and automatically self-pollinating) in addition to
chasmogamic (showy and cross-pollinating) flowers. The pro-
portion of cleistogamic flowers and the level of self-
fertilization may increase when their habitats are deficient in
light, moisture or nutrients (Le Corff, 1993). In Impatiens
capensis, even herbivory may increase the proportion of cleis-
togamic flowers (Steets and Ashman, 2004).The proportion of
flowers that are cleistogamic typically is a function of plant
size, as demonstrated in Mimulus nasutus (Diaz and
Macnair, 1998).

INCREASED SELFING DUE TO INADEQUATE
POLLEN RECEIPT

The level of pollen exchange among members of a population
is a function of population size. As populations in the trailing
edge shrink in response to ever increasing climatic stress, they
become less desirable resources for pollinators, and cross-
pollination levels decline [e.g. Dianthus deltoides
(Jennersten, 1988), Banksia goodii (Lamont et al., 1993),
Nepeta cataria (Sih and Baltus, 1987), Brassica kaber
(Kunin, 1997), Clarkia xantiana (Moeller and Geber, 2005)
and Lupinus perennis (Bernhardt et al., 2008)].
Cross-pollination levels in wind-pollinated species are also
dependent on population size [e.g. Pinus ponderosa (Farris
and Mitton, 1984), Plantago coronopus (Wolff et al., 1988),
Pinus sylvestris (Robledo-Arnuncio et al., 2004) and Paris
quadrifolia (Jacquemym and Brys, 2008)]. If plants are self-

incompatible, their reproductive success is negatively corre-
lated with population size, whereas if plants are self-
compatible the loss of cross-seed production is mitigated to
some degree by an increase in self-seed production (Aizen
et al., 2002; Wilcock and Neiland, 2002; Aizen and
Feinsinger, 2003).

Pollinator service per flower is not simply a function of plant
numbers. It is also dependent on the number of flowers per
plant, a trait that is plastic. Pollinators ‘count’ numbers of
flowers, not just numbers of plants. Flower number is pro-
portional to plant biomass, and biomass is sensitive to the
environment (Weiner et al., 2009). Accordingly, annuals
growing in relatively inhospitable conditions will produce
fewer flowers and seeds per plant than the same number of
plants in a benign environment (Pigliucci, 2001; Reekie and
Bazzaz, 2005; Bonser and Aarsen, 2009; Weiner et al.,
2009). Correlatively, perennials subjected to unfavorable con-
ditions will produce fewer flowers and seeds per year and/or
flower and seed less frequently than they would under favor-
able circumstances (Tyler, 2001; Pfeiffer et al., 2006; Crone
et al., 2009; Jacquemyn et al., 2010).

Populations with small numbers of plants and few flowers
per plant also will experience reduced seed-set because polli-
nators tend to be less flower-constant (i.e. they will be less
likely to sequentially visit a given species) in them, thereby
depositing less conspecific pollen on stigmas during a given
foraging bout than they would in large populations (Goulson
et al., 1997; Goulson and Wright, 1998; Gegear and Laverty,
2005). As conspecific pollen loads decline, heterospecific
pollen loads are apt to increase, and may create a physical
barrier to the contact of conspecific pollen with the stigma,
(Waser, 1978; Kohn and Waser, 1985; Waser and Fugate,
1986), cause stigma closure (Waser and Fugate, 1986;
Morales and Traveset, 2008), stylar clogging (Shore and
Barrett, 1984; Galen and Gregory, 1989) or allelopathic inhi-
bition of conspecific pollen (Sukhada and Jayachandra, 1980;
Thomson et al., 1981; Murphy and Aarsen, 1995).
Inadequate receipt or placement of conspecific pollen leads
to reduced seed-set (Ashman et al., 2004; Steffan-Dewenter
et al., 2006). Species exploiting specialist pollinators may be
affected more than those using generalist pollinators (Aigner,
2006; Steffan-Dewenter et al., 2006). Inadequate pollen
receipt may be the most prominent cause of reproductive
impairment in marginal populations (Aguilar et al., 2006).

Populations on the trailing edge may experience a reduction
in cross-pollination if environmental change alters the pheno-
logical relationships of plants and their pollinators, as already
appears to be happening (Memmott et al., 2007; Hegland
et al., 2009). A reduction in cross-pollination will also
accrue if environmental change is accompanied by a change
in pollinator fauna (Gómez et al., 2010), or by a regional
decline in pollinator species diversity and pollinator population
size (Potts et al., 2010). Even annual change in climatic con-
ditions may have significant effects on plant–pollinator
relationships (Alarcón et al., 2008; Dupont et al., 2009).

In small populations, the amount of potentially effective
cross- pollen may be limited by a paucity of different alleles
at the self-incompatibility (S) locus, which translates into a
paucity of potential mates (Byers and Meagher, 1992; Young
et al., 2000; Willi and Fischer, 2005; Glémin et al., 2008).
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If plants share S-alleles, crosses between them will either be
unsuccessful or only partially successful (de Nettancourt,
2001). Accordingly, a higher proportion of crosses in small
populations are apt to yield no or few seeds than crosses in
large populations where numerous S-alleles are likely to be
present. A small population of Brassica insularis may have
as few as three S-alleles versus up to 30 S-alleles in large
populations (Glémin et al., 2005). Small populations of
Senecio squalidis may have between two and six S-alleles
(Brennan et al., 2006), and small populations of Carthamus
flavescens may have only six to eight such alleles (Imbrie
and Knowles, 1971; Imbrie et al., 1972).

An increase in self-seed production at the expense of cross-
seed production is reflected in lower outcrossing rates (t) in
small populations. This relationship is well illustrated in a
recent meta-analysis of 22 studies involving populations of
different sizes in 27 species (Eckert et al., 2010). The result
is consistent with that from another large meta-analysis
which showed that the inbreeding coefficient of progeny
tended to be higher in small populations than in large ones
of the same species (Aguilar et al., 2008). This meta-analysis
also showed that genetic diversity and heterozygosity were
more prone to decline in small populations.

A reduction in heterozygosity per se may increase the
penchant for selfing in predominantly outcrossing plants.
Increased selfing following inbreeding has been demonstrated
in Secale cereale (Lundquist, 1960), Agrostis tenuis
(Antonovics, 1968), Nemesia strumosa (Henny and Ascher,
1976), Petunia integrifolia (Dana and Ascher, 1985),
Senecio squalidus (Hiscock, 2000), Solanum caroliniense
(Mena-Ali et al., 2008) and in Phlox drummondii (Levin,
1995).

EVOLUTIONARY LABILITY
OF SELF-FERTILITY

As population size declines in response to climatic change,
plants in the trailing edge that are more self-fertile than
others are likely to be at a selective premium, because they
will leave the most offspring, all else being equal. The pench-
ant for selfing should then increase. This premise is based on
the assumption that self-fertility is heritable. The responsive-
ness of self-fertility to selection is well illustrated in the
numerous self-fertile domesticates that have been derived
from nearly self-sterile wild progenitors (Rick, 1988). These
include ornamentals (e.g. snapdragon, Phlox and petunia)
and vegetable crops (e.g. tomatoes and cauliflower).

The evolutionary lability of self-fertility also is evident in
results of selection experiments. Consider Phlox drummondii,
where selection for increased autogamy was practiced for two
generations (Bixby and Levin, 1996). During that period, auto-
gamous seed-set in the predominantly outcrossing
P. drummondii increased from 4 % to 56 % of the ovules in
one population and from 22 % to 41 % in another. Two
cycles of selection for increased self-fertility also were per-
formed on the P. drummondii cultivar ‘Salmon Beauty’ in
which autogamous seed-set increased from 40 % to 95 %.

Finally, the evolvability of the breeding system is evident in
the shifts from outcrossing to facultative selfing during the
colonization of heavy-metal substrates in Thlaspi caerulescens

(Dubois et al., 2003), Anthoxanthum odoratum and Agrostis
tenuis (Antonovics, 1968), and during the colonization of ser-
pentine soils in Lasthenia (Rajakaruna, 2004) and Mimulus
(Macnair and Gardiner, 1998). Evolvability also is illustrated
in the many times that self-fertility has increased in ecologi-
cally marginal populations on the periphery of species’
ranges [e.g. Clarkia unguiculata (Vasek, 1964), Gilia achillei-
folia (Schoen,1982), Eichhornia paniculata (Barrett et al.,
1989), Arenaria uniflora (Wyatt, 1988), Nicotiana glauca
(Schueller, 2004), Clarkia xantiana (Moeller and Geber,
2005) and Leavenworthia alabamica (Busch, 2005)]. Floral
morphology is also responsive to selection as shown in
Mimulus guttatus, where populations that are pollen limited
evolved reduced stigma–anther separation (Fenster and
Ritland, 1994).

Although the genetic bases for shifts toward self-fertility
have not been documented in the aforementioned species,
the transit from self-sterility to self-fertility may result from
loss of function mutations at the self-incompatibility locus
(Igic et al., 2008). If species already are facultative selfers,
increased self-compatibility may arise from the suppression
of S-gene activity by modifier genes (Levin, 1996;
Good-Avila et al., 2008).

DISCUSSION

An increase in the rate of self-fertilization in populations along
or near the rear edges of species’ ranges may occur in response
to progressive climate change. This mating system shift could
arise from environment-induced changes in pollen–pistil com-
patibility and/or flower architecture, a reduction in the level of
cross-pollination in facultative selfers, and from the evolution
of higher levels of self-fertility and within-flower self-
pollination. Evolution may be based upon standing genetic
variation or achieved through genetic assimilation, wherein
phenotypes generated by plastic changes eventually are con-
trolled by genetic change such that an inducing environment
is not required (West-Eberhard, 2003; Pigliucci et al., 2006;
Crispo, 2008). Self-fertility also may increase first via the evol-
ution of greater plasticity, and then be fixed by genetic assim-
ilation (Lande, 2009).

Both plastic and genetic responses may contribute to a range
of phenotypic shifts in the trailing edge; and it may be difficult
to partition causation among these responses (Jump and
Peñuelas, 2005; Giennapp et al., 2008). In the case of heigh-
tened selfing, plastic responses are apt to play a preeminent
role early in the decline of populations, because phenotypic
plasticity is immediate, while genetic change occurs across
generations (Pulido and Berthold, 2004). However, over long
time frames the capacity of populations to increase selfing
via plasticity is much more limited than the ability of popu-
lations to increase selfing by genetic change (De Jong, 2005;
Jump and Peñuelas, 2005).

Elevated levels of self-fertilization, whether based on the
environment or genes, afford populations a measure of repro-
ductive assurance (Kalisz and Vogler, 2003; Moeller and
Geber, 2005; Goodwillie et al., 2005; Eckert et al., 2006;
Busch and Schoen, 2008). Using models that included popu-
lation dynamics, pollinator behaviour and self-fertilization,
Morgan et al. (2005) showed that heighten levels of self-seed
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production may negate a downward spiral to extinction that
otherwise would be mandated by complete or substantial
dependence on cross-pollination for seed production.

Reproductive assurance would promote population survival
only if a gain in seed production is not outweighed by inbreed-
ing depression, which is a likely correlate of selfing in out-
crossing and predominantly outcrossing species (Lande and
Schemske, 1985; Dudash and Fenster, 2000; Keller and
Waller, 2002; Goodwillie et al., 2005). The level of inbreeding
depression in outcrossers is much greater than in selfers
(Husband and Schemske, 1996). In many species, the magni-
tude of inbreeding depression is higher in stressful environ-
ments (Dudash, 1990; Johnston, 1992; Eckert and Barrett,
1994; Reed et al., 2002; Armbruster and Reed, 2005). In
general, higher levels of inbreeding depression substantially
elevate the extinction risk of populations (O’Grady et al.,
2006; Vilas et al., 2006; Wright et al., 2008).

The balance between the effects of inbreeding depression
and reproductive assurance varies among species, populations
and environments. Selfing is advantageous under variable pol-
linator conditions in Hibiscus trionum, where inbreeding
depression is high (Seed et al., 2006), and in Collinsia
verna, where inbreeding depression is low (Kalisz and
Vogler, 2003). In Aquilegia canadensis (Herlihy and Eckert,
2002) and Bulbine vagans (Vaughton et al., 2008), inbreeding
depression erodes the magnitude of any benefit provided by
reproductive assurance. The detrimental effect of inbreeding
depression is the least when self-seed are not produced at
the expense of cross-seed (Morgan et al., 2005; Dornier
et al., 2008).

The relative effects of inbreeding depression and reproduc-
tive assurance may gradually shift in favour of the latter, if
populations can purge their genetic load. This indeed has hap-
pened to various degrees in many plant populations (Byers and
Waller, 1999; Crnokrak and Barrett, 2002; Reed et al., 2003;
Lienert and Fischer, 2004). Pujol et al. (2009) found that in
Mercurialis annua inbreeding depression was depleted when
the species passed through repeated bottlenecks during the
process of range expansion. This reduction probably was
achieved through the recurrent expression of, and selection
against, deleterious recessive genes in small, inbred popu-
lations (Barrett and Charlesworth, 1991).

The pace of the decline in inbreeding depression depends on
the environment (Biljsma et al., 2000). The purging of deleter-
ious alleles often proceeds faster during periods of environ-
mental stress (cf. Swindell and Bouzat, 2006).

In addition to the removal of harmful genes, inbreeding
depression in small populations may be reduced through immi-
gration, i.e. when some seeds are sired by plants from
extraneous sources and when some seeds are introduced
from these sources (Sheridan and Karowe, 2000; Huford and
Mazer, 2003; Willi and Fischer, 2005; Bossuyt, 2007). The
exchange of genes between trailing edge populations may be
quite beneficial in reducing inbreeding depression, because
they are likely to be more genetically divergent than popu-
lations in the corpus of the species (Hampe and Petit, 2005).
Note, however, that gene exchange between populations via
pollen will be an inverse function of their selfing levels,
because the greater the selfing level the lower will be the inci-
dence of extraneous paternity.

In spite of demographic and genetic obstacles, some popu-
lations of weakly self-compatible plants have survived contrac-
tions and given rise to predominantly selfing derivatives. This
scenario is well illustrated in Capsella. Using comparative
sequence information, Guo et al. (2009) and Foxe et al.
(2009) estimated that the self-compatible C. rubella separated
from the self-incompatible C. grandiflora from 20 000 to
50 000 thousand years ago, and that the breakdown of self-
incompatibility occurred at about the same time. Nucleotide
diversity patterns indicated that C. rubella has only one or
two alleles at most loci, which suggests that the lineage prob-
ably experienced a pronounced contraction during its genesis.
It is possible that C. rubella originated from a single individ-
ual. Selfing rates may increase rapidly in Capsella and in other
members of the mustard family, where mutations in the
SCR (male specificity) gene cause a breakdown in self-
incompatibility (Nasrallah et al., 2004, 2007; Boggs et al.,
2009; Guo et al., 2009).

The transit through bottlenecks need not result in self-
compatible genotypes replacing self-incompatible genotypes
(Igic et al., 2008). An initial shift toward self-compatibility
may be reversed in part after populations expand.
Self-compatibile genotypes are most likely to persist in
species where populations are short-lived and colonization is
frequent (Pannell and Barrett, 1998; Schoen and Busch,
2008). The association between population bottlenecks and
increased selfing is best understood in relation to the coloniza-
tion of marginal habitats or distant locales (e.g. Lloyd, 1992;
Barrett, 2003; Barrett et al., 2008; Busch, 2005; Pannell and
Dorken, 2006; Moeller and Geber, 2005; Schoen and Busch,
2008).

The transition to higher levels of self-fertilization may buy
trailing edge populations time to evolve adaptations suited to
their new environmental conditions. This no doubt has hap-
pened in the past, because the trailing edge has been a
source of evolutionary novelty and a focal point of speciation
in some lineages (Davis and Shaw, 2001; Ackerly, 2003;
Hampe and Petit, 2005). Adaptation in the trailing edge is
most likely when a trailing edge becomes geographically
stable (Hampe and Petit, 2005).

In conclusion, global environmental change will increas-
ingly challenge the viability of populations along and near
species’ trailing edges. Populations are likely to undergo sub-
stantial contractions in their sizes. If genetic systems allow,
rates of self-fertilization will increase. The latter will provide
a measure of reproductive assurance, and thereby buffer popu-
lations against declines in reproductive output that normally
accompany a reduction in cross-pollen receipt in small popu-
lations. Increased self-fertility may afford populations the
time to adapt to their changing environments. However,
increased selfing is not a panacea for the ills of environmental
change, because it will lead to substantial reductions in genetic
diversity, which may render adaptation in other traits unlikely
(Charlesworth, 2003; Charlesworth and Wright, 2001). Thus,
even if selfing levels are elevated, the demise of rear end popu-
lations is likely to be the norm, and the species range will
usually retract.

Although framed within the context of range retraction,
range fragmentation and population decline also may lead to
heightened selfing in species’ interiors. Regardless of the
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context, a breeding system shift is a likely, but not necessary,
outcome in self-compatible populations subject to deteriorat-
ing environments. Self-fertilization may increase by a few
per cent or by many per cent depending on the environment,
plasticity in floral traits, and on a populations’ capacity for
breeding system evolution. Breeding system shifts may occur
in some populations, but not in others. Shifts may occur in
some species, but not in others.

This paper lies in the realm of conjecture. We cannot know
what may happen in the future. However, today is the future
for species whose ranges began protracted movement
thousands of years ago. Might not elevated levels of
self-fertilization in contemporary geographically marginal
populations be the selected product of systematic environ-
mental change and range retraction? This possibility could
be explored using climate envelop models, with which we
may assess past species distributions (Hijmans and Graham,
2005; Nogués-Bravo, 2009). Biogeographic and ecological
responses to environmental change are well documented for
the past 10 000 to 20 000 years in many regions (Dawson
et al., 2011).

Elevated levels of selfing at or near geographical boundaries
have been discussed in terms of range expansion into stressful
environments or into habitats where pollinator service is
inadequate (reviewed by Randle et al., 2009). However, it is
clear that expansion is not the only process favouring elevated
selfing. In a changing world, reduced environmental hospital-
ity will come to populations and groups thereof. They need not
seek it out.
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and evolution: disentangling environmental and genetic responses.
Molecular Ecology 17: 167–178.
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