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Abstract

We have recently developed a so-called genomic engineering approach that allows for directed, efficient and versatile
modifications of Drosophila genome by combining the homologous recombination (HR)-based gene targeting with site-
specific DNA integration. In genomic engineering and several similar approaches, a ‘‘founder’’ knock-out line must be
generated first through HR-based gene targeting, which can still be a potentially time and resource intensive process. To
significantly improve the efficiency and success rate of HR-based gene targeting in Drosophila, we have generated a new
dual-selection marker termed W::Neo, which is a direct fusion between proteins of eye color marker White (W) and
neomycin resistance (Neo). In HR-based gene targeting experiments, mutants carrying W::Neo as the selection marker can
be enriched as much as fifty times by taking advantage of the antibiotic selection in Drosophila larvae. We have successfully
carried out three independent gene targeting experiments using the W::Neo to generate genomic engineering founder
knock-out lines in Drosophila.
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Introduction

We have recently developed a new approach termed genomic

engineering that combines the gene targeting with phage integrase

QC31-mediatd DNA integration for the purpose of directed,

efficient and versatile modifications of endogenous genomic loci in

Drosophila [1,2]. Genomic engineering is a two-step process. First, a

‘‘founder’’ knock-out is generated by homologous recombination

(HR)-based gene targeting that deletes the target locus and

effectively replaces it with a QC31-attP integration site. Second,

the target locus can then be modified into virtually any desirable

knock-in alleles through QC31-mediated integration of corre-

sponding DNA constructs into the founder line [1,2]. We have also

developed an additional integrase system for making sophisticated

knock-in mutants by successive and targeted DNA integrations in

genomic engineering [3]. Although generating novel knock-in

alleles through site-specific DNA integration is extremely efficient

compared to the HR-based knock-in/knock-out process, in

genomic engineering and several similar approaches [1,2,4,5,6] a

founder knock-out line must be first generated through HR-based

targeting. In Drosophila, the frequency of HR for a given target

locus can vary from ,1022 to ,1026, i.e. an approximately

10,000-fold difference [2,7]. For target loci that are of ,1024 HR

frequency, targeting experiments can be highly time and labor

intensive. Therefore, more efficient and reliable gene targeting

remains crucial for approaches like genomic engineering.

General HR-based gene targeting in Drosophila [8,9] requires

several rounds of genetic crosses including targeting cross,

screening cross, and mapping cross (Figure 1A) [7].

Transgenic flies of targeting construct were first generated to

carry the donor DNA as a chromosomal insertion (‘‘P[donor]’’)

flanked by FRT sites. To initiate the homologous recombination,

the donor DNA in P[donor]/hs-FLP hs-I-SceI of targeting cross

progeny is excised and linearized by heatshock-induced expression

of Flipase (FLP) and the restriction enzyme I-SceI. In screening

cross, heatshocked P[donor]/hs-FLP hs-I-SceI targeting females are

crossed with w[2] males so potential targeting mutant progeny may

be recovered based on the dominant w+ marker (i.e. red eye).

Mapping cross will be used to further genetically map and confirm

the targeting mutants. In order to improve the scalability and

throughput in these major genetic crosses, we have in the past

developed several measures such as optimizing targeting vectors

and hs-FLP hs-I-SceI stocks and introducing a UAS-Rpr negative

selection marker (Figure 1A) [7]. These improvements have

already yielded a high success rate for a number of targeting

experiments [2,7]. Nonetheless, for targeting experiments of

,1024 HR frequency, .105 progeny from screening cross have

to be screened visually based on eye color marker w+. This time

and labor intensive process directly limits the scale of targeting

experiments.

To solve this problem, increasing the HR frequency by the

means such as target-specific zinc finger nuclease (ZFN) likely

presents one of the most promising approaches [10]. Nonetheless

at present target-specific ZFNs or similar nucleases require

extensive testing and refining efforts that to large degree may

offset the benefits of increased HR frequency [11]. As an

alternative, more efficient screening methods can also significantly

increase the success rate of gene targeting. To this end, we
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developed an approach to directly enrich the targeting mutants by

introducing a dominant selection marker Neo [12] in addition to

the w+.

Results and Discussion

We took advantage of the well established fact that Drosophila

larvae are highly sensitive to G418 which is a drug related to

neomycin and karamycin, but can be made resistant by the

expression of neomycin resistance gene (Neo) [12]. By making

candidate mutants neomycin-resistant (Neo+), G418 can be used to

directly eliminate the vast number of screening cross progeny

carrying no targeting events (Figure 1A). This approach provides

several advantages. First, G418 can be easily added to the fly food,

thus is fully compatible with the current genetic cross schemes of

gene targeting. Second, G418-sensitivity in Drosophila larvae is

dosage dependent [12]. By administrating G418 at pre-determined

concentrations it is possible to eliminate a large percentage (e.g.

90%–99%) but not all of the larvae, minimizing the risk of killing

Neo+ targeting mutants while at the same time leaving enough

number of survival larvae to ensure healthy growing conditions.

Although Neo+ would be an effective marker for enriching

targeting mutants, w+ is still the most convenient marker for

genetic mapping. To incorporate both w+ and Neo+ into the

targeting mutants, we made a white::Neo (W::Neo) gene encoding a

chimeric protein in which Neo is directly fused to the C-terminus

of W+. This design also minimized the size of the w+ Neo+ dual

selection marker for potentially more efficient molecular cloning,

donor DNA excision and HR. To test the effectiveness of W::Neo

for being both w+ and Neo+, we first generated a pKIKO-WN

vector by replacing the w+ in an older targeting vector pKIKO [7]

with W::Neo. Through standard P-element based transgenesis, we

obtained several w+ transgenic lines of pKIKO-WN showing that

W::Neo functioned as a normal w+ marker for producing red eye

flies (see Figure 2A). We also picked one of the pKIKO-WN lines

and confirmed that its w+ progeny showed clear resistance to

neomycin compared to their w[2] siblings carrying no pKIKO-

WN (Table S1).

Figure 1. Application of multiple selections in gene targeting. A. Genetic crosses of ends-out targeting based on the dual positive screening
of w+ and Neo+ for targeting candidates, together with the negative selection of UAS-Rpr (Rpr+) for eliminating false positives. ‘‘X’’: genotypes
eliminated or greatly reduced in numbers by G418 selection or UAS-Rpr counter-selection. B. Map of pGX-attP-WN. pGX-attP-WN is a P-element
based transforming vector. 59P and 39P: 59 and 39 P-element sequences; AmpR: ampicillin-resistant gene.
doi:10.1371/journal.pone.0031997.g001

New Gene Targeting Marker in Drosophila

PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e31997



To test the effectiveness of W:Neo marker in targeting

experiments, we carried out three ends-out (replacement) gene

targeting experiments using W::Neo as a dual selection marker

(Table 1). We first modified the pRK2 based gene targeting

constructs of dArf6 [7] by replacing the w+ with W::Neo. We

obtained 16 w+ transgenic donor lines by injecting 1150 embryos.

As shown in Table S2, all but three lines showed clear resistance to

G418 at 0.20 mg/ml concentration. The three lines that showed

reduced resistance to G418 also showed failures in FRT or Cre-

mediated excisions and dramatically reduced effectiveness of UAS-

Rpr negative selection marker, suggesting these components were

likely damaged during transgenic insertion. We picked line#22

(pArf6GX22) to carry out the targeting experiment. Based on the

experiments in Figure 2B, we determined that 0.20 mg/ml should

be the optimal G418 concentration that eliminates .90% of w[2]

sibling larvae with apparently no effect on the survival of

pArf6GX22/+ larvae.

Using our improved targeting stocks [7], we were able to collect

20,000 targeting females of pArf6GX22/hs-FLP hs-I-SceI from

targeting crosses (See Figure 1A). To set up the screening cross,

12,000 targeting females were crossed with w; Gal44-77[w2] [7].

The Gal4 drives the expression of UAS-Rpr negative selection

marker that eliminates .96% of false positives [7]. Half of the

cross population were grown on normal food without G418. As

previously reported we screened ,700,000 progeny and recovered

five targeting mutants [7] (Table 2). Another half of the cross

population containing 6,000 targeting females were grown on food

containing 0.20 mg/ml G418. Based on the tests conducted in

Table S3, we set up the crosses in G418 bottles with 30 females per

bottle. As expected, G418 drastically reduced the number of

progeny produced. In total we collected and screened only

,67,000 flies but recovered 23 targeting mutants (Table 2).

Extrapolating from such data, using W::Neo marker with G418

selection we enriched the targeting mutant frequency from 5/

(76105) to 23/(6.76104), an enrichment of approximately 48

times. The mere 67,000 flies we screened were effectively

equivalent to .36106 screening cross progeny without G418

selection.

We then carried out two new targeting experiments against the

Dscam locus using the pGX-attP-WN targeting vector (Figure 1B).

Dscam encodes a neuronal adhesion molecule of extraordinary

diversity through alternative splicing (Figure 3A) [13]. Based on

the genomic engineering approach, we targeted the deletions of

exon#4 and #17 to generate two different founder knock-out

lines designated as Dscam-N and Dscam-C, respectively. All ten

Dscam-N and three Dscam-C transgenic donor lines were resistant to

at least 0.25 mg/ml G418 (data not shown). For the donor lines

used for carrying out the targeting experiments, pDscam-NGX113

showed G418-resistance similar to pArf6GX22 whereas pDscam-

CGX1 appeared to be sensitive to ,0.50 mg/ml G418 (Figure 2B).

Figure 2. Expression of W::Neo confers both w+ and G418-resistance in flies. A. Eye color in representative males from (clockwise from top
right): w1118, y w; pArf6GX22/TM3, y w; pDscam-NGX113/TM3, and y w; pDscam-CGX1/TM3. B. G418-resistance of W::Neo transgenic donor lines and founder
knock-out flies. Arrowheads indicate 0% survival rate. FRT[Neo]: y w; FRT-42D ubi::GFPNLS/+; P{donor}: transgenic donor insertion; KO: targeting allele;
w[2]: TM3/+ and CyO/+ cross progeny. See Materials and Methods for detail genotypes.
doi:10.1371/journal.pone.0031997.g002

Table 1. Design of gene targeting for dArf6, Dscam-N and Dscam-C founder Knock-out lines.

Target Gene
Target
Chromo-some

Exons/mRNA
Isoforms

59+39

Arms* (kb)
Targeted gDNA
Deletion**

Genomic Deletion
Size (kb)

Protein Deletion/
Full Length (aa)

dArf6 2nd 3/5 4.5+3.1 2R: 11,210,875–11,213,032 2.157 175/175

Dscam-N 2nd 24/38016 5.5+3.2 2R:3249024—3254750 5.727 108/2037

Dscam-C 2nd 24/38016 5.3+3.2 2R:3206840—3214484 7.645 439/2037

*: 59+39 Arms: the lengths of 59 and 39 homology arms in targeting construct.
**: According to Drosophila genome release FB2011.07 at www.flybase.org.
doi:10.1371/journal.pone.0031997.t001
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For the Dscam-N targeting, we set up a screening cross using

16,000 targeting females in 800 vials with normal food (i.e. 20

females per vial). After three days we transferred flies to bottles of

,0.20 mg/ml G418 food, at the density of 160 females per bottle.

The flies were transferred to new G418 bottles every three to four

days. The normal food culture yielded ,1.66105 progeny and we

recovered 23 targeting candidates (Table 2). In contrast, G418

bottles yielded 3.36104 progeny but we recovered 162 targeting

mutants. The Dscam-C targeting was carried out similarly. We

recovered 3 targeting mutants from 1.96105 progeny yielded from

normal food, and 3 from ,2.26104 progeny yielded from G418

food (Table 2). Based on screening the progeny from normal food,

the HR frequency for Dscam-N targeting can be estimated is

,1.461024, while for Dscam-C is ,1.661025. Overall, the

enrichment of targeting mutants by G418 selection can be roughly

estimated as 34 and 9 times in our Dscam-N and Dscam-C targeting

experiments, respectively. These numbers are likely underestimat-

ed due to the fact we grew G418 bottles under extremely

overcrowded conditions of 160 females per bottle due to

constrained incubator space at the time of experiments. As

expected, both Dscam-N and Dscam-C mutants are lethal and their

lethality can be rescued by integrating back the deleted fragment

of gDNA into their corresponding knock-out founder lines (data

not shown).

It should be noted that the hsp70 promoter which drives the

W::Neo expression in targeting mutants is not transcriptionally

insulated and although its expression in eyes are boosted with an

eye-specific GMR enhancer [7] (Figure 1B) its expression levels in

other larval tissues still could suffer from chromosomal location-

effects. Therefore, one potential caveat with G418 selection is that

it may be difficult to know the actual strength of G418 resistance of

a given targeting mutant. To investigate this issue, we systemat-

ically and quantitatively measured the G418 resistance of dArf6,

Dscam-N and Dscam-C transgenic donor lines and targeting

mutants. As shown in Figure 2B, all the W::Neo lines showed

resistance well above 0.20 mg/ml G418, better than the common

FRT lines carrying hs-Neo [14]. Assuming the results from the

three target loci are representative, the risk of killing the real

mutants should be very low at the 0.20 mg/ml G418 concentra-

tion that we used. In addition, for a given target locus there

appears to be a good correlation between the transgenic donor line

and the targeting mutants in terms of their G418-resistances

(Figure 2B), consistent with the fact that in both lines the W::Neo is

flanked by the same 59 and 39 gDNA which likely influence the

expression of W::Neo the most. Therefore, by carefully testing the

G418-resistenace in transgenic donor lines, it is possible to

estimate the strength of G418-resistance of the future targeting

mutants in order to optimize the G418 concentration for each

individual targeting experiment. In general, 0.20 mg/ml of G418

seems to be working well in our experiments.

One practice we would recommend is to set up the screening

crosses on normal food first, and transferring them to G418 food

after one or two days. This method apparently gives healthier

crosses on G418 food. In addition, the progeny from normal food

come out earlier and can be used for a small to medium scale

(,104–105 flies) screening first. If no or not enough number of

candidates are recovered, the target locus might be of low HR

frequency and one may continue to screen the G418-selected

progeny. In addition, despite that the hsp70 promoter used in

pGX-attP-WN is constitutively expressed, its expression level can

still be greatly increased (up to one hundred-fold) by heat-shock

[12]. Although we did not carry out heat-shock treatments in

screening crosses, it can be easily adapted into the protocol.

Finally, for targeting loci that may severely represses hsp70

promoter, we are considering making modified targeting con-

structs that may feature stronger or insulated promoters.

In summary, we report here the successful applications of a

novel w+/Neo+ dual selection marker that may effectively enrich

the targeting mutants up to fifty times with the help of G418-

selection. Our new pGX-attP-WN targeting vector could signif-

icantly facilitate the large scale targeting experiments, making

target loci of ,1026 HR frequency much more experimentally

accessible. Besides gene targeting, the W::Neo marker should be

useful in routine Drosophila genetic crosses when both w+ and Neo+
are desirable for selecting a particular genotype.

Materials and Methods

Fly stocks and genetics
y w/Y, hs-hid; hs-FLP, hs-I-SceI/TM3 e Sb hs-hid (‘‘6935-hid’’

BL#25679) and y w; Pin/CyO; Gal42-21[w2] (BL#26259) were

generated previously [7]:

Following stocks were obtained from the Bloomington stock

center: y1 w67c23 P{1b; nocSco/CyO (BL#766); y1 w67c23 P{Crey}1b;

D*/TM3, Sb (BL#851); w1118; P{70FLP}10 (BL#6938); P{PZ}

Dscam05518 cn1/CyO; ry506 (BL#11412); y w; FRT-42D ubi-GFPNLS/

Table 2. Generation of founder knock-out lines by ends-out targeting.

Target
Gene

G418
(mg/ml)

Targeting
Virgins Females

Screening
Cross Progenya

Preliminary
Candidates

On Target
Chr.

Genetically
Verified

PCR
Verified HR Frequencyb

dArf6 0 6,000 ,76105 315 30/315 5/30d 5/5 ,761026

0.20 6,000 ,6.76104 221 43/221 23/43d 6/6 ,3.461024

Dscam-N 0 16,000c ,1.66105 71 50/71 23/50e 2/2 ,1.461024

0.20 (16,000)c ,3.36104 557 399/557 162/399e 5/5 ,4.961023

Dscam-C 0 9,400c ,1.96105 23 11/23 3/11e 3/3 ,1.661025

0.20 (9,400)c ,2.26104 42 12/42 3/12e 3/3 ,1.361024

a.Total estimated number of screening cross progeny screened in each targeting experiment. Because progeny of multiple vials or bottles were pooled and screened
together, we did not register the clonality of the preliminary candidates. We assumed that each targeting mutant obtained was due to a distinct targeting event, based
on the low HR frequency observed.
b.Since all female candidates were discarded in targeting experiments, the adjusted HR frequency should be twice higher than listed here.
c.Screening crosses were set up on the normal food first, then transferred to G418 food after two days.
d.A dArf6DKG#1 deletion allele generated by P-excision was used for complementation assays [7].
e.Null allele of P{PZ}Dscam05518 (BL#11412) [13] was used for complementation assays.
doi:10.1371/journal.pone.0031997.t002
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CyO (BL#5626); w1118; In(2LR)Gla, wgGla-1/CyO, P{GAL4-

twi.G}2.2, P{UAS-2xEGFP}AH2.2 (BL#6662).

DNA Constructs
The W::Neo marker was made by fusing the Neo coding

sequence to the C-terminus of W+ in pKIKO vector [7] through

overlapping PCR. Cloned W::Neo fragments were sequenced to

ensure error-free PCR. pGX-attP-WN was made by replacing the

coding sequence of w+ in pGX-attP with W::Neo. Targeting

construct of dArf6 was described previously [7]. Molecular cloning

of targeting constructs of Dscam-N and Dscam-C was carried out

according to the protocols described in Huang et al [7]. Primers

used for making targeting constructs are listed in Table S4.

We used ‘‘cis-analyst’’ tool at http://www.fruitfly.org/seq_tools/

other.html to compare genomic sequences between Drosophila

melanoganster and Drosophila pseudoobscura to identify apparently non-

conserved non-coding regions for positioning the QC31-attP and

loxP sites in the target locus.

Transgenesis and ends-out targeting
All transgenic flies were created using w1118 stocks via the

standard P-elements-based transgenic protocol. Most fly cultures

and crosses were carried out at room temperature (,22uC) or

25uC. Ends-out gene targeting and PCR-verifications of targeting

Figure 3. Gene targeting of Dscam-N and Dscam-C. A. Targeting design and PCR verification of Dscam-N and Dscam-C founder lines. Boxed are
the genomic DNA (gDNA) structure and alternative-splicing patterns of Dscam locus. Dscam locus contains four alternative-splicing exons: 4, 6, 9 and
17 [13]. Green boxes are gDNA regions used for 59 and 39 homology arms in the targeting constructs. In the Dscam-N founder knock-out line, a 5.7 kb
genomic DNA covering the alternatively spliced exon 4 are deleted. In the Dscam-C founder knock-out line, a 7.6 kb genomic DNA covering the
alternatively spliced exon 17 plus all the remaining downstream exons and 39UTR are deleted. Dscam-N and Dscam-C founder knock-out lines
carrying W::Neo marker are verified by 59 and 39 PCRs. 59 or 39 PCR is designed with one primer annealing within the W::Neo, while another primer
anneals outside the gDNA region used for homology arms (‘‘59 gDNA’’ or ‘‘39 gDNA’’) in targeting constructs. Thus, only the correct targeting events
will yield PCR products of expected size. Dscam-N and Dscam-C founder lines with W::Neo removed are further verified by dPCR-1 and dPCR-2. dPCR-1
is located within, while dPCR-2 spans over, the deleted region of Dscam-N or Dscam-C. B. 59 and 39 PCR-1 (red and yellow arrowheads, respectively)
results from adults of Dscam-NGX07[w+]/CyO, Dscam-NGX01[w+]/CyO, Dscam-CGX101[w+]/CyO and Dscam-CGX06[w+]/CyO. w1118 was used as wild type control.
White arrowheads pointing to non-specific PCR products. C. dPCR-1 (yellow arrowhead) and dPCR-2 (red arrowhead) results from embryos of Dscam-
NGX01[w2] and Dscam-CGX101[w2] with W::Neo removed. Dscam-NGX01[w2] and Dscam-CGX101[w2] were balanced on CyO, twi-GAL4, UAS-2xEGFP (‘‘CyO
twiGFP’’) chromosome so homozygous embryos could be distinguished by the absence of GFP. w1118 was used as the wild type control. For each PCR
reaction genomic DNA was prepared by pooling approximately ten embryos together. For each sample, dPCR-1 and dPCR-2 reactions were carried
out separately and were pooled before loading on the gel. MW: 1kb-plus DNA ladder (from Invitrogen); 59 and 39: the 59 and 39 homology arms of
Dscam-N and Dscam-C targeting construct.
doi:10.1371/journal.pone.0031997.g003
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candidates were carried out as described in Huang et al [7]. Primers

used for PCR verifications as shown in Figure 3B,C are listed in

Table S4.

G418 treatment and tests
G418 (from Fisher Scientific) was directly added to microwave-

melted fly food at ,50uC as described [12]. All G418

concentrations reported here were effective concentrations based

on the manufacture specifications. To quantitatively measure the

G418 resistance, males from the following stocks were crossed with

virgin females of: w1118 (wild type control); y w; pArf6GX22/TM3

(transgenic donor line used for dArf6 targeting); y w; pDscam-

NGX113/TM3 (transgenic donor line used for Dscam-N targeting); y

w; pDscam-CGX1/TM3 (transgenic donor line used for Dscam-C

targeting); y w; dArf6GX16[w+]/CyO (dArf6 founder knock-out line); y

w; Dscam-NGX07[w+]/CyO (Dscam-N founder knock-out line); y w;

Dscam-CGX101[w+]/CyO (Dscam-C founder knock-out line); y w; FRT-

42D ubi-GFPNLS/CyO;

For each cross, embryos were collected under 18uC for 24 hours

and were split evenly into two vials containinig normal food (i.e.

0 mg/ml G418) and food of specified G418 concentration,

respectively. On average approximately 200 embryos were placed

in each vial. Adult w+ and w[2] progeny were counted from each

vial within 18 days under 25uC. For either w[2] or w+ progeny,

their survival rate in G418 selection is calculated as the percentage

of (# from G418 food)/(# from normal food). Each test was

carried out in at least triplicates. To calculate the w[2] survival

rates in Figure 2B, we averaged the survival rates of all TM3/+
and CyO/+ cross progeny at a given G418 concentration.

Supporting Information

Table S1 W::Neo marker confers G418 resistance in
transgenic flies. * In each vial, six males of y w/Y; pKIKO-

WN#2/CyO were crossed with six y w; Pin/CyO virgin females and

were grown for five days. Progeny were scored based on w+
marker. In the absence of G418 selection one third of the progeny

were expected to be w[2] (i.e. w[2]/w+ = 50%). ** These

experiments were repeated three times. In experiment #2 only

two y w; pKIKO-WN#2/CyO females were used for each cross,

hence the small number of progeny. Avg: Average.

(DOC)

Table S2 G418-resistance test of dArf6 transgenic donor
lines. a: Tests were carried out similarly as in Table S1. b, c: hs-

FLP and hs-Cre stocks used here constitutively express FLPase or

Cre recombinase. In hs-FLP and hs-Cre crosses, constitutively

expressed FLPase or Cre will excise the donor DNA, resulting in

visible eye color variegation in the cross progeny. The degree of

eye color variegation due to the loss of w+ was compared by

estimating the percentage of white area in each eye. 0% white area

suggests likely at least one of the two FRT or loxP sites were

damaged in the transgenic donor DNA insertion. d: Gal42–21

drives UAS-Rpr expression of the transgenic donor DNA that

results in 100% lethality in the cross progeny. Significantly

reduced lethality suggests either damaged transgenic donor DNA

insertion or severe repression of UAS-Rpr expression due to

chromosomal location. e: These three lines likely have damaged

transgenic donor DNA insertion based on their test results with hs-

FLP, hs-Cre and Gal42–21. They also show much higher percentage

of w[2] progeny on 0.25 mg/ml G418, presumably due to the fact

that reduced G418-resistance in the w+ progeny allowed better

survival of w[2] siblings. f: The transgenic donor line used for

targeting. n.d.: Not done Chr.: chromosomal location of the

transgenic insertion.

(DOC)

Table S3 Optimal culture density for G418 selection in
dArf6 targeting. Crosses were first set up in vials, and were then

transferred to G418 bottles after one or two days. It appears that

between 20 to 40 females per bottle, the yield of w+ candidates per

100 targeting females remains relatively stable. We decided that

crosses of 30 targeting females per bottle appears to be a good

compromise between achieving the maximum recovery of w+
candidates and minimizing the number of G418 bottles.

(DOC)

Table S4 Primers used for the generation and verifica-
tion of Dscam-N and Dscam-C founder knock-lines. *:

Primers for PCR verifications of dArf6 founder lines were in Huang

et al [7]. w+: PCR for verifying founder knock-out lines that

contain the w+ marker. w[2]: PCR for verifying founder lines that

had their w+ marker removed by loxP recombination. n/a: not

applicable.

(DOC)
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