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Abstract

Endurance exercise is an inexpensive intervention that is thought to provide substantial protection against several age-
related pathologies, as well as inducing acute changes to endurance capacity and metabolism. Recently, it has been
established that endurance exercise induces conserved alterations in physiological capacity in the invertebrate Drosophila
model. If the genetic factors underlying these exercise-induced physiological alterations are widely conserved, then
invertebrate genetic model systems will become a valuable tool for testing of genetic and pharmacological mimetics for
endurance training. Here, we assess whether the Drosophila homolog of the vertebrate exercise response gene PGC-1a
spargel (srl) is necessary or sufficient to induce exercise-dependent phenotypes. We find that reduction of srl expression
levels acutely compromises negative geotaxis ability and reduces exercise-induced improvement in both negative geotaxis
and time to exhaustion. Conversely, muscle/heart specific srl overexpression improves negative geotaxis and cardiac
performance in unexercised flies. In addition, we find that srl overexpression mimics some, but not all, exercise-induced
phenotypes, suggesting that other factors also act in parallel to srl to regulate exercise-induced physiological changes in
muscle and heart.
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Introduction

In order to facilitate longitudinal studies across ages in model

organisms, we have developed an endurance training paradigm in

the short lived, genetically tractable Drosophila system. Trained flies

exhibit several physiological phenotypes reminiscent of those seen

in vertebrate models, including increased motor capacity, cardiac

function, and mitochondrial enzyme activity [1]. However, in

order to maximize the advantages of an invertebrate genetic

model system, it is first important to establish that known genetic

components of vertebrate exercise are, in fact, conserved in

invertebrate models such as Drosophila.

The most well-studied genetic factor in the vertebrate response

to endurance training is the transcriptional co-factor PGC-1a.

Chronic training of mammals results in upregulation of PGC-1a
transcript [2], while bouts of exercise acutely increase its nuclear

localization [3]. Functionally relevant increases in PGC-1a
expression following exercise have been observed in both adipose

tissue [4] and muscle [5,6]. Upregulation of PGC-1a increases

mitochondrial biogenesis [7,8], upregulates mitochondrial gene

expression and upregulates fatty acid oxidation [9,10]. Muscle-

specific overexpression of PGC-1a in mice improves exercise

ability and significantly increases aerobic capacity without altering

whole-body energy expenditure, body weight, or fat mass. [11,12].

By contrast, deletion of PGC-1a in mice results in reduced

mitochondrial number, blunted postnatal muscle growth, reduced

muscle performance and reduced exercise capacity [13]. The

extent to which these phenotypes are necessary or sufficient

components of broader physiological changes that are induced by

endurance exercise is not yet fully understood.

A homolog of PGC-1a, spargel (srl) [14], has been identified in

Drosophila. spargel plays a significant role in intestinal tissue

homeostasis and, like its vertebrate counterpart, upregulates

mitochondrial biogenesis and activity [14,15]. The conservation

of the molecular role of spargel suggests that its physiological role in

response to endurance exercise may also be functionally

conserved. Here, we examine whether high levels of spargel

expression are required for exercise training to induce physiolog-

ical changes. Additionally, we examine whether muscle-specific

expression of spargel is sufficient to mimic the effects of exercise on

several aspects of fly physiology, including negative geotaxis,

cardiac function, time to exhaustion, basal activity levels and

respiration.

Results

Respiration Rate
Endurance exercise is thought to increase mitochondrial

biogenesis and activity in vertebrates [16], with PGC-1a as an

important intermediate [17,18]. Endurance exercise is also known
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to increase the activity of mitochondrial enzymes in Drosophila [1].

We measured whole-body CO2 production of flies with a

hypomorphic mutation for spargel (srl), the Drosophila homolog of

PGC-1a, and flies overexpressing srl in the muscle under both

exercised and unexercised conditions.

In 25-day old unexercised flies, we detected no significant

difference in CO2 production when srl expression was altered

(Figure 1A). In 25-day old flies following three weeks of exercise

training, we also found no significant difference in CO2

production between srl1 flies and controls (Figure 1B). However,

flies overexpressing srl in muscle showed a significant increase in

CO2 production following exercise as compared to controls

(Figure 1B; t-test: p = 0.0283), or as compared to unexercised

overexpressers (compare Figure 1A,1B; t-test: p = 0.0217). Thus,

neither exercise nor muscle-specific srl overexpression was

sufficient to increase whole-fly respiration, but the two interven-

tions together produced a 25% increase in whole-fly respiration

rate over controls.

Locomotor Activity
Mammalian studies into the role of PGC-1a in basal locomotor

activity have yielded different results under varying experimental

procedures. PGC-1a null female mice showed no change in

general activity when observed over a two-day time span while

PGC-1a null male mice displayed reduced activity when observed

for one hour [13]. In a different study, PGC-1a null male mice

were found to be hyperactive when observed over a three day time

span, likely as a result of lesions in the striatum, a brain area that

plays a major role in motor coordination [19]. We find no

significant difference in basal activity level in either unexercised

(Figure 1C) or exercised (Figure 1D) srl1 flies or muscle-specific srl

overexpressers (one-way ANOVA followed by Bonferroni post-

tests: p.0.05 for all comparisons), indicating that srl does not

significantly alter basal locomotor activity in Drosophila.

Longevity
Lifelong exercise in mammals is known to extend mean lifespan

without impacting maximal lifespan [20,21]. While we find no

significant change in the survival of muscle-specific srl over-

expressers as compared to controls, the srl1 survival curve was

significantly shorter than the curves of both y1w67c23 and +;UAS-srl

control flies (Figure 1E; log-rank (Mantel-Cox) test: p,0.0001 for

both genotype comparisons), indicating a decreased lifespan in srl1

mutant flies.

Negative Geotaxis
Endurance training by repetitive induction of a negative

geotaxis behavior, as in the Drosophila protocol used here, is

known to produce an improvement in climbing speed as reflected

in the average height reached during a defined time allotted for

climbing [1]. Therefore, we performed longitudinal, daily

measurements of climbing speed on cohorts of control, srl mutant,

and srl-overexpressing flies, under both exercised and unexercised

conditions.

All three genotypes showed a tendency to decline in speed with

age (Figure 2A–C), as has been previously reported for a variety of

genotypes [1,22]. However, in all three genotypes, normalized

climbing height across time was higher in exercised cohorts than in

age-matched, genetically identical, unexercised siblings

(Figure 2A–C; multivariate regression, treatment-by-age: srl1

mutant and +;mef2-Gal4: p,0.001, UAS-srl;mef2-Gal4: p,0.01).

When unnormalized climbing ability was compared in the same

cohorts prior to training at four days of age, flies overexpressing srl

in muscle displayed significantly higher climbing speed, while srl1

mutant flies were significantly impaired in baseline climbing speed

(Figure 2D; t-test: p,0.001 for both genotype comparisons). The

improvement in exercised climbing speed, relative to unexercised

siblings after training at 22 days of life was quantified by expressing

the difference between the climbing index of exercised and

unexercised flies (Figure 2E). This shows that both a reduction and

an increase in srl expression decrease the relative change during

treatment (t-test: p,0.001 for both genotype comparisons).

Taken together, these data indicate that levels of srl expression

in muscle play an important role in determining climbing speed

acutely. However, regardless of srl expression levels, exercise

treatment still produces some degree of improvement, suggesting

that exercise acts through both srl-dependent and srl-independent

pathways.

Exhaustion
An effect of long-term voluntary exercise in vertebrates is an

increase in time to exhaustion when forced to exercise [23]. This

parameter has not previously been examined in flies. In order to

obtain a quantitative estimate of exhaustion resistance, we

continuously induced running on the Power Tower over an

extended period of time. We measured both the time at which

50% of flies stopped climbing entirely and the speed at which the

flies climbed while undergoing continuous exercise induction.

Among cohorts of unexercised flies, overexpression of srl in the

muscle resulted in increased time to exhaustion (Figure 3A, t-test:

p = 0.0031). Exercised wild-type and muscle-specific srl overex-

pressing flies both increased time to exhaustion relative to

unexercised controls, while srl1 mutant flies actually decreased

time to exhaustion as a result of exercise (Figure 3B, t-test:

p = 0.0005).

Among cohorts of unexercised flies, there was no difference in

the endurance climbing speed between control flies and flies

overexpressing srl in muscle (Figure 3C). However, unexercised srl1

mutant flies showed a statistically significant tendency toward

reduced climbing speed (Figure 3C; multivariate regression,

genotype-by-time effect: p = 0.0096). In age-matched cohorts

previously subjected to endurance training, srl1 mutant flies

climbed substantially slower than either control or overexpressing

flies (Figure 3D; multivariate regression, genotype-by-time effect:

p,0.0001 for both comparisons).

In comparisons between exercised and unexercised flies of the

same genotype, both control flies and srl overexpressing flies that

have undergone exercise training display an approximately two-

fold improvement in climbing index following 240 minutes of

continuous exercise (Figure 3C,D; t-test: p = 0.0183 and

p = 0.0209, respectively). In contrast, srl1 flies display no significant

improvement when exercised (Figure 3C,D; t-test: p = 0.817).

These data indicate that overexpression of srl in muscle provides

a beneficial resistance to exhaustion in unexercised flies.

Reduction in srl expression, on the other hand, prevents the

exercised-induced increase in time to exhaustion to the extent that

exercise actually becomes harmful: exercised srl1 mutant flies

become exhausted more quickly than unexercised srl1 mutant flies.

These data also indicate that normal levels of srl expression are

necessary both to maintain a wild-type level of climbing speed and

to improve climbing speed during endurance training. However,

overexpression of srl in muscle provides no additional benefit to

exercise-induced increase of climbing speed.

Survival during treatment
During a standard three-week endurance training protocol, we

have previously observed an increase in the death rate of flies

during training. The mechanism for this increase in mortality is

spargel Modulates Effects of Endurance Exercise
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not fully clear. However, it is specific to the training period and has

no effect on post-trained survival (Sujkowski et al., submitted).

To determine whether exercise or srl expression levels altered

the survival of flies during endurance training, wild-type, srl

mutant, and srl-overexpressing flies were placed on a ramped,

three week training program. Concurrently, flies of the same

genotypes were also placed on the training machine but were

immobilized and prevented from exercising by the insertion of a

sponge stopper to limit space for movement.

Among unexercised flies, muscle-specific overexpression of srl

provided a modest, but statistically significant protection against

death during treatment (Figure 3F; multivariate regression,

genotype effect, p = 0.0135). Exercise significantly improved

survival of all three genotypes (compare Figure 3E,F; multivariate

regression; treatment-by-age, all p values,0.012). Among exer-

cised flies, srl overexpressing flies again experienced the greatest

protection against death (Figure 3F; genotype-by-age, all p

values,0.0292), indicating that srl acts to protect against death

induced by training conditions.

Cardiac Stress Resistance
Endurance training provides improvements in cardiac metab-

olism and function in vertebrates [24] and improves long-term

cardiac function in flies, protecting against age-related decrease in

cardiac stress resistance [1]. To ascertain whether srl expression

levels altered the effects of exercise on cardiac performance, we

performed external electrical pacing assays on control, srl mutant,

and srl-overexpressing flies, under both exercised and unexercised

Figure 1. Exercise and srl expression in muscle act additively to increase survival and CO2 production during treatment. CO2 emission
rates of 28 day old srl1, +;mef2-Gal4 and UAS-srl;mef2-Gal4 (A) unexercised and (B) exercised flies following a three-week exercise regimen. Exercised
flies with muscle-specific spargel overexpression emit an increased volume of CO2 compared with both unexercised spargel overexpressing control
flies and exercised +;mef2-Gal4 flies (t-test: p = 0.0217 and p = 0.0283 respectively). Activity levels of 27–29 day old +;mef2-Gal4, +;UAS-srl, UAS-
srl;mef2-Gal4 and srl1 (C) unexercised and (D) exercised flies. Exercised flies have statistically similar activity levels to unexercised controls (one-way
ANOVA: p = 0.1388). Within each treatment, genotype has no significant effect on activity (one-way ANOVA: p = 0.7563 for unexercised and p = 0.1146
for exercised). Lifespans of female y1w67c23, +;UAS-srl, srl1, and UAS-srl;mef2-Gal4 flies (E). srl1 flies show a significantly a shorter lifespan (F) than
control flies (log-rank (Mantel-Cox) test: p,0.0001 for all genotype comparisons).
doi:10.1371/journal.pone.0031633.g001
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conditions. We first examined flies at four days of age. Exercised

cohorts begin training on the fourth day of age, allowing for

measurement of fully developed but untrained flies. We also

examined 25 day old flies following the completion of exercise

training. In unexercised flies, this day represents a median

timepoint of age-related decline in cardiac stress resistance [25],

thus allowing for detection of either cardiac improvement or

impairment.

In four day old flies, prior to the induction of training, srl1 hearts

showed similar stress resistance to that of age-matched control

flies, whereas flies overexpressing srl in muscle, including cardiac

muscle, showed a significant improvement in cardiac stress

resistance compared to control flies (Figure 4A; F-test, p = 0.0178).

Immediately following completion of a 21 day exercise

program, 25 day old exercised cohorts of all genotypes assayed

show a reduction in stress-induced failure rate as compared to

unexercised flies of the same genotype. (Figure 4B,C; F-test,

p = 0.0054, 0.0044, and 0.0394 for control, srl overexperssing and

srl mutant flies respectively). Exercised flies overexpressing srl in

the muscle also failed at a decreased rate as compared to exercised

y1w67c23 control flies (Figure 4B, F-test, p = 0.0430). These data

suggest that both srl and exercise play a cardioprotective role in

Drosophila, with the greatest decrease in stress-induced failure rate

resulting from the overexpression of srl in combination with

exercise training.

srl transcription
Chronic exercise is known to induce increased transcription [2]

and nuclear localization [3] of the vertebrate PGC-1a. We first

confirmed that both the Gal4-responsive srl overexpression line,

and the genomic srl mutation, srl1, effectively modify transcription

of srl in our hands. We find that UAS-srl provides a better than 15-

fold increase in srl expression (Figure S1A), whereas the srl1 mutant

is a hypomorph, with expression about 30% that of wild-type

(Figure S1B) as has been previously reported [14]. In contrast to

vertebrate PGC-1a, we find no evidence that transcription of srl is

significantly upregulated by endurance exercise, either in whole

flies (Figure S1C), or in the heavily muscle-enriched thoraces

(Figure S1D).

Discussion

spargel Function During Exercise in Drosophila
The most well-studied genetic factor in the vertebrate response

to endurance training is the transcriptional co-factor PGC-1a. A

homolog of PGC-1a, spargel (srl), [14] has been identified in

Drosophila. Like its vertebrate counterpart, spargel upregulates

mitochondrial biogenesis and activity [14]. The conservation of

the molecular role of spargel suggests that its physiological role in

response to endurance exercise may also be functionally

conserved. Here, we find that spargel is necessary for Drosophila

wild-type exercise performance in several assays. Flies carrying a

hypomorphic mutation for spargel display reduced survival under

endurance exercise conditions, reduced lifespan under standard

care conditions, and reduced climbing speed. We also find,

however, that spargel mutant flies are capable of improving

multiple aspects of performance when subjected to training.

Taken together, this suggests that spargel is required for full exercise

Figure 2. srl overexpression is sufficient to improve negative geotaxis. RING assays across ages in (A) +;mef2-Gal4, (B) UAS-srl;mef2-Gal4,
and (C) srl1 flies. Exercise-trained flies of all genotypes display improved negative geotaxis ability compared to age-matched unexercised siblings
across ages (multivariate regression, treatment-by-age: srl1 mutant and +;mef2-Gal4: p,0.001, UAS-srl;mef2-Gal4: p,0.01). (D) Prior to exercise
treatment srl1 flies exhibit decreased negative geotaxis ability while UAS-srl;mef2-Gal4 flies exhibit increased negative geotaxis ability compared to
+;mef2-Gal4 controls (two-way ANOVA: p,0.001 for both genotype comparisons). (E) Relative improvement in climbing index following exercise
training, normalized to starting levels for each genotype. Both srl1 and UAS-srl;mef2-Gal4 flies respond with a significantly smaller increase than WT
flies (two-way ANOVA: p,0.001 for both genotype comparisons).
doi:10.1371/journal.pone.0031633.g002
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capacity, but endurance training can improve performance

through mechanisms that are, in part, spargel-independent.

Alternatively, the reduced expression of the srl1 allele may remain

sufficient for some degree of spargel-dependent exercise response.

We find that muscle-specific overexpression of spargel in

Drosophila is capable of mimicking some, but not all, of the

changes induced by endurance training. Cardiac performance,

unexercised time to exhaustion, and initial climbing speed are

improved acutely by spargel overexpression, while CO2 production

and time to exhaustion are unaffected. However, flies overex-

pressing spargel also derive additional benefit from endurance

training, suggesting again that while spargel is an important

modulator of exercise physiology in insects, it is not sufficient to

account for all the changes induced by training.

Surprisingly, despite the necessity of wild-type spargel RNA levels

for full exercise capability, we find that spargel RNA expression is

Figure 3. srl is required, but not sufficient, for exercise-induced improvement to endurance capacity. (A) Time to exhaustion assays
conducted on y1w67c23, UAS-srl;mef2-Gal4, and srl1 flies. Flies overexpressing srl in the muscle increase time to exhaustion as compared to y1w67c23

control flies (t-test: p = 0.0031). (B) Change in time to exhaustion in exercised flies as compared to unexercised flies of the same genotype. Wild-type
and srl overexpressing flies increase time to exhaustion as a result of exercise (t-test, exercised and unexercised flies: p = 0.0001 and 0.0004,
respectively for each genotype) to the same extent, while srl1 mutant flies in fact decrease time to exhaustion after exercise training (t-test, exercised
and unexercised srl1: p = 0.0044, exercised y1w67c23 and exercised srl1: p = 0.0005). (C) Endurance climbing assays conducted on 25 day-old y1w67c23,
UAS-srl;mef2-Gal4, and srl1 flies. Unexercised srl1 display a decrease in climbing speed compared to unexercised y1w67c23 (multivariate regression,
genotype effect: p = 0.0011), while unexercised srl overexpressers do not statistically differ from unexercised y1w67c23 flies. (D) After training, both
exercised y1w67c23 and exercised UAS-srl;mef2-Gal4 flies show increased climbing speed when compared to unexercised control flies (multivariate
regression, genotype effect: p = 0.0002 and p,0.0001, respectively), though srl1 flies show no significant improvement (multivariate regression,
genotype effect: p = 0.817). Survival rates during treatment of (E) unexercised and (F) exercised y1w67c23, UAS-srl;mef2-Gal4, and srl1 flies. Unexercised
flies were placed on the training machine but not allowed to run. Survival during treatment is statistically improved by exercise in all three genotypes
(multivariate regression; treatment-by-age, all p values,0.012). Exercised UAS-srl;mef2-Gal4 flies also show increased survival compared to exercised
y1w67c23 flies (multivariate regression, genotype effect, p = 0.0027).
doi:10.1371/journal.pone.0031633.g003
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not significantly upregulated by exercise training. Since PGC-1a is

strongly induced by vertebrate exercise [2], this indicates a

substantial species difference in regulation. Since PGC-1a is

known to change its nuclear localization under exercise conditions

[3], it could be that this mechanism predominates in insects.

Alternatively, exercise could induce different cofactors in insects

that alter the effect of nuclear accumulation of spargel. Further

work will be necessary to identify the biochemical basis of this

difference.

Conservation of Drosophila Exercise Physiology
Since the recent development of Drosophila as a model system for

exercise physiology, a major point of consideration has been the

extent that results from Drosophila are likely to be conserved in

vertebrates. Here, we demonstrate that the most well-studied

genetic factor influencing exercise performance in vertebrates

plays a similar role in an insect model.

In both insects and vertebrates, overexpression of either PGC-

1a or its homolog is sufficient for increased mitochondrial

biogenesis [7,8,14]. Similar to our findings, mice overexpressing

PGC-1a in muscle show increased respiration capacity when

exercised, in addition to increased forced and voluntary running

distance [11]. Also comparable to our data, muscle-specific

knockout of PGC-1a in rodent models show reduced endurance

capacity [26] while PGC-1a null mice show blunted postnatal

muscle growth, reduced muscle performance and reduced exercise

capacity [13]. PGC-1a manipulation also produces phenotypes

that are species-specific. For example, PGC-1a has a vertebrate-

specific role in inducing angiogenesis [27] that is inapplicable to

insects.

We find that the PGC-1a Drosophila homolog spargel is a

conserved modulator of exercise effects, is required for full exercise

capacity in Drosophila, and that spargel overexpression mimics a

subset of changes induced by endurance training. In years to

come, the fly model will offer opportunities to study conserved

aspects of exercise physiology using the advantages of invertebrate

genetic models, such as rapid transgenics, high sample sizes, and

inexpensive longitudinal study designs that highlight long-term

effects of various manipulations.

Materials and Methods

Fly Stocks, Diet and Husbandry
y1w67c23, CantonS, mef2-Gal4, and srl1 (P{SUPor-

P}CG9809KG08646) flies were obtained from the Bloomington

Stock Center. UAS-srl [14] flies were a generous gift from

Christian Frei. All UAS and GAL4 insertions were backcrossed

into the y1w67c23 line at least 10 times. y1w67c23;mef2-Gal4/+,

Figure 4. srl expression in muscle and heart acts synergistically with exercise to protect from cardiac failure. (A) External electrical
pacing assays conducted on 4-day old y1w67c23, UAS-srl;mef2-Gal4, and srl1 flies show reduced stress-induced failure rates in UAS-srl;mef2-Gal4 flies
when compared with y1w67c23 controls (F-test, p = 0.0178). Pacing assays conducted on 25 day-old exercised and unexercised (B) y1w67c23 and UAS-
srl;mef2-Gal4 and (C) y1w67c23 and srl1 flies show decreased stress-induced failure rates in exercised flies relative to unexercised age-matched siblings
in all genotypes (F-test, p = 0.0054, 0.0044, and 0.0394 for control, srl overexperssing and srl mutant flies respectively). Exercised flies overexpressing
srl in the muscle also showed a decreased stress-induced failure rate when compared to exercised y1w67c23 flies (F-test, p = 0.0430). All n were
between 56–122.
doi:10.1371/journal.pone.0031633.g004
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y1w67c23;UAS-srl/+, and UAS-srl/+;mef2-Gal4/+ flies are referred

to as ‘‘+;mef2-Gal4,’’ ‘‘+;UAS-srl,’’ and ‘‘UAS-srl;mef2-Gal4’’

respectively. Standard diet utilized contains 10% yeast, 10%

sucrose and 2% agar. During the experimental time course, flies

were housed in a 25uC incubator with 50% humitidy and a 12-

hour light/dark cycle. Fresh food was provided every other day for

the duration of the experiment course. For all experiments flies

underwent a three week-long exercise program with controls as

described [1]. Flies were exercised using the Power Tower exercise

machine, a device which utilizes instinctive negative geotaxis

behavior to repetitively induce rapid climbing by lifting and then

dropping a platform of flies. Exercised flies were placed on the

Power Tower and made to run while unexercised flies were placed

on the machine but immobilized with a sponge stopper pushed to

the bottom of the vial. Flies were exercised for five days each week

over a three week period. The flies were exercised for two hours

during the first week, two and a half hours during the second week,

and for three hours during the third week.

Respirometry
CO2 production was measured using a flow-through respirom-

etry system. 28 day-old exercised and unexercised +;mef2-Gal4,

UAS-srl;mef2-Gal4, and srl1 flies were immobilized 24 hours before

measurement by CO2 gas and separated into groups of 5 flies per

sample. Samples were assayed in random order to evenly

distribute variance between measurements. For each measure-

ment, seven samples were transferred into 2 mL glass measure-

ment chambers in a room kept under constant light at 25uC, and

one chamber was left empty as a blank reference. Chambers were

consecutively flushed for 150 s at a flow rate of 90 ml/min with

CO2-free, water-saturated room air through an 8-channel MUX

flow multiplexer (Sable Systems International, Las Vegas, NV,

USA). Flushing of all samples was consecutively repeated 4 times

per measurement, resulting in 20 minute intervals during which

the chambers were sealed before the 2nd, 3rd, and 4th flushing.

Integrated CO2 concentration over time was measured for all

samples during the 4th flushing using a Li-7000 CO2/H2O

Analyzer (Sable Systems International, Las Vegas, NV, USA) and

used to calculate CO2 output over time per fly. All n values were

between 19–46. Results were analyzed using a two-tailed t-test

(Prism, GraphPad Software, San Diego, CA, USA).

Activity
General locomotor activity was assessed using Drosophila Activity

Monitors (DAM2, Tri-Kinetics, Inc., Waltham, Massachusetts,

USA). Exercised and unexercised flies were individually trans-

ferred into 5 mm glass tubes containing standard 10% yeast, 10%

sucrose and 2% agar fly media. Assays were conducted over three

consecutive days from 2:45pm until 6:45pm at a temperature of

24–24.9uC with a relative humidity of 34–40%, during which time

the flies were aged between 27 and 29 days. All n values = 16.

Results were analyzed by one-way ANOVA for overall effect of

genotype followed by Bonferroni posttests (Prism, GraphPad

Software, San Diego, CA, USA).

Longevity
240 virgin female flies of each genotype were collected, divided

into vials of 20 flies per vial and housed in a 25uC incubator with

50% humidity and a 12-hour light/dark cycle. The flies were

transferred every Monday, Wednesday, and Friday to fresh 10%

sucrose/10% yeast food and the number of dead flies was

recorded. Survival curves were analyzed by long-rank (Mantel-

Cox) tests (Prism, GraphPad Software, San Diego, CA, USA).

Negative Geotaxis Behavior
Negative geotaxis assays were performed in exercised and

unexercised flies as described [22] and data was expressed as a

normalized climbing index, with the initial average speed of

each cohort defined as 1, as described [1]. Non-normalized raw

climbing index values were used for figure 2D. To calculate the

differential climbing index, unexercised climbing index values

from day 22 were subtracted from exercised climbing index

values from day 22 for each genotype. All n values were

between 50 and 120. Results from figures 2A–C were analyzed

by multivariate regression and analyzed for the effect of

treatment-by-age (JMP, The Statistical Discovery Software,

Cary, NC, USA). Results from figures 2D–E were analyzed

using a two-tailed t-test (Prism, GraphPad Software, San Diego,

CA, USA).

Exhaustion
+;mef2-Gal4, UAS-srl;mef2-Gal4, and srl1 flies were exercised on

the power tower using a run-to-exhaustion protocol at 25 days of

age. Two cameras were placed on stands in front of the Power

Tower exercise machine such that one row of vials was able to be

photographed by each camera. White paper was placed behind

the vials to create a consistent background. Three vials of 15–20

flies per vial were placed on the power tower for each genotype

and treatment. The Power Tower was turned on and the power

was adjusted such that the period between drops was 15 s.

Pictures were taken 5 seconds after each drop once every 30 min

until hour 6. From hour 6 until hour 10, pictures were taken

approximately once every hour. Pictures were analyzed by

quantifying the number of flies that remained standing on the

bottom of the vial as compared to the number of flies that

climbed at all up the sides. Flies were considered ‘‘exhausted’’

and the time was recorded once at least 50% of the flies in a vial

remained on the bottom of the vial. To assess impact of exercise

on exhaustion, the time to exhaustion of exercised flies was

subtracted from that of unexercised flies for each genotype.

Results were compared using a two-tailed t-test (Prism, GraphPad

Software, San Diego, CA, USA). Pictures were also analyzed by

quantifying negative geotaxis ability as a climbing index as

described [1] and results were compared by multivariate

regression using time, genotype, and time-by-genotype as

construct model effects (JMP, The Statistical Discovery Software,

Cary, NC, USA).

Machine Survival
Dead flies were removed from the study of the course of

exercise treatment and the number of remaining flies was

charted. Survival rates were averaged over each week and are

expressed as a percentage of the initial sample size. Results were

compared by multivariate regression to analyze the effect of age-

by-genotype (JMP, The Statistical Discovery Software, Cary, NC,

USA).

Electrical Pacing
+;mef2-Gal4, UAS-srl;mef2-Gal4, and srl1 flies were subject to

external electrical pacing as described [25]. Following pacing,

hearts were visually scored for recovery of normal movement or

for ‘‘failure,’’ manifested as either fibrillation or arrest. Heart

failure rates were determined for 4 day-old flies and of 25 day-old

exercised and unexercised flies. Unexercised srl1 n = 56, all other n

values were between 79 and 115. Results were analyzed using a

Fisher’s exact test for binary measurements (Prism, GraphPad

Software, San Diego, CA, USA).
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Real Time RT-PCR
Total RNA was extracted from whole bodies of 12 day-old

UAS-srl;tub-GAL4 and srl1 flies. Total RNA was also extracted

from whole bodies and thoraxes of exercised and unexercised

CantonS flies, as well as untreated CantonS flies that were never

placed on the machine, with Trizol (Invitrogen, Carlsbad, USA).

Whole-body untreated CantonS flies were 7 days old, all other

CantonsS samples were 28 days old. 10–15 flies were used per

sample and the resulting RNA was diluted to a common

concentration. One-step real time RT-PCR was performed to

quantify srl expression using the Applied Biosystems StepOnePlus

Real-Time PCR System with Power SYBR Green PCR Master

Mix (Applied Biosystems, Foster City, USA) according to the

following parameters: 1 cycle at 48uC (30 min), 1 cycle at 95uC
(10 min), and 40 cycles at 95uC (15 s), 60uC (1 min), followed by

melt curve analysis. The average threshold cycles (Ct) for two

replicates per sample were used in comparative Ct (DDCt)

quantification (Schmittgen and Livak 2008), normalized to

expression of the ribosomal gene rp49. The following primers

were used: srl forward: CTCTTGGAGTCCGAGATCCGCAA.

srl reverse: GGGACCGCGAGCTGATGGTT. rp49 forward:

ACTCAATGGATACTGCCCAAGA. rp49 reverse: CAAGG-

TGTCCCACTAATGCATA. Results were analyzed using a

two-tailed t-test (Prism, GraphPad Software, San Diego, CA,

USA).

Supporting Information

Figure S1 srl transcript levels are altered by genotype
but not by exercise. srl transcript levels from adult whole-body

samples of (A) an RU-486 induced srl expression construct and (B)

adult srl1 flies, as compared with adult whole-body samples from

y1w67c23 control flies (real time RT-PCR: p,0.001). srl transcript

levels from (C) whole-body samples and (D) the thoraces of age-

matched exercised and unexercised CantonS flies, as well as flies

never placed on the machine, as determined by real time RT-

PCR. Whole-body treatment did not significantly alter expression

level.

(TIF)
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