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Abstract
Skin displays an impressive functional plasticity, which allows it to adapt gradually to
environmental changes. Tissue expansion takes advantage of this adaptation, and induces a
controlled in situ skin growth for defect correction in plastic and reconstructive surgery. Stretches
beyond the skin’s physiological limit invoke several mechanotransduction pathways, which
increase mitotic activity and collagen synthesis, ultimately resulting in a net gain in skin surface
area. However, the interplay between mechanics and biology during tissue expansion remains
unquantified. Here we present a continuum model for skin growth that summarizes the underlying
mechanotransduction pathways collectively in a single phenomenological variable, the strain-
driven area growth. We illustrate the governing equations for growing biological membranes, and
demonstrate their computational solution within a nonlinear finite element setting. In
displacement-controlled equi-biaxial extension tests, the model accurately predicts the
experimentally observed histological, mechanical, and structural features of growing skin, both
qualitatively and quantitatively. Acute and chronic elastic uniaxial stretches are 25% and 10%,
compared to 36% and 10% reported in the literature. Acute and chronic thickness changes are
−28% and −12%, compared to −22% and −7% reported in the literature. Chronic fractional
weight gain is 3.3, compared to 2.7 for wet weight and 3.3 for dry weight reported in the literature.
In two clinical cases of skin expansion in pediatric forehead reconstruction, the model captures the
clinically observed mechanical and structural responses, both acutely and chronically. Our results
demonstrate that the field theories of continuum mechanics can reliably predict the mechanical
manipulation of thin biological membranes by controlling their mechanotransduction pathways
through mechanical overstretch. We anticipate that the proposed skin growth model can be
generalized to arbitrary biological membranes, and that it can serve as a valuable tool to virtually
manipulate living tissues, simply by means of changes in the mechanical environment.
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1. Motivation
Human skin is a remarkable organ that can be stretched to manyfold its original size, while
remaining phenotypically similar to its initial state, without any reported malignant
transformation [12, 17]. To enable this incredible expansion, skin is a highly specialized
mechanoresponsive interface, characterized through a network of interrelated cascades
involving extracellular, membrane, cytosolic, cytoskeletal, and nuclear mechanisms [56].
When skin is stretched beyond its physiological limit, these mechanisms act in concert to
restore the homeostatic equilibrium state. In this regulatory process, transmembrane
mechanosensors in the form of stretch-activated ion channels, integrins, growth factor
receptors, and G-protein-coupled receptors play a key role in translating extracellular events
into intracellular signals [31, 69], see Figure 1.

Stretch-activated ion channels open in response to elevated membrane strains, allowing
positively charged calcium ions (Ca2+) and other cations to enter the cell. Changes in the
intracellular calcium concentration are known to regulate intracellular signaling and
cytoskeletal remodeling [56]. Integrins are receptors that mediate attachment between a cell
and the extracellular matrix [57]. They play a central role in force transmission across the
cell membrane, triggering targets such as nitric oxide (NO) signaling, mitogen-associated
protein kinases (MAPK), Rho GTPases, and phosphoinositol-3-kinase (PI3K). Growth
factor receptors bind to growth factors outside the cell, thereby turning on several receptor
mediated pathways inside the cell, such as nitric oxide (NO) signaling and mitogen-
associated protein kinases (MAPK) [31]. Mitogen-associated protein kinase signaling
pathways convey information to effectors, coordinate incoming information from other
signaling cascades, amplify signals, and initiate a variety of response patterns. G protein-
coupled receptors are seven-transmembrane proteins, which can potentially be activated by
mechanical stretch outside the cell to initiate mechanotransduction pathways inside the cell
through second messengers such as nitric oxide (NO) signaling and phosphoinositol-3-
kinase (PI3K). Last, intracellular strain can induce conformational changes in the
cytoskeleton itself. These changes may affect the binding affinities to specific molecules and
thereby activate additional signaling pathways [39].

In summary, mechanical activation initiates multiple signaling pathways, which can have a
substantial overlap and crosstalk. However, since mechanically-induced signaling pathways
may be shared with classical receptor-mediated pathways, they are typically difficult to
study in isolation. It is clear, however, that all these signaling pathways converge to activate
transcription factors, which stimulate gene expression and other nuclear events [69].
Overall, the underlying principle is that stretch invokes a cascade of events that trigger
increased mitotic activity and increased collagen synthesis, which ultimately result in
increased skin surface area to restore the homeostatic equilibrium state [62].

Taking advantage of mechanotransduction is a powerful approach to endogenously engineer
new skin. Since it was first introduced in the mid 1950s [47], the controlled mechanical
manipulation of skin has opened a whole new frontier in reconstructive surgery. Today
tissue expansion is widely used to repair birth defects [6], correct burn injuries [5], and
reconstruct breasts after tumor removal [49]. It is the ideal strategy to grow skin that
matches the color, texture, hair bearance, and thickness of the surrounding healthy skin,
while minimizing scars and risk of rejection [51].

Tissue expansion is an iterative procedure of controlled overstretch, progressive skin
growth, and gradual restoration of the homeostatic equilibrium state, repeated in several
weekly intervals [25]. To grow skin in a desired location, the surgeon dissects a
subcutaneous pocket between the dermis and the hypodermis [27], in which he places the
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expander. The expander is successively filled with saline solution by a remote injection port,
see Figure 2. By visual inspection of skin color, capillary refill, and palpation of the
expanded skin, the surgeon heuristically determines the amount of filling [51]. Once enough
new skin is produced, typically after a period of multiple weeks, the device is removed, and
the new skin is used to repair the adjacent defect zone. Although tissue expansion is a
common surgical procedure today, there are no scientific guidelines for optimal device
selection. Accordlingly, the appropriate choice of expander shape, expander size, expander
location, filling volume, and filling timing remains almost exclusively based on the
surgeon’s experience and personal preference [41].

The first quantitative model for growing skin was proposed only a few years ago, and has
unfortunately not received a lot of attention to date [58]. Motivated by this first study on
axisymmetric skin growth, conceptually similar to an axisymmetric model for growing cell
walls [22], we have recently established a prototype model for growing biological
membranes to predict skin growth in a general three-dimensional setting [13]. The model is
based on the continuum framework of finite growth [52], originally developed for the
isotropic volumetric growth of biological solids [2, 18, 42]. Its key kinematic feature is the
multiplicative decomposition of the deformation gradient into a reversible elastic part and an
irreversible growth part [19, 43], a concept that was adopted from finite plasticity [40]. Over
the past decade, continuum growth theories have been rapidly developed and intensely
refined to characterize isotropic [15, 24, 37], transversely isotropic [50, 59], orthotropic [21,
60], and generally anisotropic [3, 46] growth phenomena, both compressibly [44] and
incompressibly [30, 53]. Recent trends focus on the computational modeling of finite growth
[4, 28], typically by introducing the growth tensor as an internal variable within a nonlinear
finite element framework [20, 34], a strategy that we also adopt here. To predict the
biomechanics and mechanobiology of growing skin and their impact on stress, strain, and
area gain, we adopt a transversely isotropic growth model [13, 14], in which all cellular and
molecular mechanisms are collectively summarized in a single phenomenological internal
variable, the in-plane area growth. Here, in contrast to our previous model formulated in the
material frame of reference [70], we introduce a spatial formulation, which lends itself to a
computationally elegant and highly efficient algorithm. To simulate heterogeneous growth
phenomena on anatomically realistic geometries, we integrate the growth model into a
multi-purpose nonlinear finite element program [63]. We illustrate its features by means of
the simple model problem of equi-biaxial extension and through two clinical cases of skin
expansion in pediatric forehead reconstruction.

2. Methods
2.1. Continuum model of growing skin

To accurately represent the finite deformations during skin expansion, we adopt the
kinematics of finite growth, and introduce the deformation map ϕ, which, at any given time
t, maps the material placement X of a physical particle onto its spatial placement x = ϕ (X, t).
We then introduce the multiplicative decomposition of the deformation gradient [52],

(1)

into a reversible elastic part Fe and an irreversible growth part Fg, in agreement with
experimental findings [66]. Here, ∇{∘} = ∂x{∘}|t denotes the gradient of a field {∘} (X, t)
with respect to the material placement X at fixed time t. Its Jacobian defines the overall
change in tissue volume,
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(2)

which we can equivalently decompose into a reversibly elastic volume change Je = det (Fe)
and an irreversibly grown volume change Jg = det (Fg). Skin is a composite material
consisting of a 0.1–1.0 mm thick, waterproof, protective outer layer, the epidermis, and a
1.0–4.0 mm thick, load bearing inner layer, the dermis [56], which we idealize jointly as a
single layer. We characterize its area stretch through Nanson’s formula

(3)

in terms of the skin plane normal n0 in the undeformed reference configuration, where cof(∘)
= det (∘) (∘)−t denotes the cofactor of a second order tensor (∘). The area stretch obeys the
multiplicative decomposition into a reversibly elastic area stretch ϑe and an irreversibly
grown area stretch ϑg = ||cof(Fg) · n0||. To model stretch-induced skin growth, we
collectively summarize the effects of mechanotransduction in a single scalar-valued variable
ϑg, which characterizes the evolution of the in-plane area growth, while the response in the
thickness direction n0 is assumed to be purely elastic [12]. Accordingly, we can express the
growth tensor Fg in the following simple format.

(4)

Since the material is not assumed to grow in the thickness direction n0 [51, 64], its area
growth is identical to its volume growth, i.e., ϑg = det(Fg) = Jg. Using the simple rank-one
update structure of Fg, we can apply the Sherman-Morrison formula to invert the growth
tensor explicitly,

(5)

and obtain an explicit representation of the elastic tensor Fe,

(6)

in terms of the spatial normal n = F · n0. From the push forward of the contravariant
material and intermediate metric tensors G−1 and Gg−1, we obtain the left Cauchy Green
tensor b = F · G−1 · Ft and its counterpart be in the deformed, current configuration.

(7)

To focus on the impact of growth, we assume skin to behave isotropically elastic within the
in vivo loading range of interest. Accordingly, we introduce the following Helmholtz free
energy

(8)
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to evaluate the standard dissipation inequality, which defines the Kirchhoff stress τ as
thermodynamically conjugate to covariant spatial metric g.

(9)

This implies that the newly created skin will have the same microstructure, density, and
stiffness, as the original, native tissue [12, 13]. We model skin growth as a strain-driven
process [27], and introduce the following evolution equation for the area growth,

(10)

in which kg(ϑg) is a weighting function and φg(ϑe) is a growth criterion similar to a yield
function in the theory of plasticity. For the weighting function, we adopt a well-established
functional form [42], which we rephrase here in a strain-driven format [20, 21], to control
unbounded growth.

(11)

The adaptation speed τ and the shape parameter for the adaptation curve γ control the speed
of adaptation, whereas the maximum area growth ϑmax defines the biological equilibrium
state [28, 42]. For the growth criterion, we assume that growth is driven by the elastic area
stretch ϑe,

(12)

and that it is activated only if the elastic area stretch exceeds a critical physiological limit
ϑcrit, where 〈 ∘ 〉 denote the Macaulay brackets.

2.2. Computational model of growing skin
To solve the nonlinear finite element equations of stretch-induced skin growth, we
implement the growth model in a custom-designed version of the multipurpose nonlinear
finite element program FEAP [63]. To characterize the growth process at each instant in
time, we introduce the area growth ϑg as an internal variable, and solve the biological
equilibrium equation (10) locally at the integration point level. At each discrete time step t,
we determine the current area growth ϑg for a given current deformation state F and a given
area growth  from the previous time step tn. Accordingly, we introduce the following
finite difference approximation for the material time derivative of the area growth,

(13)

where Δt = t − tn denotes the current time increment. In the spirit of implicit time stepping
schemes, we now reformulate the evolution equation (10) with the help of equation (13),
introducing the discrete residual Rϑ in terms of the unknown area growth ϑg.
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(14)

We solve this nonlinear equation using a local Newton iteration. Within each iteration step,
we calculate the linearization of the residual Rϑ with respect to the area growth ϑg,

(15)

in terms of the linearizations of the weighting function ∂kg/∂ϑg = −γkg/[ϑmax − ϑg] and the
growth criterion ∂φg/∂ϑg = −ϑ/ϑg2 introduced in equations (11) and (12). We update the
unknown area growth iteratively,

(16)

until we achieve convergence, i.e., until the absolute value of the local growth update Δϑg =
−Rϑ/Kϑ is below a user-defined threshold value. Once we have iteratively determined the
current area growth ϑg, we can successively determine the growth tensor Fg from equation
(4), the elastic tensor Fe = F · Fg − 1 from equation (6), the Kirchhoff stress τ from equation
(9), and, finally, the fourth order tensor e of the Eulerian constitutive moduli.

(17)

The first term, the partial derivative of the Kirchhoff stress τ with respect to the covariant
spatial metric g, defines elastic constitutive moduli ee = 2 ∂τ/∂g,

(18)

where we have used the common abbreviations, {•⊗̄∘}i jkl = {•}ik {∘}jl and {•⊗̱∘}i jkl = {•}il
{∘}jk, for the non-standard fourth order products. The second term

(19)

depends directly on the constitutive formulation for the Kirchhoff stress τ in equation (9)
and indirectly on the particular format of the growth tensor Fg in equation (4). The third
term

(20)

consists of the algorithmic linearization of the time discrete evolution equation for the area
growth ∂ϑg/∂ϑ in equation (16) and of the linearization of the area stretch 2 ∂ϑ/∂g in
equation (3). The local stress of equation (9) and the local consistent tangent of equation
(17) enter the global righthand side vector and the global iteration matrix of the global
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Newton iteration. Upon its convergence, we store the corresponding area growth ϑg locally
at the integration point level.

3. Results
We illustrate the features of the proposed growth model for the simple model problem of
displacement driven equi-biaxial extension and for the clinical case of tissue expansion in
pediatric forehead reconstruction. For the elastic model, we assume Lamé constants of λ =
0.7141 MPa and μ = 0.1785 MPa, which would correspond to a Young’s modulus of E = 0.5
MPa and Poisson’s ratio of ν = 0.4 in the linear regime [1, 54]. For the growth model, we
assume that growth takes place above the critical threshold of ϑcrit = 1.21, corresponding to
uniaxial stretches of 10% [12]. We restrict the maximum area growth to ϑmax = 4.0, and
assume an adaptation speed of τ = 1/12 and growth exponents of γ = 2.0 and γ = 12.0 in
examples 3.1 and 3.2. Sensitivity analyses demonstrate that the parameters τ and γ influence
the adaptation time and the shape of the adaptation curve, but not the final state of biological
equilibrium [28, 70].

3.1. Model problem - Skin growth in equi-biaxial extension
We illustrate the conceptual features of our growth model by exploring the simple model
problem of displacement-driven skin expansion of a square 1.0 × 1.0 × 0.2 sheet. In an equi-
biaxial setting, we increase the prescribed displacements such that the in-plane area stretch
is increased from ϑ = 1.0 to 2.0, 3.0, and 4.0, indicated through the vertical dashed lines in
Figure 3. This implies that the skin sheet is gradually stretched to a final size of 2.0 × 2.0,
i.e., to four times its original size. After applying the deformation, we allow the tissue to
adapt, and recover its homeostatic equilibrium state. After three load increments, we remove
the applied stretch and allow the tissue to relax.

Figure 3 illustrates the resulting temporal evolution of the total area stretch ϑ, the reversible
elastic area stretch ϑe, and the irreversible area growth ϑg. The horizontal dashed lines
represent the elastic stretch limit ϑcrit beyond which skin growth is activated, and the
maximum area growth ϑmax. The curves confirm, that, at all times, the multiplicative
decomposition of the deformation gradient F = Fe · Fg introduced in equation (1) carries
over to the multiplicative decomposition of the total area stretch ϑ = ϑe ϑg of equation (3).
Convergence towards the homeostatic state manifests itself through a gradual increase of
growth ϑg at a constant total stretch ϑ, while the elastic stretch ϑe, and, accordingly the
stresses, decrease. Upon removal of the applied displacements, the elastic stretch
instantaneously returns to its baseline value of one, ϑe = 1. Since the growth process is
assumed to be irreversible, the growth stretch remains constant, ϑg = const. The total stretch
instantaneously adapts the value of the growth stretch, ϑ = ϑg.

Figure 4 shows the temporal evolution of the skin thickness. Upon loading, the thickness
decreases acutely from 1.0 to 0.72, but then returns chronically to its loaded baseline value
of 0.88. This value, indicated through the lower horizontal line, is slightly smaller than the
original thickness because of the Poisson effect. Upon removal of the applied displacements,
the skin thickness immediately returns to its original value of t = 1.0, indicated through the
upper horizontal line. Since the model assumes no growth in thickness direction, tg = 1.0, all
thickness changes are fully reversible, te = t.

3.2. Clinical problem - Skin growth in pediatric forehead reconstruction
To illustrate the full potential of our model, we simulate skin expansion in pediatric forehead
reconstruction for two clinical cases, a one-year old girl in case study I [26], and a one-year
old boy in case study II [27], both born with giant congenital nevi affecting almost half of
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their foreheads, see Figure 5. Because giant congenital nevi place the child at an increased
risk of skin cancer, the nevus is typically removed in the early childhood [25]. To
reconstruct the defect, preserve function, and maintain aesthetic appearance, both children
underwent conrolled tissue expansion [41]. To simulate the process of tissue expansion in an
anatomically exact geometry, we create a finite element mesh from three-dimensional
computer tomography images of a child of similar age following the procedure outlined in
[70]. We identify the skin region by its distinct grey scale value in the computer tomography
scans to create a triangular surface mesh, which we further smoothen semi-manually. From
the smoothened surface mesh, we create a volume mesh of the skin layer, discretized with
61,228 nodes, 183,684 degrees of freedom, and 30,889 tri-linear brick elements. Last, we
assign each element a skin plane normal n0, corresponding to the normal of the initial
surface mesh.

Case study I: Simultaneous forehead, anterior and posterior scalp expansion
—The first case study mimics the case of a one-year old girl, whose nevus covered her left
posterior forehead [26]. To grow extra skin to cover the defect area, she underwent
simultaneous tissue expansion in the forehead and in the anterior and posterior scalp as
shown in Figure 5, top row. To model her case, we virtually implant three expanders. First,
we implant an expander in the posterior scalp, discretized with 4,726 nodes, 14,178 degrees
of freedom, and 2,270 tri-linear brick elements, covering an initial area of 53.1 cm2. Second,
we implant two closely connected expanders in the forehead and in the scalp, discretized
together with 7,954 nodes, 23,862 degrees of freedom, and 3,820 tri-linear brick elements,
covering an initial area of 96.3 cm2. To simulate tissue expansion, we fix all nodes and
release only the expander degrees of freedom, which we then pressurize from underneath.
We assume that the adjacent dermis and hypodermis remain closely connected [58].

Figure 6 displays the temporal evolution of the normalized total area, elastic area, and
growth area upon gradual expander inflation, constant pressure, and gradual expander
removal. Once the elastic area stretch reaches the critical threshold of ϑcrit = 1.21, slightly
before the total pressure is applied, at t = 0.125, the tissue starts to grow. As the expander
pressure is held constant, growth increases gradually causing the total area to increase. Then,
at t = 0.75, the pressure is decreased to remove the expander. The elastic area retracts
gradually, while the grown area remains constant. The vertical dashed lines correspond to
the discrete time points, t = 0.24, t = 0.33, t = 0.42 and t = 0.75, displayed in Figure 7.

Figure 7 illustrates the spatio-temporal evolution of the area growth ϑg. Growth is first
initiated at the center of the expanders, where the elastic stretch is largest. As growth spreads
throughout the entire expanded areas, the initial area of 149.4 cm2 increases gradually as the
grown skin area increases to 190.2 cm2, 207.4 cm2, 220.4 cm2, and finally 251.2 cm2,
displayed from left to right. In detail, we observe that the final area in the posterior scalp
region is 91.5 cm2, corresponding to a fractional area gain of 1.73. In the combined forehead
and anterior scalp regions, the final area is 159.6 cm2, corresponding to a slightly lower
fractional area gain of 1.66. Area growth displays regional variations within 1.0 ≤ ϑg ≤ 2.0,
i.e., in some regions, the skin has doubled its initial area. Area growth is largest in the center
regions and smallest in the peripheries.

Case study II: Simultaneous forehead, scalp, and cheek expansion—The
second example mimics the case of a one-year old boy whose nevus covered his right
anterior forehead [27]. We simulate his simultaneous tissue expansion with expanders in the
forehead, scalp, and cheek as shown in Figure 5, bottom row. First, we virtually implant an
expander in the scalp, discretized with 4,356 nodes, 13,068 degrees of freedom, and 2,088
trilinear brick elements, covering an initial area of 50.5 cm2. Second, we implant an
expander in the cheek, discretized with 2,542 nodes, 7,626 degrees of freedom, and 1,200
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tri-linear brick elements, covering an initial area of 29.3 cm2. Third, we implant an expander
in the forehead, discretized with 3,782 nodes, 11,346 degrees of freedom, and 1,800 tri-
linear brick elements, covering an initial area of 48.8 cm2. Again, we fix all nodes and
release only the expander degrees of freedom, which we then pressurize from underneath,
assuming that the adjacent skin remains unaffected.

Figure 8 displays the temporal evolution of the normalized total area, elastic area, and
growth area upon gradual expander inflation, constant pressure, and gradual expander
removal. Similar to Figure 6, the tissue begins to grow once the elastic area stretch reaches
the critical threshold of ϑcrit = 1.21. Slightly after, at t = 0.125, the total pressure is held
constant. Similar to the first case study, the skin grows gradually in all three expanded
regions. When the pressure is gradually decreased at t = 0.75, the elastic area retracts, while
the grown area remains constant. The vertical dashed lines correspond to the discrete time
points, t = 0.24, t = 0.33, t = 0.42 and t = 0.75, displayed in Figure 9.

Figure 9 illustrates the spatio-temporal evolution of the area growth ϑg. Since area stretches
are largest at the center of the expander, growth is first initiated in this region, spreading
gradually throughout the entire expanded areas. During the growth process, the initial area
of 128.7 cm2 increases to 176.0 cm2, 191.3 cm2, 202.1 cm2, and finally 227.1 cm2,
displayed from left to right. In detail, we observe that the new area in the scalp is 87.9 cm2

with a fractional area gain of 1.74, in the cheek it is 50.6 cm2 with a fractional area gain of
1.72, and in the forehead it is 88.6 cm2 with the largest fractional area gain of 1.82. The area
grows varies locally within the range of 1.0 ≤ ϑg ≤ 2.0 with largest values in the center
regions, where skin typically more than doubles its initial area.

4. Discussion
Motivated by the mechanotransduction pathways outlined in Section 1, we have introduced
a continuum model for growing skin in response to chronic mechanical overstretch. From a
kinematic point of view, the model is based on the multiplicative decomposition of the
deformation gradient into an elastic part and a growth part [52]. From a constitutive point of
view, it introduces four material parameters with a clear physiological interpretation [42,
70], the critical physiological stretch limit ϑcrit, the maximum area growth ϑmax, the
adaptation speed τ, and the shape of the adaptation curve γ. From a computational point of
view, the model is embedded in a standard nonlinear finite element framework, in which the
area growth ϑg is introduced locally as an internal variable on the integration point level [28,
37]. From an algorithmic point of view, the biological equilibrium problem for this internal
variable is solved using a local Newton iteration embedded in a global Newton iteration to
solve the mechanical equilibrium problem [20, 50]. Overall, our growth model is
unconditionally stable, robust, efficient, conceptually modular, and easily portable. In
contrast to the only other skin growth model by other authors, which is based on a
rotationally symmetric formulation [58], our model is conceptually generic, and can handle
arbitrary skin geometries. In contrast to our own first prototype of the model, which is based
on a material formulation [13, 70], the new realization based on a spatial formulation is
computationally elegant and efficient, reducing simulation times by approximately factor
five.

In Section 3.1, we have demonstrated the conceptual characteristics of our growth model by
means of a simple model problem of successive equi-biaxial extension. Upon displacement
control, the model predicts the following features: (i) an acute increase in the elastic area
stretch ϑe, (ii) an acute decrease in thickness t, (iii) a chronic increase in area growth ϑg,
(iv) a chronic restoration of the homeostatic elastic area stretch ϑe → ϑcrit, and (v) a chronic
restoration of the homeostatic equilibrium thickness t. Upon displacement relaxation, the
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model predicts the following features: (vi) an acute retraction of the elastic area stretch back
to its baseline value of ϑe = 1.0 and (vii) an acute arrest of further growth with ϑ = ϑg =
const, see Figures 3 and 4.

Our in silico predictions are in excellent agreement with the in vivo findings reported in the
literature. More than three decades ago, the first experimental studies confirmed a net gain
in skin area upon tissue expansion [8, 9]. Unexpectedly, this area gain was found to take
place upon conservation of cellular morphology, preservation of phenotype, and
maintenance of functionality, without an inflammatory response, and without evidence of
malignant degeneration [12]. This suggested that the increase in tissue surface area is a
result of new tissue being regenerated, instead of being recruited from neighboring regions
[17]. It supports our fundamental model assumption that skin is capable to chronically
increase its area, represented through equation (3), upon mechanical overstretch,
incorporated through equation (12), see Figure 3.

In what follows, we will compare the response of our model to skin growth experiments in
the literature [9, 10, 12, 64, 66, 68]. Unfortunately, almost all existing data are based on in
vivo tissue expansion studies. For the lack of experimental data, we assume that the in vivo
strain state of a pressurized thin membrane is close to our in silico state of equi-biaxial
extension. Alternatively, we could simulate the true state of tissue expansion using finite
element models [13, 14]. However, since this would introduce additional discretization and
modeling errors, we will assume a homogeneous strain state here, and focus on comparing
the constitutive, material point response.

4.1. Discussion of acute elastic response
Acutely, tissue expansion has been associated with slight epidermal thickening and
significant dermal thinning [9], resulting in an overall thinning and a reduced tensile
strength [10]. Mechanically, a study in rodents reported an acute increase in uniaxial stretch
of approximately 36% [12]. This is in nice agreement with our model, which predicts an
acute elastic area stretch of 1.52, 1.60, and 1.56, corresponding to an average increase in
uniaxial stretch of 25%, see Figure 3. Structurally, the same study identified an initial acute
decrease in skin thickness from 407 ± 3 μm to 317 ± 4 μm corresponding to an acute
thickness reduction of 22% [12]. Again, this is in good quantitative agreement with our
model, which predicts an acute average normalized thickness of 0.74, 0.71, and 0.72
corresponding to an acute average thickness decrease of 28%, see Figure 4. Since these
acute thickness changes can be attributed primarily to the Poisson effect, they can be utilized
to calibrate the elastic material parameters, in particular Poisson’s ratio.

4.2. Discussion of chronic growth response
Chronically, tissue expansion is associated with the gradual restoration of baseline histology,
baseline mechanics, and baseline structure [10]. Histologically, a comparison of piglet tissue
in expanded and non-expanded regions demonstrated a chronic restoration of the number of
epidermal cell layers and a chronic restoration of the epidermal thickness [64]. In addition,
immunocytochemistry confirmed that the expanded tissue maintains its phenotypical
characteristics and native program of cellular differentiation [68]. Mechanically, in a
multiple time-point study in rodents, an acutely increased uniaxial stretch of 36% was
reduced chronically to approximately 10% 32 days post expansion [12]. This is in excellent
agreement with our model, which predicts an acutely increased uniaxial stretch of 25% and a
chronic reduction to 10%, see Figure 3. A uniaxial stretch of 10% would corresponds to an
area stretch of ϑcrit = 1.21. In our model, the model parameter ϑcrit takes the interpretation
of the physiological threshold value, to which the elastic area stretch tends to return during
adaptive skin growth, see equation (12). Structurally, after an initial acute thickness decrease
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of 22%, the same study reports a chronic restoration of the homeostatic equilibrium
thickness from initially 425 ± 4 μm to 398 ± 3 μm, corresponding to a chronic thickness
reduction of 7% [12]. This agrees well with our model, which predicts a normalized
homeostatic equilibrium thickness of 0.88, corresponding to a chronic thickness reduction
12%, see Figure 4. The chronic rodent study also reported that the overall weight of the
tissue sample almost tripled, with a fractional weight gain of approximately 2.7 for wet
weight and 3.3 for dry weight [12]. In our model, the fractional weight gain is directly
proportional to the fractional area gain of ϑg = 3.3 which agrees nicely with these
experimental findings, see Figure 3. Finally, the study found a conservation of the
mechanical properties, for example, a constant breaking strength acutely right after
expansion and chronically long term [12]. These findings support our model assumption that
ultimately, the newly created skin will have the same microstructure, density, and stiffness,
as the original, native tissue [13, 14].

4.3. Discussion of elastic retraction
Acutely, upon expander removal, an instantaneous retraction of the elastic deformation
significantly reduces the overall skin area. In controlled in vivo experiments in pigs, the
ratio between the reversible elastic deformation to irreversible growth was almost 2:1 [66].
Since our model assumes that the overall deformation gradient can be multiplicatively
decomposed into an elastic and growth part, represented through equation (1), it is perfectly
capable of reproducing the effect of elastic retraction upon expander removal, see Figures 3,
6, and 8.

4.4. Discussion of growth heterogeneity
Figures 7 and 9 clearly indicate the heterogeneity of the growth process with larger values in
the center region and smaller values in the periphery. This is in agreement with in vivo
studies, which report a fractional area gain of 3.14, i.e., 50% above average, in the center
region, and 2.06, i.e., 25% below average, in the periphery [12]. The authors hypothesized
that larger strains in the center region would trigger larger growth. This is in agreement with
our model in equation (10), where the evolution of area growth is directly correlated to the
amount of overstretch through the growth criterion defined in equation (12).

4.5. Limitations
Although we have presented both qualitative and quantitative comparisons of the proposed
model with acute and chronic tissue expansion experiments from the literature, several
limitations remain. First and foremost, the most challenging aspect would be to tie the
growth law in equation (4) more closely to the underlying mechanobiology described in
detail in the introduction section. Comparative gene expression assays and
immunohistochemistry of grown versus ungrown tissue samples could help to identify the
mechanisms that trigger skin growth on the molecular and cellular level. Similar approaches
have been proposed for amelogenesis [16] and tumorigenesis [7, 48] in the past and could
also be adopted here. Ideally, this would help to specify our evolution equation for the
growth tensor (4) in terms of discrete mechanotransduction cascades through selected
extracellular and intracellular events. To this end, we are currently designing a test setup to
stretch and grow explanted tissue samples ex vivo. Since most existing data sets on skin
growth are based on in vivo measurements of inflated membranes, an ex vivo setting will
allow us to create well-defined geometries and boundary conditions such as the equi-biaxial
extension test suggested here.

Second, since our goal was to focus primarily on the kinematic characterization of the
growth process, the constitutive modeling of the elastic baseline properties of skin has
played a minor role. However, the proposed model is inherently modular and the
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incorporation of more sophisticated constitutive models [67] is relatively straightforward. A
typical candidate is a multiple-constituent anisotropic skin model with in-plane anisotropy
introduced through a pronounced stiffness along Langer’s lines [35, 36], which we have
successfully combined with the proposed growth model in the past [14]. In addition, the
growth process itself could be modeled as anisotropic [21], e.g., attributed to a pronounced
growth along specific microstructural directions. Similarly, through the deposition of large
bundles of compacted immature collagen [10, 33], the underlying collagen network could
reorient itself, e.g., to align with the maximum principal strains [29, 38]. Here, we model
growth as a strain driven process. This implies that the elastic material parameters, or,
accordingly, the corresponding stresses, play a less important role than in stress-driven
growth, e.g., in hypertension [37, 50]. In other words, when using the same model with
different Lame constants or different constitutive models, we would require different
expander pressures to obtain the same deformation pattern, but the growth process itself
would still be affected by kinematical quantities only. Along the same lines, we have
assumed that the effects of resting tension and residual stress are negligible. Both play a
critical role when studying instabilities and buckling [23, 65]. In a previous study, we have
explored these phenomena in more detail [13]. Within the context of finite deformations,
resting tension and residual stress could be incorporated through another second order
tensor, which would mimic the mapping to a pre-strained or residually stressed
configuration [46, 61].

Third, for the sake of simplicity, we have modeled skin as homogeneous across the
thickness, neglecting its individual layers and their potential interaction. We are currently
refining our model utilizing shell kinematics with a higher resolution across the thickness
direction. This will facilitate to model the individual skin layers [56], which we believe to be
a major source of heterogeneities and residual stresses in real tissue expansion cases [45].
Alternatively, to explore the biomechanical interaction between the growing dermis and the
underlying hypodermis during tissue expansion, we could even model growing skin through
its own boundary energy [32].

Fourth, at this stage, the chronic response of our model is not yet calibrated in time. We
have assumed that chronic growth takes place within a normalized time interval from zero to
one. In reality, growth periods range from the order of days in rodents [12] to weeks in pigs
[66] and humans [27]. However, with the appropriate experimental data, the duration of the
adaptation process can be calibrated easily through the adaptation speed τ [70].

Fifth, we have modeled the tissue expander only implicitly through controlling the expander
pressure. In real tissue expansion, the external control parameter is the expander volume
[41]. This implies that our simulation displays creep under constant loading, while clinical
tissue expansion might rather display relaxation under constant deformation [14]. Moreover,
we have assumed that the expander is connected tightly to the expanded tissue, neglecting
effects of interface sliding and shear [58]. However, this seems to be a reasonable first
assumption, since most current expanders have well-designed textures to promote mild
tissue in-growth, primarily to prevent expander migration [11].

Last, while our computational model seems well suited to provide qualitative guidelines and
trends, in its present state, it is not recommended for quantitative statements. We will need
to perform acute and chronic in vitro and in vivo experiments to truly identify the underling
mechanisms which have, up until now, only been represented phenomenologically.
Nevertheless, we believe that using the equations of nonlinear continuum mechanics to
characterize skin growth represents a significant advancement over the current gold standard
to predict tissue growth exclusively in terms of areas, volumes, and empiric correction
factors [55, 66].
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5. Conclusion
We have presented a continuum model for growing biological membranes in which the
underlying mechanobiology is collectively summarized in a single pheonomenological
internal variable, the in-plane area growth. The model can reliably predict the characteristic
histological, mechanical, and structural features of controlled overstretch-induced skin
growth, both acutely and chronically. We anticipate that the proposed skin growth model
can be generalized to arbitrary biological membranes, and that it can serve as a valuable tool
to virtually manipulate membrane area simply by means of changes in the mechanical
environment.
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Figure 1.
Mechanotransduction of growing skin. Transmembrane mechanosensors in the form of
stretch-activated ion channels, integrins, growth factor receptors, and G-protein-coupled
receptors translate extracellular signals into intracellular events, which activate a cascade of
interconnected signaling pathways. Biomechanical and biochemical signals converge in the
activation of transcription factors, activating gene expression. Mechanotransduction triggers
increased mitotic activity and increased collagen synthesis, resulting in an increase in skin
surface area to restore the homeostatic equilibrium state [31, 69].
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Figure 2.
Biomechanics of growing skin. At biological equilibrium, the skin is in a homeostatic state
of resting tension. To grow skin for defect repair, a tissue expander is placed in a
subcutaneous pocket underneath the epidermis and the dermis, above the hypodermis. When
the expander is inflated, the skin is stretched, associated with an acute dermal thinning
attributed to the Poisson effect. Stretches beyond a critical level trigger a series of signaling
pathways leading to the creation of new skin. Skin restores its homeostatic state, associated
with the chronic restoration of the original thickness. Upon expander removal, elastic
deformations retract and inelastic deformations remain.
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Figure 3.
Temporal evolution of total area stretch ϑ, reversible elastic area stretch ϑe, and irreversible
growth area stretch ϑg for displacement driven skin expansion. Displacements are increased
and then held constant in three intervals between the vertical dashed lines, and then relaxed.
Displacement control induces relaxation indicated through the gradual decrease in elastic
stretch ϑe and stress, while the growth stretch ϑg increases at a constant total stretch ϑ.
Horizontal dashed lines represent the elastic stretch limit beyond which skin growth is
activated ϑcrit, and the maximum area growth ϑmax.
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Figure 4.
Temporal evolution of skin thickness t for displacement driven skin expansion.
Displacements are increased and then held constant in three intervals between the vertical
dashed lines, and then relaxed. Upon stretching, the skin thickness decreases acutely to 0.72,
but then returns chronically to the homeostatic equilibrium thickness of 0.88 indicated
through the lower horizontal line. This value is smaller than the original thickness because
of the Poisson effect. Upon displacement relaxation, however, the skin thickness
immediately returns to its original value of 1.0, indicated through the upper horizontal line.
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Figure 5.
Skin expansion in pediatric forehead reconstruction. The patients, a one-year old girl, case
study I shown in the top row [26], and a one-year old boy, case study II shown in the bottom
row [27], both presented with a giant congenital nevus. Three forehead, scalp, and cheek
expanders were implanted simultaneously for in situ skin growth. After enough skin is
grown, the nevus is removed and the new skin is pulled over the would to close it.
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Figure 6.
Skin expansion in pediatric forehead reconstruction. Case study I: Simultaneous forehead,
anterior and posterior scalp expansion. Temporal evolution of normalized total area, elastic
area, and growth area upon gradual expander inflation, 0.0 < t ≤ 0.125, constant pressure
0.125 < t ≤ 0.75, and deflation 0.75 < t ≤ 1.0. The expanded area increases from 149.4 cm2

to 251.2 cm2, corresponding to a final fractional area gain of 1.68. Vertical dashed lines
correspond to the time points displayed in Figure 7.
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Figure 7.
Skin expansion in pediatric forehead reconstruction. Case study I: Simultaneous forehead,
anterior and posterior scalp expansion. Spatio-temporal evolution of area growth displayed
at t = 0.24, t = 0.33, t = 0.42 and t = 0.75. The initial area of 149.4 cm2 increases gradually
as the grown skin area increases to 190.2 cm2, 207.4 cm2, 220.4 cm2, and finally 251.2 cm2,
from left to right.
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Figure 8.
Skin expansion in pediatric forehead reconstruction. Case study II: Simultaneous forehead,
scalp, and cheek expansion. Temporal evolution of normalized total area, elastic area, and
growth area upon gradual expander in-flation, 0.0 < t ≤ 0.125, constant pressure 0.125 < t ≤
0.75, and deflation 0.75 < t ≤ 1.0. The expanded area increases from 128.7 cm2 to 227.1
cm2, corresponding to a final fractional area gain of 1.77. Vertical dashed lines correspond
to the time points displayed in Figure 9.
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Figure 9.
Skin expansion in pediatric forehead reconstruction. Case study II: Simultaneous forehead,
scalp, and cheek expansion. Spatio-temporal evolution of area growth displayed at t = 0.24, t
= 0.33, t = 0.42 and t = 0.75. The initial area of 128.7 cm2 increases gradually as the grown
skin area increases to 176.0 cm2, 191.3 cm2, 202.1 cm2, and finally 227.1 cm2, from left to
right.
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