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Abstract
Hypoxia is increasingly recognized as an important contributing factor to the development of brain
diseases such as Alzheimer’s disease (AD). In the periphery, hypoxia is a powerful regulator of
angiogenesis. However, vascular endothelial cells are remarkably heterogeneous and little is
known about how brain endothelial cells respond to hypoxic challenge. The objective of this study
is to characterize the effect of hypoxic challenge on the angiogenic response of cultured brain-
derived microvascular endothelial cells. Brain endothelial cell cultures were initiated from isolated
rat brain microvessels and subjected to hypoxia (1% O2) for various time periods. The results
showed that hypoxia induced rapid (≤ 0.5 h) expression of hypoxia-inducible factor 1α (HIF-1α)
and that cell viability, assessed by MTT assay, was unaffected within the first 8 h. Examination of
brain endothelial cell cultures for pro- and anti-angiogenic proteins by western blot, RT-PCR and
ELISA revealed that within 0.5 to 2 h of hypoxia levels of vascular endothelial growth factor and
endothelin-1 mRNA and protein were elevated. The expression of heme oxygenase-1 also
increased but only after 8 h of hypoxia. In contrast, similar hypoxia exposure evoked a decrease in
endothelial nitric oxide synthase and thrombospondin-2 levels. Exposure of brain endothelial cell
cultures to hypoxia resulted in a significant (p<0.001) decrease (94%) in tube length, an in vitro
index of angiogenesis, compared to control cultures. The data indicate, despite a shift toward a
pro-angiogenic phenotype, hypoxia inhibited vessel formation in brain endothelial cells. These
results suggest that in brain endothelial cells expression of angiogenic factors is not sufficient for
the development of new vessels. Further work is needed to determine what factors/conditions
prevent hypoxia-induced angiogenic changes from culminating in the formation of new brain
blood vessels and what role this may play in the pathologic changes observed in AD and other
diseases characterized by cerebral hypoxia.
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Introduction
The human brain, although only 2% of total body weight, accounts for 20% of oxygen
consumption, reflecting its high rate of metabolic activity (Pimenta de Castro et al., 2010).
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The high energy demands of the brain render it especially susceptible to the deleterious
effects of hypoxia. Hypoxia is increasingly recognized as an important contributing factor to
the development of neurodegenerative diseases in the brain (Kaur and Ling, 2008; Peers et
al., 2007; 2009; Quaegebeur and Carmeliet, 2010). Emerging evidence suggests that hypoxia
is an important risk factor for the development of dementias, since patients suffering from
cerebral ischemia or stroke are much more susceptible to dementias, particularly
Alzheimer’s disease (AD) (Desmond et al., 2002; Kalaria, 2000; Kokmen et al., 1996;
Moroney et al., 1997). Furthermore, cerebral hypoperfusion is one of the major clinical
features of AD and pathological changes caused by chronic hypoxia in the CNS are similar
to those observed in AD (de la Torre, 2000; Lee et al., 2011; Miklossy, 2003). Despite data
which suggest a strong link between cerebral hypoxia and AD, the mechanisms whereby
hypoxia contributes to neurodegenerative disease processes are unknown.

In the periphery, hypoxia is a powerful regulator of angiogenesis. The angiogenic process is
complex and involves a sequence of discrete steps beginning with endothelial activation and
culminating in the formation of new blood vessels. Genes involved in the different stages of
angiogenesis have been shown to be responsive to hypoxia in tissue culture (Pugh and
Ratcliffe, 2003). Hypoxia regulates angiogenesis by modulating a large number and variety
of pro- and anti-angiogenic factors (Enholm et al., 1997; Liu et al., 1995; Oh et al., 1999).
Regulation of genes that encode proteins involved in angiogenesis occurs via activation of
hypoxia-inducible factor (HIF). HIF, a heterodimeric complex consisting of an oxygen-
destructable α subunit and an oxygen-indestructable β subunit, is a sequence-specific DNA-
binding protein that affects transcription of a broad range of genes (Brahimi-Horn and
Pouysségur, 2009). The oxygen sensitive α subunit ensures a quick response to minute
changes in oxygen concentration by regulating proteasomal degradation of HIF-1 (Semenza,
1999). One of the most versatile angiogenic factors stimulated by hypoxia is vascular
endothelial growth factor (VEGF) (Forsythe et al., 1996; Liu et al., 1995). VEGF is induced
and regulated in a strictly dose-dependent manner by HIF-1 (Ferrara et al., 2003). Other
angiogenic factors such as thrombin, endothelin-1 (ET-1), and heme oxygenase-1 (HO-1)
have also been reported as factors associated with hypoxia (Landau et al., 2000; Motterlini
et al., 2000; Yamashita et al., 2001). In contrast, anti-angiogenic factors such as
thrombospondins (TSPs) are inhibited by hypoxia (Laderoute et al., 2000), although this
varies depending on cell type (Phelan et al., 1998).

Despite advancements in research on hypoxia-induced angiogenesis in the periphery, little is
known about how brain endothelial cells respond to hypoxic challenge. The vascular
endothelium is a remarkably heterogeneous organ. Endothelial cells have the ability to
differentiate both in structure and function in response to the needs of diverse tissue
environments (Craig et al., 1998; Molema, 2010). Endothelial cells from different vascular
beds differ in their morphology, cellular behavior and responses to injury (Langenkamp and
Molema, 2009). Brain endothelial cells are a highly differentiated, specialized blood-brain
barrier endothelial phenotype possessing unique biochemical and structural features not
found in other vascular beds (Abbott et al., 2006; Zlokovic, 2008). The cerebrovasculature is
increasingly implicated as contributory to the development of neurodegenerative diseases
such as AD (Bell and Zlokovic, 2009; Brown and Thore, 2011; Grammas, 2011; Nation et
al., 2011). A growing literature shows biochemical and functional changes in the
cerebrovasculature in AD including expression and/or release of proteins related to vascular
endothelial activation and angiogenesis such as VEGF, ET-1, HIF-1α, and thrombin
(Grammas et al., 2006; Thirumangalakudi et al., 2006; Luo and Grammas, 2010; Yin et al.,
2010). However, the function of angiogenic proteins in the AD brain is unknown and their
significance is controversial (Bell and Zlokovic, 2009; Grammas, 2011; Paris et al., 2010.,
Wu et al., 2005). Understanding the effects of hypoxia on brain endothelial cells is important
to determining mechanisms of hypoxia-induced damage in the brain and its links to AD.
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The objective of this study is to characterize the effect of hypoxic challenge on the
angiogenic response of cultured brain-derived microvascular endothelial cells

Methods
Treatment of endothelial cell cultures

Rat brain endothelial cell cultures were isolated from rat brain microvessels, as previously
described (Diglio et al., 1993). The purity of these cultures was confirmed using antibodies
to the endothelial cell surface antigen factor VIII. Endothelial cells used in this study
(passages 8 to 15) were maintained in Dulbecco’s modified Eagle’s medium (DMEM,
Sigma-Aldrich, St Louis, MO) supplemented with 10% fetal bovine serum (FBS), 1%
antibiotic/antimycotic and 2 mM glutamine. Confluent endothelial cell cultures were washed
3 times with Hank’s balanced salt solution (HBSS, Gibco, Grand Island, NY) and then
incubated with serum-free DMEM. Cells were exposed to hypoxia (1% O2) for different
periods of time in a humidified incubator at 37 °C. Cells grown under normoxic conditions
(21% O2) served as a positive control.

Measurement of cell survival by MTT assay
Cell viability was determined using the MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide, Promega, Madison, WI) as follows. Treatment medium was
replaced with fresh treatment medium containing 20 μl/ml of the Cell Titer 96 Aqueous One
Solution and incubated for 10 min at 37°C after which optical density was measured at 490
nm using a microplate reader. The quantity of soluble formazan product, as measured by the
amount of absorbance, was directly proportional to the number of viable cells. The number
of viable cells after treatment was determined by measuring optical density and viability
expressed as percent of untreated controls.

Measurement of tube formation
Geltrex™ reduced growth factor basement membrane matrix (Invitrogen, Carlsbad, CA,
#12760) was added to wells of a 24-well plate (150 μl/well) and incubated at 37 °C for 30
min. After Geltrex™ matrix was polymerized, brain microvascular endothelial cells were
seeded onto the matrix at 105 cells/well, and maintained in DMEM supplemented with 10%
FBS. Plates were exposed to hypoxia (1% O2) or normoxia (21% O2) at 37°C for 4 h
(Kourembanas et al., 1994; Loboda et al., 2006). After staining with fluorescent dye Calcein
(Invitrogen, #C3099) for 30 min, the tube-like structures were visualized and captured using
Olympus IX71 microscope at 10X magnification. Tube length was analyzed and quantitated
using image processing software (ImageJ) available from the National Institutes of Health.

Western blot analysis
Total protein from cell cultures was extracted using lysis buffer (0.1% SDS, 1% Triton
X-100, and 0.5% phenylmethyl-sulfonyl fluoride), and protein concentration determined by
the Bradford method using Bio-Rad protein reagents (Bio-Rad, Hercules, CA). Samples
were resolved in 10% poly-acrylamide gel (25 – 30 μg/lane) using SDS-PAGE and
transferred to PVDF membranes. The blots were blocked with 5% nonfat milk in Tris-
buffered saline containing 0.1% Tween 20 (TBST) for 1 h. Membranes were then incubated
with primary antibodies (HIF-1α: Abcam, Cambridge, MA, #1; VEGF: Abcam, #1316;
TATA-binding protein (TBP): Abcam, #818; β-actin: Abcam, #6276; endothelial nitric
oxide synthase (eNOS): Abcam, #66127; inducible nitric oxide synthase (iNOS); Santa Cruz
Biologicals, Santa Cruz, CA, #651) diluted 1:500 in TBST for 2 h, washed 3 times with
TBST, and incubated with peroxidase-conjugated secondary antibodies (HIF-1α, VEGF,
TBP and β-actin: anti-mouse antibody, Bio-Rad, #170-6516; eNOS and iNOS: anti-rabbit
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antibody, Bio-Rad, #172-1019) in TBST (1:2000 dilution) for 1 h. Membranes were washed
3 times with TBST, developed with chemiluminescent reagents and visualized on film. The
average intensities over the area of the bands were measured using Quantity One software
(Bio-Rad).

RT-PCR analysis of mRNA expression
Total RNA was extracted using the Trizol method (Invitrogen), and 4 μg of RNA were
reverse transcribed into cDNA using random primers (Roche, Indianapolis, IN) according to
manufacturer’s instructions. cDNA strands (0.2 μg) were amplified by PCR using the gene
specific primers listed in Table 1. The reaction was performed by GoTaq Green master mix
(Promega, #M7123) for 30 cycles, each at 95°C for 40 s, 55°C for 40 s and 72°C for 1 min.
The PCR products were visualized on a 1.2 % agarose gel using UV transillumination.

Detection of VEGF or ET-1 by ELISA
Endothelial cell culture medium was collected and concentrations of VEGF or ET-1 in the
medium were determined using ELISA kits from R&D Systems (Minneapolis, MN).
According to manufacturer’s instructions, 100 μl of standard or sample were added to each
well. After incubation at room temperature on a shaker for 2 h, wells were washed 4 times
and then incubated with 200 μl conjugate/detection antibody for 2 h at room temperature on
the shaker. For VEGF detection, the wells were coated with the capture antibody prior to
adding the samples. For ET-1, plates pre-coated with the capture antibody were used. After
streptavidin-HRP was conjugated to target molecules, it was detected by addition of 200 μl
of O-phenylene diamine-H2O2 (Pierce, Rockford, IL) for 20 min. Optical density was
measured at 450 nm using a microplate reader.

Assessment of HIF-1α expression by immunofluorecence
Endothelial cells were fixed in cold acetone for 5 min and washed 3 times with phosphate
buffered saline. After 30 min incubation with 1% BSA in phosphate buffered saline tween to
block nonspecific binding, cells were incubated (4°C) simultaneously with two primary
antibodies (HIF-1α: Abcam #1, 1:200; VWF: Santa Cruz #14014, 1:50) overnight. Cells
were washed then incubated with two secondary antibodies HIF-1α: Alexa Fluor 488 goat
anti-mouse IgG (H+L), Invitrogen #A11001; for VWF: Alexa Fluor 594 goat anti-rabbit IgG
(H+L), Invitrogen #A11012) diluted 1:400 with antibody diluent for 1 h. After stringent
washing with TBST, cells were counter-stained with nuclear staining DAPI solution for 20
min. After washing and drying at room temperature, samples were observed with an
Olympus IX71 microscope.

Statistical analysis
Data from each experiment are expressed as mean ± standard deviation (SD). Comparisons
between control and treatment groups were conducted using a two-tailed Student’s t-test.
For multiple comparisons among control and treatment groups, the one-way ANOVA
followed by Bonferroni’s multiple comparison test for multiple samples were used.
Statistical significance was determined at p<0.05.

Results
Time-dependent effects of hypoxia on cell survival and induction of HIF-1α in cultured
brain endothelial cells

Confluent brain microvascular endothelial cell cultures were subjected to hypoxia (1% O2)
for various periods of time and cell viability measured by MTT assay. The results showed
that hypoxic stress did not affect cell viability within the first 8 h. In contrast, exposure of
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cells to hypoxia for ≥ 8 h evoked significant (p<0.001) cell death (45%). After 8 h of
hypoxia, reoxygenation of cell cultures for an additional 8 h significantly increased cell
death an additional 40% (p<0.01) compared to 8 h hypoxia-only treated cultures.

Exposure of cultured brain endothelial cells to hypoxia caused expression (p<0.01) of
HIF-1α protein within 0.5 h (Fig. 1A). Expression of HIF-1α was highly significant
(p<0.001) at 2 and 4 h of hypoxia. Induction of HIF-1α protein expression was confirmed by
immunofluorescent comparison of cultures exposed to normoxic or hypoxic conditions (4 h)
(Fig. 1B). Hypoxia increase HIF-1α mRNA expression (177%) but not until 8 h.
Reoxygenation for 2 h significantly reduced the increase evoked by hypoxia on protein
(p<0.01) (45%) and mRNA (p<0.05) (61%) levels, respectively.

Exposure of endothelial cells to hypoxia induces VEGF expression and secretion
The effect of hypoxia on the expression and release of VEGF from cultured brain
microvascular endothelial cells was determined by Western blot, RT-PCR and ELISA. Both
cell-associated protein (Fig. 2A) and mRNA (Fig. 2B) levels of VEGF were significantly
increased by hypoxia treatment in a time-dependent manner. Two hours of reoxygenation
restored VEGF expression to control levels at both protein and mRNA levels (Fig. 2).
Similarly, exposure of cultured microvascular brain endothelial cells to hypoxia resulted in
elevated release of VEGF into culture medium compared to normoxic controls at the same
time points (Fig. 3).

Hypoxia induces an increase in ET-1 and a decrease in eNOS
In vascular endothelial cells, the regulation of ET-1 and nitric oxide (NO) is often
coordinated (Boulanger and Luscher, 1990). Hypoxic stress evoked a significant increase of
ET-1 released into culture medium compared to normoxic controls examined at the same
time points (Fig. 3). A two-fold increase in mRNA levels of ET-1 was observed with
hypoxia treatment as early as 0.5 h (Fig. 4A). With 2 h of reoxygenation ET-1 mRNA levels
recovered to that of normoxic controls (Fig. 4A). In contrast to ET-1, 2 h of hypoxia
treatment resulted in a significant (p<0.001) decrease in expression of eNOS (Fig. 4B). Two
hours of reoxygenation was able to partially blunt the reduction in eNOS protein levels but
did not restore expression to control levels (Fig. 4B). Exposure of endothelial cells to
hypoxia did not affect expression of iNOS (Fig. 4B).

Hypoxia induces expression of HO-1 and reduces levels of TSP-2
Exposure of cultured endothelial cells to hypoxia did not affect expression of mRNA for
HO-1 until 8 h (Fig. 5A). At 8 h of hypoxia there was a significant (p<0.001) increase in
levels of HO-1. Reoxygenation (2 h) was able to restore expression of HO-1 to control
levels (Fig. 5A).

A significant (p<0.01) decrease in TSP-2 mRNA expression was detectable at 2 h of
hypoxia and by 8 h the level of TSP-2 was less than 25% (p<0.001) of that demonstrable in
normoxic controls (Fig. 5B). Reoxygenation (2 h) was unable to restore expression of TSP-2
(Fig. 5B). Exposure of endothelial cells to hypoxia did not affect expression of TSP-1 (Fig.
5B).

Hypoxia inhibits vessel formation in cultured brain endothelial cells
Experiments performed to determine the effect of hypoxia on brain endothelial cell vessel
formation in culture showed that endothelial cells seeded onto extracellular matrix form
vessels after 4 (Fig. 6A). In contrast, exposure of cultures to hypoxia significantly inhibited
vessel formation (Fig. 6A). Quantification of stained cultures showed a 94% reduction in
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tube length in hypoxia-exposed endothelial cell cultures compared to control cultures (Fig.
6B).

Discussion
Hypoxic challenge to the brain is a characteristic feature of both acute brain injury and
chronic neurodegenerative diseases (Hacket, 1999; Peers et al., 2009). The chain-of-events,
initiated by hypoxia, which culminate in neuronal dysfunction and/or death remains unclear.
However, a key role for the cerebral endothelium, which is responsible for tightly regulating
the CNS milieu and is a primary sensor of blood oxygen levels, is likely (Madri, 2009).
HIF-1α, a master regulator of the cellular and physiological response to hypoxia (Semenza,
1999), is elevated in brain blood vessels in AD (Grammas et al., 2006). HIF-1α levels are
controlled by multiple transcriptional, post-transcriptional and post-translational
mechanisms (Semenza, 1999). In this study we observe a time-dependent increase in
accumulation of HIF-1α protein inside the nucleus of brain microvascular endothelial cells
challenged with hypoxia; consistent with the stabilization of HIF-1α under hypoxic
conditions (Brahimi-Horn and Pouyssegur, 2009). Brain microvascular endothelial cells
produce more than a 2-fold increase in HIF-1α protein levels compared to controls within a
half hour of hypoxia exposure, suggesting that the initial HIF-1α response to hypoxia is due
to post-translational regulation of its expression. In contrast, there is no change in HIF-1α
mRNA until 8 h, indicating that transcriptional regulation is delayed in brain microvascular
endothelial cells. In the periphery, hypoxia activates HIF-1α which in turn initiates a series
of gene expression changes in vascular endothelial cells that are consistent with
angiogenesis involving VEGF, ET-1, eNOS, and HO-1 TSPs (Kourembanas et al.,1991; Liu
et al., 1995; Strijdom et al., 2009; Sun et al., 2002; Tenan et al., 2000). Therefore, in the
current study we examined the effect of hypoxic challenge on expression of these factors by
cultured brain endothelial cells as discussed below.

VEGF, a multifunctional cytokine, induces endothelial cell migration and proliferation
(Neufeld et al., 1999). Stimulation of VEGF gene expression by hypoxia is thought to be
mediated by the specific binding of HIF-1α to hypoxic response elements in the regulatory
region of the VEGF gene (Liu et al., 1995). In brain microvascular endothelial cells we
demonstrate that HIF-1α stimulates both expression and secretion of VEGF. In the current
study we show a significant increase in VEGF protein precedes an increase in mRNA which
is consistent with studies in other cell types that document post-transcriptional regulation of
VEGF levels (Shenberger et al., 2007). VEGF has been to shown to regulate HO-1
expression and activity in vascular endothelial cells. The cytoprotective protein HO-1 is also
pro-angiogenic (Suzuki et al., 2003). In one study, after 6 h of hypoxia HO-1 mRNA
expression increases about two-fold while HO-1 mRNA levels are not significantly affected.
Here we show an increase in HO-1 mRNA levels, but only after 8 h of hypoxia. Hypoxia-
induced HO-1 expression in bovine aortic endothelial cells has also been documented
(Motterlini et al., 2000; Sun et al., 2002).

ET-1, a vasoconstrictor produced in vascular endothelial cells, is also recognized as an
angiogenic factor (Knowles et al., 2005). In human umbilical vein endothelial cells, hypoxia
induces ET-1 gene expression and secretion (Kourembanas et al., 1991) which is consistent
with the results obtained herein from brain-derived microvascular endothelial cells. ET-1
stimulation by hypoxia is mediated by HIF-1α (Hu et al., 1998) and antagonized by NO
(Blanchard et al., 1992). It is well documented that NO and ET-1 regulate each other in the
vascular endothelium and thus modulate vascular tone as well as response to injury
(Bourque et al., 2011). In the current study, although there is no change in expression level
of iNOS we document a dramatic loss in eNOS protein levels in brain microvascular
endothelial cells after exposure to hypoxia for 2 h. Similarly, Strijdom et al. (2006) reported
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a significant decrease in eNOS levels in rat hypoxic cardiomyocytes exposed to hypoxia.
Our data showing an increase in ET-1 and decrease in eNOS are consistent with literature
that shows differential regulation of these two mediators in vascular endothelial cells. The
mechanism whereby hypoxia reduces eNOS is uncertain; however, it has been reported that
hypoxia decreases eNOS at the message level by inducing changes in transcription kinetics
and stability of eNOS mRNA (McQuillan et al., 1994). Our data indicate that hypoxia can
also reduce eNOS at the protein level. These data are consistent with what has been
published in human coronary artery and microvascular endothelial cells (Loboda et al.,
2006; Olszewska-Pazdrak et al., 2009;). Finally, we examined expression of TSP-1 and
TSP-2, important physiological inhibitors of angiogenesis (Vailhé and Feige, 2003), and
find that in brain microvascular endothelial cells hypoxia decreases TSP-2 gene expression
but does not affect expression of TSP-1. Taken together, these data demonstrate a pro-
angiogenic shift in brain endothelial cells exposed to hypoxia in vitro. The increased
expression of pro-angiogenic factors and the decrease in angiogenic inhibitors favor the
formation of new blood vessels. However, our data indicate that despite this pro-angiogenic
phenotypic shift in brain endothelial cells, vessel formation is inhibited by hypoxia. In our
study, culture of brain-derived endothelial cells on a cellular matrix that favors angiogenesis
results in tube formation by 4 h. In contrast, in cultures exposed to hypoxia formation of
tubes is inhibited. Quantitation of tube formation length shows significantly (p<0.001) less
tube formation in hypoxia-exposed cultures compared to normoxic control cultures. These
data are in contrast to considerable literature that documents an increase in angiogenesis in
response to hypoxia (Yamakawa et al., 2003; Tang et al., 2004). However, an angiogenic
response to hypoxia is not a universal finding, as some studies demonstrate that hypoxia
inhibits vessel/tube formation (Olszewska-Pazdrak et al., 2009). In this regard, Isner (2002)
finds that in patients with myocardial ischemia, angiogenic responses to hypoxia are
defective or absent. In a study where human coronary endothelial cells are exposed to 1%
O2, similar to the conditions of our study, there is a decrease in both basal and VEGF-
mediated tube formation as well as in active eNOS (Olszewska-Pasdrak et al., 2009).

The data obtained in the current study may explain, in part, some paradoxical findings
regarding hypoxia in the AD brain. Cerebral hypoperfusion is one of the major clinical
features in AD and likely contributes to the clinical and pathological manifestations in this
disease (de la Torre, 2000; Kalaria, 2000; Miklossy, 2003). Genome-wide expression
profiling in the AD brain has identified a marked upregulation of genes that promote
angiogenesis (Pogue and Lukiw, 2004). We have shown AD brain microvessels express or
release inflammatory proteins, including thrombin, VEGF, angiopoietin-2, tumor necrosis
factor-α, transforming growth factor-β, interleukin (IL) IL-1β, IL-6, IL-8, monocyte
chemoattractant protein-1, matrix metalloproteinases, and integrins (Grammas and Ovase,
2001; 2002; Grammas et al, 2006, Thirumangalakudi et al, 2006; Yin et al., 2010), all of
which have been implicated in angiogenesis. Despite increases in several pro-angiogenic
factors in the AD brain, evidence for increased vascularity in AD is lacking. On the
contrary, it has been suggested the angiogenic process is delayed and/or impaired in aged
tissues, with several studies showing decreased microvascular density in the AD brain (Buee
et al., 1994; 1997; Edelber and Reed, 2003; Paris et al., 2010,). Therefore, lack of vessel
formation despite the increase in pro-angiogenic factors evoked by hypoxia suggests these
angiogenic factors are not sufficient for the completion of the angiogenic process and the
development of new vessels by brain endothelial cells. Further work is needed to determine
what factors/conditions prevent hypoxia-induced angiogenic changes from culminating in
the formation of new brain blood vessels.

Our results showing that brain-derived endothelial cells respond differently to hypoxia than
most endothelial cells derived from peripheral vessels may reflect the functional
heterogeneity of endothelial cells (Aird, 2003). Brain endothelial cells are highly
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differentiated and specialized in their blood-brain barrier function (Zlokovic. 2008;
Grammas et al., 2011). Although the effect of astroglial-derived paracrine factors on
maintenance of blood-brain barrier properties has been extensively documented (Abbott et
al., 2006), other data also indicate there is an intrinsic endothelial identity, depending on
vascular bed origin, that is stable and heritable (Aird, 2003; Chi et al., 2003). Indeed, there is
evidence certain site-specific properties of endothelial cells are epigenetically programmed
such that their maintenance is no longer dependent on signals from the extracellular milieu.
For example, DNA microarray studies of multiple passaged endothelial cells cultured from
different sites reveal differences in transcriptional profiles (Chi et al., 2003). The brain
vasculature appears to be especially sensitive to hypoxia and oxidative stress. This
sensitivity may in part be due to higher levels of NAD(P)H-oxidase in brain endothelial cells
compared to endothelial cells in peripheral vessels (Closhen et al., 2010). In this regard, the
inflammatory protein CRP evokes NAD(P)H-oxidase dependent functional derangements in
brain- but not aorta-derived endothelial cells (Closhen et al., 2010). In addition, the higher
concentration of mitochondria in cerebrovascular brain endothelial cells relative to other
endothelia (Oldendorf et al., 1977) may render them more susceptible to the effects of
hypoxia.

The angiogenic factors produced by brain endothelial cells in response to hypoxia have
pleiotropic effects in the brain and likely important consequences for brain function. For
example, in the brain HO-1 is a mediator with both beneficial and deleterious properties.
The mechanisms responsible for excessive iron deposition and mitochondrial insufficiency
in the aging and degenerating nervous system remain poorly understood; HO-1 has been
implicated in this process (Schipper et al., 2009; Schipper, 2011). In rat astroglia transfected
with the human HO-1 gene, mitochondrial iron trapping is abrogated by HO-1 inhibitors.
Furthermore, HO-1 immunoreactivity is enhanced greatly in neurons and astrocytes of the
hippocampus and cerebral cortex of AD brains as well as in the substantia nigra in
Parkinson’s disease (Schipper, 2000). These results suggest HO-1 over-expression
contributes to the pathological iron deposition and mitochondrial damage documented in
these neurodegenerative disorders.

VEGF has direct neurotrophic effects and can protect neurons from exogenous injury
reducing neuronal cell death in vitro evoked by hypoxia, glutamate or serum-deprivation
(Tolosa et al., 2008; Tolosa et al., 2009; Wick et al., 2002). In contrast to these
neuroprotective effects, VEGF overexpression is associated with many CNS disorders. In
the AD brain, VEGF is deposited in the walls of intraparenchymal vessels as well as in
clusters of reactive astrocytes (Kalaria et al., 1998; Thirumangalakudi et al., 2006). In
addition, intrathecal levels of VEGF in AD are related to clinical severity and to intrathecal
levels of Aβ (Tarkowski et al., 2002). Because VEGF has a potentiating effect on CNS
inflammation and increases in vascular permeability, continuous upregulation of VEGF at
sites of brain injury may drive chronic neuroinflammation. Similarly, ET-1 has been shown
to be both neuroprotective as well neurotoxic (Luo and Grammas., 2010). Whether ET-1 is
neurotoxic or neuroprotective may depend on the expression of other inflammatory
mediators as well as the timing of exposure. In this latter regard, we have shown that the
ET-1 significantly increases neuronal survival when cells are challenged with oxidative
stress (H2O2) or thrombin, but that this neuroprotective effect requires pretreatment (Luo
and Grammas., 2010). The angiogenic factors produced by brain endothelial cells in
response to hypoxia have pleiotropic effects in the brain. A thorough understanding of the
identity, regulation and function of these proteins could shed light on the basis for cell
dysfunction and death in the brain in conditions characterized by cerebral hypoxia.
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Conclusions
The results of the current study indicate that despite a shift toward a pro-angiogenic
phenotype hypoxia inhibited vessel formation in brain endothelial cells. These results
suggest that in brain endothelial cells expression of angiogenic factors is not sufficient for
the development of new vessels. Further work is needed to determine what factors/
conditions prevent hypoxia-induced angiogenic changes from culminating in the formation
of new brain blood vessels and what role this may play in the pathologic changes observed
in AD and other diseases characterized by cerebral hypoxia.
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Highlights

• Effects of hypoxia on brain microvascular endothelial cells (ECs) were
examined

• Hypoxia resulted in the increased expression and release of VEGF protein and
mRNA

• Increased ET-1 was released into the culture medium under hypoxic conditions

• Hypoxia resulted in a decrease in expression of eNOS as well

• This study suggest hypoxia evokes a pro-angiogenic phenotype in ECs
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Figure 1.
Confluent brain microvascular endothelial cell cultures were subjected to hypoxia (1% O2)
for various periods of time. (A) Nuclear proteins were extracted and resolved using SDS-
PAGE. HIF-1α or TBP protein was detected by Western blot probed with corresponding
antibodies. Data in the bottom panel are the means ± SD of 3 experiments and expressed as
percent of untreated control. **p<0.01, ***p< 0.001 vs. 0 h. (B) After exposure to normoxia
(C) or 1% O2 hypoxia (H) for 4 h, brain microvascular endothelial cell cultures were
processed for immunofluorescence. Cultures were fixed, incubated with antibodies to VWF
and HIF-1α and counter stained with DAPI.
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Figure 2.
Confluent brain microvascular endothelial cell cultures were subjected to hypoxia (1% O2)
for various periods of time. (A) Total protein was extracted and resolved using SDS-PAGE.
VEGF or β-actin protein was detected by Western blot probed with corresponding
antibodies. Protein or mRNA levels of VEGF were determined by normalizing the densities
of their bands to those of β-actin. (B) Total RNA was extracted, reverse transcribed and
amplified with gene specific primers for VEGF or β-actin. Data in the bottom panel are the
means ± SD of 3 experiments and expressed as percent of untreated control. 2HR: 2 h
hypoxia followed by 2 h reoxygenation. **p<0.01, ***p <0.001 vs. 0 h.

Luo et al. Page 16

Microvasc Res. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Confluent brain microvascular endothelial cell cultures were subjected to hypoxia (1% O2)
for various periods of time. ELISA was performed to determine VEGF or ET-1
concentration (pg/ml) in the culture medium. The amount of induced VEGF or ET-1 by
hypoxia was compared to normoxia control cultures at the same time points. Results are
means ± SD of 3 experiments performed in triplicate. 2HR: 2 h hypoxia followed by 2 h
reoxygenation. **/++p<0.01, ***/+++p <0.001 vs. 0 h.
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Figure 4.
Confluent brain microvascular endothelial cell cultures were subjected to hypoxia (1% O2)
for various periods of time. (A) Total RNA was extracted, reverse transcribed and amplified
with gene specific primers for ET-1 or β-actin. (B) Total protein was extracted and resolved
using SDS-PAGE. eNOS or β-actin protein was detected by Western blot probed with
corresponding antibodies. Expression levels of ET-1 or eNOS were determined by
normalizing the densities of their bands to those of β-actin. Data in the bottom panel are the
means ± SD of 3 experiments and expressed as percent of untreated control. 2HR: 2 h
hypoxia followed by 2 h reoxygenation. *p<0.5, **p<0.01, ***p<0.001 vs. 0 h; ++p<0.01
vs. 2 h.
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Figure 5.
Confluent brain microvascular endothelial cell cultures were subjected to hypoxia (1% O2)
for various periods of time. Total RNA was extracted, reverse transcribed and amplified
with gene specific primers for HO-1 (A); TSP-1 or TSP-2 (B). mRNA levels of HO-1,
TSP-1, or TSP-2 were determined by normalizing their band densities to those of β-actin.
Data in the bottom panel are the means ± SD of 3 experiments and expressed as percent of
untreated control. 2HR: 2 h hypoxia followed by 2 h reoxygenation. **p<0.01, ***p<0.001
vs. 0 h.
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Figure 6.
(A) Brain microvascular endothelial cells were seeded onto the layer of matrix at 105 cells/
well, and maintained in DMEM supplemented with 10% FBS. Plates were incubated at 21%
O2 (Control) or 1% O2 (Hypoxia) at 37°C for 4 h and then stained with fluorescent dye
Calcein for 30 min. Tube-like structures were visualized and captured using Olympus IX71
microscope at 10x magnification. (B) Tube length was analyzed and quantitated using image
processing software (ImageJ) available from the National Institutes of Health.
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Table 1

Primers

Gene Orientation Sequence Amplicon

HIF-1α Left primer TGCATCTCCACCTTCTACCC 384 bp

Right primer CTGCTCCATTCCATCCTGTT

VEGF Left primer GCCCATGAAGTGGTGAAGTT 360 bp

Right primer TTTCTTGCCCTTTCGTTTTT

ET-1 Left primer AGAAACAGCTGTCTTGGGAGCAGA 466 bp

Right primer TGCTGATGGCCTCCAACCTTCTTA

HO-1 Left primer TGCTCGCATGAACACTCTG 123 bp

Right primer TCCTCTGTCAGCAGTGCCT

TSP-1 Left primer TTCCTGTTGCATGTGTGTGGAAGC 696 bp

Right primer AAGGGTGAGAAGGACGTTGGTTGA

TSP-2 Left primer ATGAGTGTGCTGTGGTCGCAGATA 412 bp

Right primer TCCTGCCCAGAATTTGGCAGTTTG

β-actin Left primer TGTCACCAACTGGGACGATA 165 bp

Right primer GGGGTGTTGAAGGTCTCAAA
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