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Abstract In a recent article in this journal (Fairchild,
MacKinnon, Taborga & Taylor, 2009), a method was
described for computing the variance accounted for by
the direct effect and the indirect effect in mediation
analysis. However, application of this method leads to
counterintuitive results, most notably that in some
situations in which the direct effect is much stronger
than the indirect effect, the latter appears to explain much
more variance than the former. The explanation for this is
that the Fairchild et al. method handles the strong
interdependence of the direct and indirect effect in a
way that assigns all overlap variance to the indirect
effect. Two approaches for handling this overlap are
discussed, but none of them is without disadvantages.
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In the 25 years since the seminal article by Baron & Kenny
(1986), mediation analysis has become an indispensable
part of the statistical toolkit for researchers in the social
sciences. Although this has given rise to an extensive
literature (for an overview, see MacKinnon, 2008), measures
of effect size in mediation analysis appear to have lagged
behind. In a recent article, Fairchild et al. (2009) discussed
the limitations of previous effect size measures, and
proposed R squared effect-size measures as a viable
alternative. In the present study, I will show that these R
squared measures suffer from a serious problem, an
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asymmetric treatment of the direct and indirect effect
that can not be justified on normative grounds. I will
indicate the source of this problem (assigning all
overlap between direct and indirect effect to the indirect
effect), and provide some solutions that may provide
some help to researchers in deciding how to handle this
interdependence in variance explained by the direct and
indirect effect.

R squared measures for the direct and indirect effect

In order to keep the conceptual points of the present article
as simple and clear as possible, I will limit myself to the
three-variable case with one dependent variable (Y), one
independent variable (X), and one mediator (M). Also for
simplicity (because it removes standard deviations from all
formulas), my description will be in terms of standardized
regression weights (betas).

The total, the direct, and the indirect effect

The fotal effect (5,,) of X on Y is given by fyy , the
regression weight in a regression analysis in which Y is
predicted by X only. The direct effect (B4;,) of X on Y is
given by Byx,s, the beta of X in a regression analysis in
which Yis predicted by both X and M. The indirect effect
(Bina) of X on Yvia M is given by the product 5y,x Byas x»
in which 3,y is the beta in a regression in which M is
predicted by X only, while 3y, x is the beta of M in a
regression analysis in which Y is predicted by both X and
M (Fig. 1).

Following these definitions and using standard
equations from ordinary least squares regression analysis
(e.g. Cohen, Cohen, West and Aiken, 2003), the total,
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Fig. 1 The total, the direct, and the indirect effect

direct, and indirect effect can be computed from the
intercorrelations of Y, X, and M as follows.

Biot = Byx = rwx (la)
ryx — mxtym
Bair = Byxm = 2. (1b)
—Tux
rax (v — Taaxyx)
Bina = BuxByux = 1 > (1c)
—Tux

As described in almost all texts and articles on mediation
analysis (e.g. MacKinnon, 2008), and as can be verified by
adding the right terms of Egs. 1b and lc, the total effect is
the sum of the direct effect and the indirect effect.

ﬁtot = ﬂdir + :Bind (2)

Effect size

Perhaps the most commonly used measure of effect size
in mediation analysis is the proportion mediated (PM:
Alwin and Hauser, 1975; MacKinnon and Dwyer, 1993),
which simply gives the (direct or indirect) effect as a
proportion of the total effect: PMy,. = B / B and
PM,g = Bina / Biw: - As demonstrated by simulation
studies (MacKinnon, Warsi and Dwyer, 1995), the
proportion mediated suffers from instability and bias in
small samples, so it needs large samples (N>500) to
perform well. In the light of these limitations, investigat-
ing alternative effect size measures such as R squared
measures seems to be a worthwhile effort (for a more
complete overview of effect size measures in mediation,
see Preacher and Kelley, 2011).

Given the previous definitions of the total, the direct, and
the indirect effect, how much variance is explained by
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each? The total amount of Y variance explained by X (i.e.
the variance explained by the total effect), RZ , is equal to
17y, the squared correlation between Y and X.

Everything described until this point is generally
accepted and completely uncontroversial. What’s new in
Fairchild et al. (2009) is a procedure to decompose this
total amount of variance explained into two parts, one for
the direct effect and one for the indirect effect (Fig. 2).
According to these authors, R, , the variance explained by
the direct effect, corresponds to the Y variance that is
explained by X but not by M, whereas R? ,, the variance
explained by the indirect effect, corresponds to the
variance that is shared by Y, X and M together. Defined
this way, the variance explained by the direct effect
corresponds to the squared semipartial correlation
ré( XM and the variance explained by the indirect effect
is the difference between total and direct effect variance
explained. Of these three measures, the first two can only
be positive or zero, but as noted by Fairchild et al. (2009),
it is perfectly possible that the third, B2, ,, is negative.'

L

thot = r%’X (38.)
2
ryx — rymrmx
Rfiir = r?’(X.M) = (3b)
WJ1 =72
MX
R%nd = thot - Riir = ”%'X - FZY(X.M) (3¢)

At first sight, this way of decomposing the total variance
explained into a direct and an indirect part has very
attractive features in comparison to proportion mediated.
First, thinking in terms of variance explained is very
common among social scientists (so common, actually, that
if one uses the proportion mediated instead, one very often
has to explain to one’s colleagues that this proportion does
not refer to variance explained). Second, the Fairchild et al.
decomposition of variance explained allows for easy
computation, using only well-known statistical concepts.
Third, as shown by simulation studies, the proposed
measures have nice statistical properties like stability and
acceptable bias levels (Fairchild et al., 2009). Fourth, and

! Actually, Fairchild et al. (2009) used commonality analysis (Mood,
1969; Seibold and McPhee, 1979) for the decomposition of total effect
variance. This has the advantage of allowing generalization to cases
with two or more independent variables and/or mediators, but is not
necessary for the more conceptual discussion of the single predictor -
single mediator case to which the present article is limited, so I will
not follow them in this regard.
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Fig. 2 Partitioning of total variance explained over direct, and
indirect effect according to Fairchild et al. (2009)

perhaps most important, decomposing Y variance in this
way appears to be intuitively clear. The conceptualization of
variance explained by the direct effect is completely in
accordance with how according to all textbooks (e.g. Cohen
et al,, 2003) we should compute the unique variance
explained by a predictor in regression analysis. In addition,
the idea that variance explained by the indirect effect is the
variance shared by all three variables together (predictor,
mediator, and dependent variable) also comes as a very
natural one. If the part of the common variance of X and Y
that is not shared by M refers to the direct effect, what could
be more natural than assuming that the remaining part of
the common variance of X and Y, the part that is also shared
by M, represents the indirect effect?

In a recent review of effect size measures in mediation,
Preacher and Kelley (2011, p. 100) concluded that the
Fairchild et al. measure “... has many of the characteristics
of a good effect size measure: (a) It increases as the indirect
effect approaches the total effect and so conveys informa-
tion useful in judging practical importance; (b) it does not
depend on sample size; and (c) it is possible to form a
confidence interval for the population value.” On the
negative side, these authors noted that because of the
possibility of negative values, the R squared measure is not
technically a proportion of variance, which limits its
usefulness. The final verdict was that “... it may have
heuristic value in certain situations” (Preacher and Kelley,
2011, p. 100). In the next section, I will address a
completely different problem with the R squared measure,
which is not dependent on negative values (although it may
be aggravated by them).

Problems

Problems started with a counterintuitive example, that
proved to be a special case of a more general problem.

A counterintuitive example

Applying the R squared effect-size to an example in a
course that I was teaching led to very counterintuitive
results. In this course example (V= 85) about the effect
of social support at work (X) on depression (Y) with
active coping (M) as mediator, zero-order correlations
were ryy = —.336, ryx = .345, and ry,, = —.391, leading to
the following standardized estimates for the total,
direct and indirect effects: f,, = —.336; B4, = —.228;
Sina = —-108. In terms of proportion mediated, the direct
effect (PM;,. = .679) was more than twice as strong as the
indirect effect (PM,,; = .321). Given such a large difference
in favor of the direct effect, one would definitely expect
that the direct effect would explain more variance of the
dependent variable than the indirect effect. However,
computing the R squared measures from Fairchild et al.
(2009) led to R2, = .046 and R2, = .067, so in terms of
variance explained the indirect effect appeared to be
much stronger than the direct effect. This reversal of
effect size from one effect being twice as large than the
other in terms of proportion mediated, but much smaller
in terms of R squared effect-size is by no means trivial. At
the time I could only say to my students that I did not
understand this discrepancy between proportion mediated
and proportion of variance explained, but that I would try
to find out. The present article is a direct consequence of
that promise.

Asymmetry of direct and indirect effect

A first step in clarification is to be more specific about
what we should expect from an R squared effect size
measure. To my opinion, one should expect an R squared
measure to be symmetric in the sense that a direct and
indirect effect of the same magnitude (f3.) should lead to
the same amount of variance explained. After all, if a one
standard deviation gain in X leads to an average gain of /5.
standard deviations in ¥, there is no reason why it should
make a difference for variance explained whether this gain
is due to the direct or to the indirect effect. Since the
change in Y as a function of X is identical in both cases,
and since change in Yis all that matters (or should matter)
for Y variance explained, one would expect amount of
variance explained to be identical.

If this reasoning is correct, one would expect that
exchanging the values for the direct and indirect effect
would lead to a simple exchange of the R square change
measures. In order to check this, the course example was
modified. By keeping ryy and ryy at —.336 and .345
respectively, but changing ry,, to —.697, a reversal of the
original values for the direct and indirect effect was
accomplished with . and f(;,; equal to —.108 and —.228
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respectively. However, the R squared measures in this
modified example were not the reverse of those in the
previous analysis (.046 and .067). Instead, the actual
values were R2, = .010 and R? , = .103, so whereas in
terms of proportion mediated the indirect effect is now
about twice as strong as the direct effect, in terms of
variance explained it is more than ten times as strong. In a
last example, the direct and indirect effect were made
identical. Keeping ryy and ryx at —.336 and .345
respectively, but changing ry;, to —.545, led to identical
betas for the direct and indirect effect, ;- = ;g = —.168,
but the obtained R squared change measures were R, =
.025 and R? , = .088. At least in these three examples, the
general pattern seems to be that the R squared measures by
Fairchild et al. (2009) are not symmetric, but strongly
biased in favor of the indirect effect.

In hindsight, even without these examples we might
have known that the R squared measures for the direct and
indirect effect can not always be symmetric, because as
mentioned by Fairchild et al. (2009), R2, will always be
positive or zero, whereas R2,; may also be negative. When
R2 , is negative, exchanging the betas for the direct and
indirect effect can never lead to exchanging their R squared
measures, because R%, can not become negative. The
general question is how it is possible that identical direct
and indirect effects, with identical effects on Y, can be
completely different in terms of R squared effect size?

Explanation and solutions
Direct and indirect effect are not independent

A look at the equations and illustrations in the Fairchild
et al. (2009) article leaves one with the impression that
total variance explained can unequivocally be divided
over the direct and the indirect effect, as if those two
effects are completely independent. As will be argued
below, this is not true. The key to understanding the
divergent results for proportion mediated versus variance
explained measures and for the asymmetry of the direct
and indirect effect, is that the direct and indirect effect
are heavily interdependent.

Although the mediator M is crucial for estimation of the
direct and indirect effect, once the relevant path coefficients
have been estimated, both direct and indirect effect are a
function of the independent variable X only. For computing
variance explained, the situation is the same as if we had a
single predictor with a single regression weight that for
some reason can be split into two parts. For example, if we
predict income (Y) from the number of hours worked (X)
for a group of laborers with the same hourly wages and the
same hourly bonus, we are formally in the same situation as
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with the direct and indirect effect. Here too we have an
overall effect that is just the sum of two separate effects
(regression weights) for the same independent variable:
Bror = Buages + Bronus- 1f we try to answer the question how
much variance of income is explained by wages and how
much by bonus, formally our problem is exactly the same
as when we try to predict how much of the variance of the
total effect is due to the direct effect and how much to the
indirect effect.

The fact that (once 3, and /3, have been estimated) the
direct and indirect effect both are a function of the same
predictor and nothing else, makes them heavily interde-
pendent. In fact, they are perfectly correlated, because
each individual’s predicted gain due to the indirect effect
will always be 3,4/ (a4, times his or her gain due to the
direct effect. The consequences of this become clear when
we write the total proportion of variance explained as a
function of the direct and indirect effect:

thot = ﬁ?at = (ﬁdir + ﬁind)z = ﬁfﬁr + ﬂzznd + 2ﬂdirﬁind (4)

As can be seen in eq. 4, total variance explained is
now divided into three parts, of which the first two can be
unequivocally related to the direct (ﬁfm) or indirect (ﬂfnd)
effect, but the third (28,,8;,4) 1s a joint part, for which
ascription to either direct or indirect effect is not
straightforward. This joint part may be positive or
negative, depending on whether f3,;, and f3;,; are of same
or opposite sign.

Two ways of dividing variance over direct and indirect
effect

Given these three variance components, there are at least
two defensible ways to divide variance explained over the
direct and indirect effect, but neither of them is without
disadvantages.

Unique approach Perhaps the most “natural” solution is
just taking B, and B2, as variance explained for the direct
and indirect effect respectively.

2 2
Rdir(U) = ﬁdir

(5a)

thnd(U) = ﬁz?nd (5b)

These squared betas refer to the proportion of variance
explained by each effect if it were completely on its own
(i.e. if the other effect were zero). This unique approach
is roughly comparable with the Type III sum of squares
approach of partitioning variance (also known as the
unique or regression approach: Stevens, 2007) in
ANOVA. In our unmodified example, this leads to
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proportions of variance explained of (—.228)% = .052 and
(—.108)* = .012 for the direct and indirect effect respec-
tively, while 2 x (—.228) x (—.108) = .049 is not uniquely
explained.

An advantage of this unique approach is that it has a
clear causal interpretation: The proportion of variance
explained by the effect if the other effect did not exist or
was blocked somehow. Furthermore, computing variances
explained in this way will never lead to negative variances
or to order reversals between proportion mediated and
variance explained as in the examples, and more generally,
will not be asymmetric in its treatment of the direct and the
indirect effect. Disadvantage is that this way of computing
variance completely ignores the joint part 2/3,,[;,,, Which
may add or subtract a large amount of variance to or from
the total effect.”

Hierarchical approach 1f we have reason to view one effect
(which I will call the primary effect) as more fundamental
or more important than the other (the secondary effect), we
could use a hierarchical approach. For the primary effect we
use the variance explained by the effect on its own as in the
unique approach, and for the secondary effect we use the
additional variance explained over and above what was
explained by the primary effect.

2 2
primary(H) — prrimary (63)
Rgecondary(H) =5 gecondary + 2ﬁprimaryﬁsecondary (6b)

Because the secondary effect gets the joint (overlap)
variance, its variance explained may be negative when
direct and indirect effect are of opposite sign. This
hierarchical approach is roughly comparable with the Type
I sum of squares approach (also called the hierarchical
approach) of partitioning variance in ANOVA (Stevens,
2007). If we take the direct effect as primary in our
unmodified example, we get a slightly different version of
our original, counterintuitive results: .052 and .061 for the
direct and indirect effect respectively. If we take the indirect
effect as primary, we get very different values: .101 (direct)
and .012 (indirect).

The main advantages of the hierarchical approach are
that all variance explained is neatly and uniquely divided
over the direct and the indirect effect, and that both effects
have a clear interpretation, namely variance explained by
the effect if it were on its own (primary), and additional
variance explained over and above what was explained by
the primary effect (secondary). However, these advantages

2 The joint part 28,8, can take values between —(,Bfﬁr +ﬁ?nd)
(if B = —Bina): and By, + By GF Buir = Bina):

only apply when we have good reasons for deciding
which effect should be treated as primary, and which as
secondary. An example of such good reasons is if one of
the effects is the intended one and stronger than the other
effect, which is supposed to represent only relatively
minor side effects. One might think that the direct effect
is more suitable for the role of primary effect, but this is
not necessarily so. For example, if a psychotherapy is
intended to reduce psychological complaints by encouraging
self-efficacy, it makes sense to treat the indirect effect
(from therapy via self-efficacy to psychological com-
plaints) as primary, and the direct effect (which in
addition to a possible “real” direct effect also represents
all indirect effects for which the possible mediators have
not been measured) as secondary. Furthermore, as will be
argued in next section, when the direct and indirect effect
are of opposite sign, it makes sense to treat the effect
with the largest absolute size as primary. The main
disadvantage of the hierarchical approach is that often
there are no decisive theoretical or statistical arguments
for deciding which effect is the primary one.

Negative variance explained

An often noted problem in texts on regression analysis (e.g.
Cohen et al., 2003) in regard to graphical displays of
variance explained like Fig. 1, is that the value of the
overlap area of all three variables can be negative, whereas
both area and variance are squared entities, which should
always be equal or larger than zero. Although this
possibility of negative variance/area is not a problem
for regression analysis, since the reasons for it are well-
understood, it ruins the area-represents-variance metaphor
that gives these kinds of figures their heuristic value.

Here I will present a different graphical approach, that
may provide a more helpful illustration of negative variance
explained, using squares instead of circles and taking the
signs of the two betas on which the total effect is based into
account (Fig. 3). In what follows, the two betas will just be
called 3, and f3,, because for the present purpose it does not
matter which one represents the direct or the indirect effect.
There are two interesting cases here, dependent on whether
the two betas have the same sign (case 1) or different signs
(case 2).°> Only in case 2 will we be confronted with
negative variance explained.

Case 1 (same signs) Because total variance explained is

equal to B2, = (B + B,)%, it is given by the area of the
large square with sides 8; + 3, in Fig. 3a. The two squares

3 Of course, there is also the possibility that one or both betas are zero,
but about this I have nothing of interest to say.
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Fig. 3 An alternative picture of
the partitioning of total variance
explained over the direct and
indirect effect (and their
overlap), without negative area

,Bl"'ﬁz

A

A

B B+ B ’ -5

B +5

Case 1. B, and 3, have same sign
(here both positive)

in the lower left and upper right of the large square, with
areas ﬂf and /3% respectively. give the variance explained for
effect 1 and 2 for the (here clearly hypothetical) situation in
which the other effect were zero. The two rectangles in the
upper left and lower right within the large square, both with
area f3, /3,, together represent the overlap part 2/3, 3,, which
we can assign to neither effect (unique approach), or to the
secondary effect only (hierarchical approach).

Case 2 (different signs) If direct and indirect effect have
opposite signs, the effect with largest absolute value will
always explain more variance than the total effect. This is
illustrated in Fig. 3b, which looks very much like Fig. 3a,
but now the large square has area ,B% and refers to the
variance explained by the largest of the two effects. The
variance explained by the total effect is represented by the
smaller square with area (8, + f,)” in the lower left within
the large square. Here a hierarchical interpretation with the
largest effect as primary is the most natural way to describe
what happens to variance explained. It goes like this. The
proportion of variance explained by effect 1 on its own (i.e.
if 3, were zero) would be ,B% (the large square), but because
effect 2 makes f3,,, smaller than (3, total variance explained
is represented by the smaller white square within the large
square. One way of describing how to get the area of this
small square from the area of the large square is that we
have to subtract from the area of the large square (B7) the
areas of the two rectangles ABCD and DEFG (both —3,3,),
but because the square CDEH is part of both rectangles, its
area (f3) is subtracted twice, so to compensate for that, we
have to add this area once. This leads to the subtraction
Bl — (=2B\B, — B5) = B +2B1B, + B3, which neatly
equals ,6'[20[. In this graphical interpretation of variance
explained, there is never negative area, but only subtraction
of one positive area from another.
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Case 2. B, and 3, have different signs
(here By positive and || > 13,1)

Incidentally, this interpretation only works well if we take
the largest effect as primary in our hierarchical approach.
Algebraically, it makes no difference whether we start from ﬁf
or from ﬂ%, but geometrically, I do not see an intuitively
revealing picture that clarifies how to get from the small
square with area 33 to the larger square with area (5, + B,)°.
Putting into words how exactly to get from so much variance
explained by one effect to even more variance explained by a
total effect that is in the opposite direction, is not easy either.
Therefore, if the direct and indirect effect are of opposite
sign, the most intuitively appealing approach is hierarchical,
with the largest effect as primary.

Comparison with the Fairchild et al. approach

The method presented by Fairchild et al. (2009) can be seen
as a slightly modified version of the hierarchical approach
in the present article. Their R squared measure for the direct
effect, the squared semipartial correlation (Eq. 3b), is
closely related to the squared beta for the direct effect
(which is used in the hierarchical approach when the direct
effect is taken as primary), because it follows from Egs.
(1b) and (3b) that:

r?’(X.M) = (1 - r)Z(M)ﬂfm (7)

The R squared measure for the indirect effect gets all that
remains of the total variance explained after removing
direct effect variance. This means that in the Fairchild et al.
approach the direct effect is taken as primary and the
indirect effect as secondary. As a consequence, the indirect
effect always gets the joint part 28,3, so it will be
favored in comparison to the direct effect when this joint
part is positive, which is when both effects have the same
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sign. When the joint part is negative, the indirect effect will
be disfavored, possibly leading to negative variance
explained. These are the reasons why in our examples (in
which both effects always had the same sign) the direct
effect was much lower than expected. It also explains why
the indirect effect, but not the direct effect can become
negative.

Modifying the Fairchild et al. approach

As argued previously, the problem in the Fairchild et al.
approach is not in the direct effect measure (the squared
semipartial correlation), which taken on its own makes
perfect sense, but in the asymmetry between direct and
indirect effect measures. Therefore, instead of the previous
decomposition of equation (4) into different parts, an
alternative approach is retaining the Fairchild et al. direct
effect measure, but changing the indirect effect measure in a
way that makes it symmetrical with the direct effect
measure.

This alternative approach goes in two steps. First, the ¥
variance that is uniquely explained by M is given by the
squared semipartial correlation r?,(MX). However, not all
this variance can be attributed to the indirect effect, because
M is only partially explained by X. Second, multiplying
r2Y (Mx)? the proportion of Y variance uniquely explained by
M, with 73,,, the proportion of M variance explained by X,
gives the proportion of Yvariance that is uniquely explained
by X via M.

R?nd = r%’(MX)rlzl/lX (8)

As a product of two squared numbers, R2 , will never be
negative. And because 73, = f2,;, and because it follows
from exchanging X and M in eq. 7 that ”?/(Mx) =
(1 — rJZWX)ﬂZYM_ > €q. 8 can be rewritten as follows.

and = (1 - riu)ﬂ%MxﬁiM = (1 - rﬁx)ﬁfnd 9)

Comparing eqs. 7 and 9 reveals that now the direct and
indirect effect are treated in a completely symmetrical
way. For both effects, the unique proportion of variance
explained is computed by multiplying the squared beta
with (1 —r},), so identical betas for the direct and
indirect effect lead to identical R squared measures of
variance explained.

As in the approach based on squared betas, there is a
joint part of variance explained, which now equals
2BuirBina + iy (,B(ziir + ﬁfnd). In comparison to the squared
beta approach, this joint part is more positive if the two
effects are of the same sign, and less negative if they are of
opposite signs (unless 7y, = 0, in which case it makes no
difference). As before, we can use the unique or the
hierarchical approach for assigning the three components

of variance explained to the direct and the indirect effect,
with the same advantages and disadvantages as discussed
before. The difference is that in the adjusted Fairchild et al.
(2009) approach, the unique contribution of an effect is
corrected for the other effect as it is in the present data,
whereas in the approach based on squared betas the unique
contribution of each effect is computed for the more
hypothetical situation if the other effect would be zero.

After having derived this measure, I found out that
although not described in Fairchild et al. (2009), a
closely related measure was mentioned in MacKinnon
(2008, p. 84, equation 4.6) as one of three measures
requiring more development. The only difference is that
instead of a semipartial correlation with X partialled out
from M only, as in the present article, MacKinnon (2008)
used a partial correlation of Y and M with X partialled out
from both Y and M, leading to R: , = r3,, 71,y - The effect
on interpretation is that we are addressing the same
variance in the two measures, but as a proportion of a
different total in each, namely all Y variance (semipartial)
versus Y variance not shared by X (partial). Both measures
are equally valid as long as we are clear about from which
total we take a proportion, but to my opinion, using the
semipartial is preferable over the partial, because it is
easier to understand, measures the direct and indirect
effect as proportions of the same total instead of different
totals, and is completely symmetric in its treatment of the
direct and indirect effect.

Discussion and conclusions
Limitations

Three possible limitations of the present study should
be discussed. First, one might wonder whether the
restriction of discussing R squared effect sizes only in
relation to standardized effects (betas instead of b’s)
does limit the generality of the results. It does not,
because R squared effect size measures are standardized
themselves, completely based on correlations, which are
covariances between standardized variables. We go from
standardized to unstandardized effects by multiplying the
betas for the total, direct, and indirect effect all with the
same constant (SD(X) / SD(Y)), and apart from that,
nothing changes.

Second, nothing was assumed or said about the
distributions of X, M, and Y. A minor point here is that
differences between the distributions of the three variables
(e.g. when X is strongly skewed, but Y is not) may limit the
maximum size of correlations, and therefore of R squared
effect size measures. Apart from this minor point, it can be
argued that for the purpose of the present article,
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distributional assumptions were not necessary, because no
attempt was made to estimate stability and bias of the
effect size measures.

This absence of simulation studies in order establish
stability and bias of the R2, , measure of eq. (8) is the third
and most serious limitation of the present study. At present,
the only information I can give comes from MacKinnon
(2008, p. 84), who for his closely related measure (identical
except for the use of partial instead of semipartial
correlations) reported that in an unpublished masters thesis
(Taborga 2000) minimal bias, even in relatively small
samples, was found. Whether this generalizes to the present
measure is a matter for future research.

Conclusion and recommendations

The most important conclusion of the present study is that
in terms of variance explained there is strong overlap
between the direct and indirect effect. In order to handle
and quantify this overlap, a method has been presented to
decompose variance explained into three parts (unique
direct, unique indirect, and joint part). Because of this
strong overlap, dividing variance explained over the direct
and indirect effect is only possible if we make some choice
about what to do with the joint part.

In a way, there is nothing new here. Handling such
overlap is a routine matter in ANOVA for unbalanced
designs and regression analysis with correlated predic-
tors, and the unique and hierarchical approaches sug-
gested in the present article are closely parallel to the
most commonly used ways of handling overlap in
regression and ANOVA. However, due to the intercon-
nectedness of the direct and and indirect effect, the
amount of overlap is much larger than what we usually
encounter in regression and ANOVA, so different
choices of how to handle overlap may lead to radically
different effect sizes (as was illustrated by the examples
in the present study). Unfortunately, choices of how to
handle such overlap are always arbitrary to some extent.

Is it possible to give some useful advice to the applied
researcher? Due to the absence of knowledge of possible
bias of the R? , effect size measure and the impossibility
to eliminate all arbitrariness from the decision about
what to do with the overlap part of variance explained,
very specific guidelines are impossible. However, some
general recommendations for using R squared effect size
measures can be given.

1. Generally, the approach based on squared semipartial
correlations should be preferred above the approach based
on squared betas. In the present article, squared betas
were useful for explaining the interconnectedness of the
direct and indirect effect, but as measures of unique
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variance explained they are too hypothetical for almost
all research situations in the social sciences.* Measures
based on squared semipartial correlations are much more
descriptive of the actual data.

2. If there are good reasons to indicate one effect as
primary, or if the two effects are of opposite sign, use the
hierarchical approach. In many situations, it is very
natural to ask for the unique contribution of the primary
effect, and then for the additional contribution of the
secondary effect. If we have good reasons to choose the
direct effect as the primary one, the original Fairchild et
al. approach still is the thing to do.

3. If there are no good reasons for a primary versus
secondary effect distinction, use the unique approach.
The price to be paid is that a lot of overlap variance
remains unexplained, but this is not too different from
what we routinely accept when doing ANOVA or
multiple regression analysis.

4. Whatever we do, in terms of R? and variance
explained, there will always be substantial overlap
between our effects and some arbitrariness in our
handling of this overlap. If we accept this, we can make
our decisions as described in the three points above.
Alternatively, we might conclude that R* measures are not
the best possible way to describe effect size in mediation,
and consider other effect size measures, that possibly
suffer less from overlap between effects. We may
reconsider proportion mediated as a measure of effect
size, or we could simply use ,,; (eq. lc, discussed as the
completely standardized indirect effect by Preacher and
Kelley (2011), or we could try one of the other measures
discussed by these authors. At present, I see no measure
which is satisfactory under all circumstances, so the
quest for the perfect measure of effect size in mediation
should go on.

“ In principle, squared betas can be useful if we want to predict how
much variance would be explained by an effect if the other effect were
blocked somehow. It is possible to imagine research situations in
which this question has some use. For example, some experimental
manipulation (X) may have both a direct effect on general mood (Y)
and an indirect effect by inducing fear (M), which in turn influences
general mood. Now if we could modify the experimental manipulation
in a way that eliminates its effect on fear, without changing its direct
effect on mood in any way, the squared beta of the direct effect in our
original experiment would predict the proportion of variance
explained in that new situation. However, even in this artificial
situation, computing variance explained for a new experiment with the
modified manipulation would be strongly preferable over assuming its
value via squared betas, because it is an empirical question whether
the direct and indirect effect of the modified manipulation will behave
as expected by the investigator.
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