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Abstract

Circadian rhythms and rest homeostasis are independent processes, each regulating important components of rest-activity
patterns. Evolutionarily, the two are distinct from one another; total rest time is maintained unaffected even when circadian
pacemaker cells are ablated. Throughout the animal kingdom, there exists a huge variation in rest-activity patterns, yet it is
unclear how these behaviors have evolved. Here we show that four species of balitorid cavefish have greatly reduced rest
times in comparison to rest times of their surface relatives. All four cave species retained biological rhythmicity, and in three
of the four there is a pronounced 24-hour rhythm; in the fourth there is an altered rhythmicity of 38–40 hours. Thus,
consistent changes in total rest have evolved in these species independent of circadian rhythmicity. Taken together, our
data suggest that consistent reduction in total rest times were accomplished evolutionarily through alterations in rest
homeostasis.
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Introduction

Circadian rhythms, defined as synchronized, free-running,

oscillations in biological processes with a period length close to

24 hours, regulate a number of biological phenomena including

gene expression, feeding, and locomotor activity. Circadian

rhythms can be entrained by any number of cues, including the

light-dark cycle, temperature fluctuations and feeding cycles. These

rhythmic behaviors are important to the survival of an orga-

nism and have been conserved from organisms as primitive as

bacteria [1] and fungi [2] through plants, insects [3] and vertebrates

[4].

Particular attention in recent years has been focused on

circadian locomotor activity with respect to the evolution of rest-

activity (RA) patterns and sleep [5]. Sleep can be defined as a

homeostatically regulated process marked behaviorally by reduced

responsiveness to external stimuli, which occur in a circadian

manner. Specifically, RA patterns and sleep are thought to have

evolved from a more ancestral circadian locomotor activity. In

higher order species such as insects and vertebrates, RA patterns

are thought to be regulated by the interaction of two main

processes, namely Process-S, which regulates the homeostatic

component, and process-C, which regulates the circadian

component [5]. The theory that these RA patterns have diverged

into distinct, independent processes is supported by the observa-

tion that total sleep time and the homeostatic response to sleep

deprivation persist when the vertebrate circadian pacemaker, the

Suprachiasmatic Nucleus, is ablated [6]. Thus, even in the absence

of circadian rhythms, sleep homeostasis persists.

There is enormous variation in RA patterns throughout the

animal kingdom [7,8]. While allelic variations in core clock genes

can lead to altered total rest times [9], there are a number of well

documented non-clock genes such as the hypocretin 2 receptor

[10] that directly alter RA patterns without affecting circadian

rhythms [11]. Thus, it is not clear if RA patterns evolve as a

consequence of altered circadian rhythms, or if the genetic

mechanisms leading to changes in RA patterns in natural

populations evolved independently and are primarily a conse-

quence of reduction in the homeostatic need.

Many cave organisms have converged on a suite of phenotypic

traits including reduced optic and enhanced extra-optic senses, and

depigmentation making cave organisms particularly suited to the

study of evolutionary phenomena [12]. The ecology of cave and

surface environments differ in several important ways; caves are

without light and photosynthesis, generally have reduced food

availability, and typically are more stable than surface environments

in terms of temperature variability [13]. Thus, the cave environ-

ment offers its inhabitants fewer zietgeber cues than are provided to

surface animals. Furthermore, recent studies have pointed to both

altered circadian rhythms [14] and sleep loss [15] in hypogean

morphs. These organisms therefore provide a powerful model for

evolutionary study of both circadian rhythms and RA patterns.

We studied circadian rhythms and RA patterns in several

species of the SE Asian hillstream loaches (Family Balitoridae) to

specifically address these questions. Balitorids are widespread

throughout surface streams of the Old World and in certain

regions, most prominently in SE Asia and Southern China, have

given rise to numerous cave adapted species.
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Results

We first asked if surface and cave balitorids exhibited a

circadian rhythm. To assess circadian periodicity in balitorid

populations, we recorded locomotor activity for several days in

constant dark (DD) conditions, as is standard for measuring free

running rhythms. Surface fish populations exhibited an average

24-hour circadian rhythm (Figure 1A, 1B, 1K; 24.1960.19 hr).

We compared these data to those of cave dwelling balitorids and

found significant differences between groups (Kruskal Wallis

H4,18 = 10.38; p,0.03). Interestingly, we found that all but one

cave population studied exhibited approximate 24-hour (circadian)

rhythms that were not significantly different that those of the

surface form (N. troglocataractus showed weak, but significant

rhythms as measured by Lomb-Scargle). S. oedipus, however,

showed a significantly longer rhythm than both the surface and

other cave populations (S. jaruthanini: 23.1963.11 hr.; S. spiesi:

24.0660.19 hr.; N. troglocataractus: 24.9261.03 hr.; S. oedipus:

38.5061.25 hr., p,0.01; Figure 1C–K). These results suggest

that of the balitorid species studied, while all populations showed

robust rhythms, only one population diverged from an approxi-

mate 24 hr. (circadian) rhythm to a 38 hr. rhythm (Figure 1K).

We next asked if there was a change in RA patterns between

populations. Because we wished to compare rest-activity results to

circadian results, we initially quantified rest-activity patters in

individuals recorded under D:D conditions, as presented in our

circadian studies. Quantification of total rest revealed significant

differences among groups (Kruskal Wallis H4,23 = 16.22; p,0.01).

The surface species had an average rest time of 999.1664.4 min

per 24-hour period. In strong contrast to the surface dwelling

form, average total rest per 24-hour period was significantly less in

all four of the cave species studied (S. oedipus: 128.8662.04 min,

p,0.001; S. jaruthanini: 130.4627.38 min, p,0.001; N. troglocatar-

actus: 202.36122.1 min, p,0.001; S. speisi: 161.0672.51 min,

p,0.001; Figure 2A).

A lack of circadian rhythms does not always lead to a change in

total rest over a given 24-hour period, but may manifest itself as

changes in the distribution of total rest between the day and night

phases [6]. Therefore, we looked at differences in day and night

(i.e., subjective day and night, herein) rest across balitorid species.

Consistent with our circadian data, we noticed that for all species

studied, average rest was greater during periods of night compared

to day (Figure 2A). Quantification of rest during day and night also

revealed significant differences among groups (day: Kruskal Wallis

H4,23 = 14.96; p,0.01, night: Kruskal Wallis H4,23 = 15.91;

p,0.01). Epigean balitorids exhibited day and night rest times

of 422.0662.09 min and 577.0687.9 min, respectively. Com-

pared to the surface balitorids, all four of the cave populations

studied showed significant differences in both average day rest (S.

oedipus: 52.0628.8 min, p,0.001; S. jaruthanini: 41.8615.89 min,

p,0.001; N. troglocataractus: 84.0651.12 min, p,0.001; S. speisi:

55.67626.69 min, p,0.001) and night rest (S. oedipus:

76.8634.04 min, p,0.001; S. jaruthanini: 88.6613.07 min,

p,0.001; N. troglocataractus: 118.3670.93 min, p,0.001; S. speisi:

105.3649.6 min, p,0.001) suggesting that in these individuals,

adaptation to a cave environment is accompanied by significant

reductions in total rest (Figure 2A).

Total rest is a function of two main components, the number of rest

bouts exhibited by an individual and the average duration of each

bout. We quantified both the numbers and average durations of both

subjective day and night rest bouts for all species (Figure 2B and 2C).

Neither daytime bout numbers (Epigean: 4.461.3; S. oedipus:

14.265.5; S. jaruthanini: 5.461.5; N. troglocataractus: 43.0632.1; S.

speisi: 10.763.5) nor nighttime bout numbers (Epigean: 4.461.4; S.

Figure 1. Both cave and surface balitorid species show pronounced locomotor rhythms. Activity was measured as the number of
movements per 30 min period (y-axis) and was plotted over the full period of observation. Individual actogram plots and LSP periodograms for
surface (A, B), S. jaruthanini (C,D), S. spesei (E.,F), N. troglocataractus (G, H) and S. oedipus (I, J) over the full observation period show pronounced
rhythmicity in all species. Period length as measured by the Lomb-Scargle algorithm (K) reveal a 24-hour circadian rhythm in all but one cave species.
Period values in K represent peak period length (h)61 LOD.
doi:10.1371/journal.pone.0030868.g001
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oedipus: 17.168.2; S. jaruthanini: 14.062.8; N. troglocataractus:

22.0612.3; S. speisi: 47.3629.3) were significantly different between

any of the cave species and the surface forms (Figure 2B). Bout

durations however, were significantly different between surface and

all cave species during both the day and night phases (day: Kruskal

Wallis H4,23 = 15.17; p,.01; night: Kruskal Wallis H4,23 = 15.369;

p,0.01; Figure 2C). The epigean form exhibited daytime and

nighttime bout durations of 185.8671.7 min and 219.8650.7 min,

respectively. All four hypogean forms exhibited significantly shorter

rest duration periods for both day (S. oedipus: 13.260.9, p,0.001; S.

jaruthanini: 16.861.8, p,0.001; N. troglocataractus: 14.461.4, p,0.001;

S. speisi: 12.760.6, p,0.001) and night (S. oedipus: 15.261.3,

p,0.001; S. jaruthanini: 16.760.7, p,0.001; N. troglocataractus:

15.463.1, p,0.001; S. speisi: 12.560.1, p,0.001) phases.

Because RA patterns are often studied in L:D cycles and

constant dark conditions may have an effect on total rest, we

sampled a subset of surface and cave populations and retested rest

on an 12:12 L:D cycle. Results of these L:D studies were

comparable to those of the D:D studies. Quantification of total rest

again revealed significant differences among groups (Kruskal

Wallis H3, 27 = 12.25; p,0.01). The surface species had an average

rest time of 802.26143.5 min per 24-hour period. Average total

rest per 24-hour period was significantly less in two of the three

cave species studied. Both S. kaysonei (224.8686.9 min, p,0.05)

Figure 2. Reduced total rest time in cave balitorids is primarily a function of reduced rest bout duration. Quantification of total rest (A.)
indicates that surface fish spend an average of 999.1664.4 min per 24 hr in a rest-like state. In strong contrast to the surface dwelling form, average
total rest per 24-hour period was significantly less in all four of the cave species studied (S. oedipus: 128.8662.04 min, p,0.001; S. jaruthanini:
130.4627.38 min, p,0.001; N. troglocataractus: 202.36122.1 min, p,0.001; S. speisi: 161.0672.51 min, p,0.001). (B–C.) There were no significant
differences between the number of rest bouts in surface and cave balitorids (B. Day - Epigean: 4.461.3; S. oedipus: 14.265.5; S. jaruthanini: 5.461.5;
N. troglocataractus: 43.0632.1; S. speisi: 10.763.5; Night - Epigean: 4.461.4; S. oedipus: 17.168.2; S. jaruthanini: 14.062.8; N. troglocataractus:
22.0612.3; S. speisi: 47.3629.3) thought the duration of each rest bout was significantly less in all cave populations studied compared to surface (Day
- Epigean: 185.8671.7; S. oedipus: 13.260.9, p,0.001; S. jaruthanini: 16.861.8, p,0.001; N. troglocataractus: 14.461.4, p,0.001; S. speisi: 12.760.6,
p,0.001; Night - Epigean: 219.8650.7; S. oedipus: 15.261.3, p,0.001; S. jaruthanini: 16.760.7, p,0.001; N. troglocataractus: 15.463.1, p,0.001; S.
speisi: 12.560.1, p,0.001). For panel A., white denotes subjective day (CT0–CT12) and black denoted subjective night (CT12–CT24). For panels B. and
C., Black denotes surface, dark-shade grey denotes S. jaruthanini, mid-shade grey denotes S. spesei, light-shade grey denotes N. troglocataractus and
white denotes S. oedipus. All plots represent mean 6 standard error of the mean (SEM). Asterisks represent significance relative to surface fish.
doi:10.1371/journal.pone.0030868.g002
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and S. spiesi (79.0614.3 min, p,0.01) differed significantly.

Average total rest in S. jaruthanini was less than in the surface

species (279.66108.1 min), but not significant. These data suggest

that reduced rest in cave balatorids is independent of light cues.

Discussion

Taken together, our data suggest that cave balitorid populations

from SE Asia have retained biological rhythms, yet all evolved a

phenotype whereby they significantly reduce rest during a 24-hour

period. We found significant locomotor rhythms to be present in

all species studied. Moreover, we found that 3 of 4 cave

populations studied maintained a 24-hour circadian rhythm,

suggesting under some but not all conditions, the cave environ-

ment may lead to changes in circadian rhythmicity. Our data

suggest that while all populations have maintained a biological

rhythm, one population in particular had an apparent shift from a

24-hour rhythm to a near 38-hour rhythm. While it is not

impossible to rule out the possibility of two rhythms with

individual period lengths in S. oedipus (one of high amplitude and

one of low amplitude) which could skew LSP to an artificially

longer period length, it is interesting to note that a shift in

rhythmicity from a 24-hour rhythm to one significantly longer has

been reported in at least one other cavefish population, the

Somalian cavefish, Phreatichthys andruzzii [16]. While the evolu-

tionary basis for this apparent shift in periodicity is as yet unclear,

the most parsimonious explanation is genetic drift. We believe that

our data can be explained by an apparent relaxed selective

pressure on a 24-hour rhythm.

In contrast to period length, all cave populations studied showed

significant reductions in total rest over a 24 hour period. This

convergence on reduced rest may suggest a general adaptation in

hypogean fish; we previously reported that three independently

derived populations of the Mexican Blind Cavefish, Astyanax

mexicanus, have all converged on a similar phenotype of reduced

sleep in comparison to surface populations [15]. The reduced sleep

is primarily a function of reduced bout duration; bout numbers are

the same in both surface and cave dwelling Astyanax. We now have

extended this inquiry to include RA patterns in the geographically

and taxonomically distinct balitorids. Absent an exhaustive survey

of all behavioral correlates of sleep in the balitorid species studied,

we can only refer to the phenomenon demonstrated in the present

paper as rest. However, the present results alongside those on

Astyanax clearly suggest a general convergence on increased activity

in cavefish species.

Lastly, we believe this is one of the first studies testing the

evolution of rest-activity patterns with respect to the dual process

theory. Specifically, because rest-activity patterns (and sleep) are

regulated and maintained through both circadian and homeostatic

processes, and both of these processes are independent of one

another, rest patterns could evolve via allelic variation in genes

regulating Process-C, through allelic variation in genes regulating

Process-S, or both. Our data show that three of the four cave

balitorids we studied exhibited circadian (app. 24 hour periodicity)

rhythms, while one species has diverged significantly from a 24-

hour to a 38–40 hour periodicity. In strong contrast, all

populations showed a significant reduction in total rest time over

a 24-hour period. We believe these data suggest that rest activity

patterns are much more likely to evolve through allelic variation in

genes affecting Process-S as oppose to Process-C.

In both vertebrates and invertebrates, mutations in any of the

core clock genes or molecular regulators of the circadian clock

have been shown to have drastic effects on period length [3,4].

Specifically, individuals harboring these mutations have been

shown to have very robust activity rhythms that either increase or

decrease from the standard 24-hour rhythm. The molecular

mechanisms underlying the shift in period length from a 24 hour

rhythm to a near 38 hour rhythm in S. oedipus remain unclear.

Future work on the genetics of circadian rhythms in these

populations will prove fruitful to our understanding of how the

clock evolves. Importantly, because only one of the 4 cave species

studies showed significant changes in period length, but all

populations studied showed significantly reduced rest time, we

believe that whatever the genetic mechanisms leading to change in

rhythmicity may be, they are independent of reduced rest time. A

number of studies in both vertebrates and invertebrates suggest

that rest time and feeding are tightly interconnected. One

hypothesis is that the reduced rest in the cave is advantageous

because it increases foraging time in a food poor environment

[15,17,18]. We believe our data show that reduction in total rest

time repeatedly accompanies adaptation to aquatic cave life is, and

we believe these data are the first to suggest that loss of total rest

occurs independent of circadian Process-C.

Materials and Methods

Ethics Statement
All animal work was conducted according to relevant national

and international guidelines. This work was approved by the

University Animal Welfare Committee of New York University

(Protocol numbers 00-1022 and 00-1015). The fish were collected

by colleagues in the Thai Departments of Fisheries and Forestry

(Chavalit Vidthayanon and Dean Smart); all appropriate collec-

tion permits were obtained in advance.

Animals
All animals were housed in our fish facility in 17L aquaria with

water temperature maintained at 21uC61uC. The individuals

were maintained on a diet of fish flakes (TetraMin, fed once a day.

All tanks were supplemented with an aerator to maintain air

saturated oxygen levels and fish were maintained on a 12:12

Light:Dark cycle.

A total of seven balitorid species, two surface dwelling forms and

five cave dwelling forms, were used in the present study. All fish

except for Schistura kaysonei were collected on field trips in 1997, 1999,

2003. Two surface species, S. mahnerti and S. similis (n = 4), were

collected in Mae Hong Son and Tak Provinces , Thailand. Four cave

species native to Thailand were collected: S. jaruthanini (Tham Sao

Hin Cave, Lam Khlong Ngu National Park, Kanchanaburi Province;

n = 5) and Nemacheilus troglocataractus (Tham Wang Badan Cave,

Erawan National Park, Kanchanaburi Province; n = 2), S. oedipus

(Tham Mae Lana Cave, Mae Hong Son Province; n = 5) and S. spiesi

(Tham Phra Wang Daeng Cave, Thung Salaeng Luang National

Park, Phitsanoluk Province; n = 2). One other cave dwelling species,

S. kaysonei, native to the Khammouan Karst in central Laos (Phu

Tham Nam cave, Ban Don Yom in Khammouane Province; n = 11)

was obtained commercially.

Behavioral Analysis
Locomotor activity was assessed using an automated tracking

system similar to those previously described [15,19]. Individual

fish were housed in 17L aquaria and maintained in a laboratory

setting on a 12:12 LD cycle for no less than six months prior to

recording. Constant Dark recordings were carried out in standard

17L aquaria. Because water circulation and aeration were essential

to the health of the fish, each tank was equipped with an external

circulating filter; a nylon wool bridge from the lip of the filter to

the edge of the water was used to minimize rippling. Fish were

Rest-Activity Patterns in Balitorid Cave Loaches

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e30868



moved from the laboratory aquaria to the test aquaria in a

constant dark room and given two days to acclimate to their

settings. We then recorded locomotor activity following the two-

day acclimation period.

To monitor locomotor activity, a High Resolution Black and

White CCD Camera (model number BL58D; ISO Rainbow,

Costa Mesa, CA) fitted with a fixed 8 mm focal length lens (model

number L8CSWI; ISO Rainbow, Costa Mesa, CA) was mounted

above the tanks. Recordings were carried out for a period of 5–8

days using Ethovision software (Noldus Information Technology,

Leesburg, VA). Recorded tracks were subsequently analyzed in

1 min bins for average velocity, total distance and movement per

second.

To establish locomotor activity in L:D conditions, fish were also

maintained for a period greater than six months in standard 17L

aquaria on a 12:12 L:D cycle. On the night before the recordings,

fish were transferred to a recording chamber that was continuously

illuminated with a custom built Infrared (IR; 940 nm) LED source

(Part Number 106526; Jameco Electronics, Belmount, CA) and a

12:12 white light source (175 lux). The timing of the white light

corresponded to the entrainment period. The tanks were placed in

a recording chamber at least 18 hours prior to recording.

Analysis and Statistics
Circadian rhythms were analyzed using the Lomb-Scargle

algorithm calculated with PEANUTS software [20]. Rest-Activity

patterns were analyzed using custom written MatLab scripts as

previously described [15]. A Rest bout was scored as any period of

complete inactivity lasting at least 10-minutes. Using this criterion,

we calculated total rest, daytime rest, nighttime rest, total number

of daytime rest bouts, total number of nighttime rest bouts,

average daytime rest bout duration, average nighttime rest bout

duration, total activity per minute and activity per waking minute.

Statistical testing was done using non-parametric methods

implemented in Statistica v9.1 (Stat-Soft, Tulsa, OK). The

Kruskal Wallis nonparametric analysis of variance (ANOVA)

was used to test significant differences among groups. When

significance among groups existed, the ANOVA was followed by

post-hoc comparisons among groups with statistical correction for

the number of comparisons made. Graphs were made using either

Statistica (Stat-Soft, Tulsa, OK) or Graphpad Prism v5 (Graph-

pad, La Jolla, CA).
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