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Abstract
Owing to the rapid development of biomarkers in clinical trials, joint modeling of longitudinal and
survival data has gained its popularity in the recent years because it reduces bias and provides
improvements of efficiency in the assessment of treatment effects and other prognostic factors.
Although much effort has been put into inferential methods in joint modeling, such as estimation
and hypothesis testing, design aspects have not been formally considered. Statistical design, such
as sample size and power calculations, is a crucial first step in clinical trials. In this paper, we
derive a closed-form sample size formula for estimating the effect of the longitudinal process in
joint modeling, and extend Schoenfeld’s sample size formula to the joint modeling setting for
estimating the overall treatment effect. The sample size formula we develop is quite general,
allowing for p-degree polynomial trajectories. The robustness of our model is demonstrated in
simulation studies with linear and quadratic trajectories. We discuss the impact of the within-
subject variability on power and data collection strategies, such as spacing and frequency of
repeated measurements, in order to maximize the power. When the within-subject variability is
large, different data collection strategies can influence the power of the study in a significant way.
Optimal frequency of repeated measurements also depends on the nature of the trajectory with
higher polynomial trajectories and larger measurement error requiring more frequent
measurements.
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1. Introduction
Censored time-to-event data, such as the time to failure or time to death, is a common
primary endpoint in many clinical trials. Many studies also collect longitudinal data with
repeated measurements at a number of time points prior to the event, along with other
baseline covariates. One of the most original examples was an HIV trial that compared time
to virologic failure or time to progression to AIDS [1, 2]. CD4 cell counts were considered
as a strong indicator of a treatment effect and are usually measured at each visit as
secondary efficacy endpoints. Although CD4 cell counts are no longer considered a valid
surrogate for time to progression to AIDS in the current literature, the joint modeling

Copyright © 2011 John Wiley & Sons, Ltd.
*Correspondence to: Joseph G. Ibrahim, Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, U.S.A.
†ibrahim@bios.unc.edu

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2012 August 15.

Published in final edited form as:
Stat Med. 2011 August 15; 30(18): 2295–2309. doi:10.1002/sim.4263.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



strategies originally developed for these trials led to research on joint modeling in other
research areas. As discoveries of biomarkers advance, more oncology studies collect
repeated measurements of biomarker data, such as prostate-specific antigen (PSA) in
prostate cancer trials, as secondary efficacy measurements [3]. Many studies also measure
quality of life (QOL) or depression measures together with survival data, where joint models
can also be applied [4–9]. Most clinical trials are designed to address the treatment effect on
a time-to-event endpoint. Recently, there has been an increasing interest in focusing on two
primary endpoints such as time-to-event and a longitudinal marker, and also to characterize
the relationship between them. For example, if treatment has an effect on the longitudinal
marker and the longitudinal marker has a strong association with the time-to-event, the
longitudinal marker can potentially be used as a surrogate endpoint or as a marker for the
time-to-event, which is usually lengthy to ascertain in practice. The issue of surrogacy of a
disease marker for the survival endpoint by joint modeling was discussed by Taylor and
Wang [10].

Characterizing the association between time-to-event and the longitudinal process is usually
complicated due to incomplete or mis-measured longitudinal data [1, 2, 11]. Another issue is
that the occurrence of the time-to-event may induce informative censoring of the
longitudinal process [11, 12]. The recently developed joint modeling approaches are
frameworks which acknowledge the intrinsic relationships between the event time and the
longitudinal process by incorporating a trajectory for the longitudinal process into the hazard
function of the event, or in a more general sense, introducing shared random effects in both
the longitudinal model and the survival model [2, 7, 13–16]. Bayesian approaches that
address joint modeling of longitudinal and survival data was introduced by Ibrahim et al.
[4], Chen et al. [17], Brown and Ibrahim [18], Ibrahim et al. [19], and Chi and Ibrahim [8,
9]. It has been demonstrated through simulation studies that the use of joint modeling leads
to correction of biases and improvement of efficiency when estimating the association
between the event time and the longitudinal process [20]. A thorough review on joint
modeling is given by Tsiatis and Davidian [11]. Further generalizations to multiple time-
dependent covariates was introduced by Song et al. [21], and a full likelihood approach for
joint modeling of a bivariate growth curve from two longitudinal measures and event time
was introduced by Dang et al. [22].

Design is a crucial first step in clinical trials. Well-designed studies are essential for a
successful research and drug development. Although much effort has been put into
inferential and estimation methods in joint modeling of longitudinal and survival data,
design issues have not been formally considered. Hence, developing statistical methods to
address design issues in joint modeling is much needed. One of the fundamental issues is
power and sample size calculations for joint models. In this paper, we will describe some
basics of joint modeling in Section 2, and then provide a sample size formula associating the
longitudinal process and the event time for study design based on a joint modeling in
Section 3. In Section 4, we provide a detailed methodology to determine the sample size and
power with an unknown variance–covariance matrix, discuss longitudinal data collection
strategies, such as spacing and frequency of repeated measurements, to maximize the power.
In Sections 5 and 6, we provide a sample size formula to investigate treatment effects in
joint models, and discuss how ignoring the longitudinal process would lead to biased
estimates of the treatment effect and a potential loss of power. In Section 7, we briefly
compare the two-step inferential approach and the full joint modeling approach for the
ECOG trial E1193, and show that the sample size formulas we develop are quite robust. We
end this paper with some discussions in Section 8.
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2. Preliminaries
For subject i, (i = 1, …, N), let Ti and Ci denote the event and censoring times, respectively;
Si = min(Ti, Ci ) and Δi = I (Ti ≤ Ci ). Let Zi be a treatment indicator, and let Xi (u) be the
longitudinal process (also referred to as the trajectory) at time u ≥ 0. In a more general
sense, Zi can be a q-dimensional vector of baseline covariates including treatment. To
simplify the notation, Zi denotes the treatment indicator in this paper. Values of Xi (u) are
measured intermittently at times u ≤ Si, j = 1, …, mi, for subject i. Let Y (ti j ) denote the
observed value of Xi (ti j ) at time ti j, which may be prone to measurement error.

The joint modeling approach links two sub-models, one for the longitudinal process Xi (u)
and one for the event time Ti, by including the trajectory in the hazard function of Ti. Thus,

(1)

Although other models for Xi (u) have been proposed [7, 13, 14], we focus on a general
polynomial model [17, 19]

(2)

where θi = {θ0i, θ1i, …, θpi }T is distributed as a multivariate normal distribution with mean
μθ and variance–covariance matrix Σθ. The parameter γ is a fixed treatment effect. The
observed longitudinal measures are modeled as Yi (ti j ) = Xi (ti j )+ ei j, where ,
the θi’s are independent and Cov(ei j, ei j′)= 0, for j ≠ j′. The observed data likelihood for
subject i is given by:

(3)

In expression (3),  is a univariate normal density function with mean

 and variance , and f (γi |μθ, Σθ) is the multivariate normal
density with mean μθ and covariance matrix Σθ. The density function for the time-to-event, f
(Si, Δi |θi, β, γ, α), can be based on any model. In this paper, we focus on the exponential

model, where .

The primary objectives here are:

a. To test the effect of the longitudinal process (H0: β = 0) by the score statistic.

b. To test the overall treatment effect (H0: βγ+ α= 0) by the score statistic.

When the trajectory, Xi (t) is known, the score statistic can be derived directly based on the
partial likelihood given by Cox [23], namely

(4)
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When the trajectory is unknown, the observed hazard is λ(t|Ȳ(t)) instead of λ (t|X̄(t)), where
Ȳ (t) denotes the observed history up to time t, and X̄ (t) denotes the hypothetical true history
up to time t. By the law of conditional probability, and assuming that neither the
measurement error nor the timing of the visits prior to time t are prognostic, λ (t|Ȳ(t)) =
λ0(t)E[f (X (t), β|Ȳ(t), S ≥ t)] [1]. Then, an unbiased estimate of β can be obtained by
maximizing the partial likelihood

instead of modeling the observed history directly. The analytic expression of E[f (X(t), β|
Ȳ(t), S ≥ t)] is difficult to obtain. Tsiatis et al. [1] developed a two-step inferential approach
based on a first-order approximation, E[f (X(t), β|Ȳ(t), S ≥ t)] ≈ f [E(X(t)|Ȳ, S ≥ t, β)]. Under
this approximation, we can replace {θ0i, θ1i, …, θpi }T in the Cox model with the empirical
estimates {θ ̂0i, θ ̂1i, …, θ ̂pi }T described by Laird and Ware [24], so that Xi (Si ) in (4) will be
replaced by X̂i (u) = θ ̂0i + θ ̂1i u + θ ̂2i u2 +· · ·+ θ ̂pi up + γZi. The partial likelihood (4) can then
be used for inferences in obtaining parameter estimates without using the full joint
likelihood (3).

3. Sample size determination for studying the relationship between event
time and the longitudinal process

The sample size formula presented in this section is based on the assumption that the hazard
function follows equation (1) and the trajectory follows a general polynomial model as
specified in equation (2). No time-by-treatment interaction is assumed with the longitudinal
process. Furthermore, we assume that if any Yi j ’s are missing, they are missing at random.

3.1. Known Σθ
We start by assuming a known trajectory, Xi (t), so that the score statistic can be derived
directly based on the partial likelihood. We show in the supplement that the score statistic
converges to a function of Var{Xi (t)}, and thus a function of Σθ. When Σθ is known, and
assuming that the trajectory follows a general polynomial function of time as in equation (2),
we derive a formula for the number of events required for a one-sided significance level α̃
test with power β̃ (see detailed derivation in the supplement‡). This formula is given by

(5)

where

(6)

p is the degree of polynomial in the trajectory, τ = D/N is the event rate, and t̄f is the mean
follow-up time for all subjects. E{(I ≤ t̄f)Tq} is a truncated moment of Tq, whose calculation

‡Supporting information may be found in the online version of this article.
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is provided in Appendix A. It can be estimated by assuming a particular distribution of the
event time T, and a mean follow-up time. Therefore, the power for estimating β depends on:
(a) the expected log-hazard ratio associated with a unit change in the trajectory, or the size
of β. As β increases, the required sample size decreases; (b) Σθ. A larger variance and
positive covariances lead to smaller sample sizes, while larger negative covariances imply
less heterogeneity and require larger sample sizes; and (c) the truncated moments of the
event time T, which depends on both the median survival and length of follow-up. Larger
E{(I ≤ t̄f)Tq}implies larger , and thus requires smaller sample size. Details for estimating
E{(I ≤ t̄f)Tq}are provided in Appendix A. Because τ, the event rate, also affects , censored
observations do in fact contribute to the power when estimating the trajectory effect.

Specific assumptions regarding Σθ are required in order to estimate , regardless of
whether Σθ is assumed known or unknown (see Sections 3.2 and 4). It is usually difficult to
find relevant information concerning each variance and covariance for the θ’s, especially
when the dimension of Σθ, or the degree of the polynomial in the trajectory is high. A
structured covariance matrix, such as an autoregressive or compound symmetry, can be
used. One can simplify formula (6) with a structured covariance matrix. This also facilitates
the selection of a covariance structure in the final analysis.

3.2. Unknown Σθ
When Σθ is unknown, sample size determination can be based on the two-step inferential
approach suggested by Tsiatis et al. [1]. Despite several drawbacks in this two-stage
modeling approach [2], it has two major advantages: (a) the likelihood is simpler and
standard statistical software for the Cox model can be used directly for inferences and
estimation; (b) it can correct bias caused by missing data or mis-measured time-dependent
covariates. Therefore, when Σθ is unknown, the trajectory is characterized by the empirical
Bayes estimates of θ ̂i. Σθ in equation (6) can then be replaced with an overall estimate of
Σθ ̂i, where Σθ ̂i is the covariance matrix of {θ ̂0i, θ ̂1i, …, θ ̂pi }T.

Σθ ̂i is clearly associated with the frequency and spacing of repeated measurements on the
subjects, duration of the follow-up period, and the within-subject variability,  [25]. Since
Σθ is never known in practice, sample size determination using Σθ in equation (6) will likely
over-estimate the power. Therefore, we need to understand how the longitudinal data (i.e.
frequency of measurements, spacing of measurements, etc.) affect Σθ ̂i, and design a data
collection strategy to maximize the power for the study. We defer the discussion of this
issue to Section 4.

3.3. Simulation results
We first verified in simulation studies that when Σθ is known, formula (5) provides an
accurate estimate of the power for estimating β. Table I shows a comparison of the
calculated power based on equations (5) and (6), and empirical power in a linear trajectory
with known Σθ. In this simulation study, the event time was simulated from an exponential
model with exponential parameter η and λi (t) = λ0(t)exp{βXi (t)+ αZi }, where Xi (t) = θ0i +
θ1i t + γZi. To ensure a minimum follow-up time of 0.75 y (9 months), censoring was
generated from a uniform [0.75, 2] distribution. (θ0i θ1i ) was assumed to follow a bivariate
normal distribution. We simulated 1000 trials and each trial has 200 subjects. Empirical
power was defined as the % of trials with a p-value from the score test ≤0.05 for testing H0:
β= 0. The quantities D, η, and t̄f were obtained based on the simulated data, η was obtained
from the median survival of the simulated data, and t̄f was the mean follow-up time of the
simulated data using the product limit method. Thus, Table I shows that if the input
parameters are correct, formula (5) returns an accurate estimate of power in various Σθ.
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4. Estimating Σθ̂i and maximization of power
4.1. Estimating Σθ̂i

Following the notation in Section 2, Let

be an mi × (1+ p) matrix, and Zi = 1miZi,  and . Then
θ ̂i and Σθ ̂i can be expressed as [24]

and

(7)

4.2. Determinants of power
Based on equation (7), Σθ ̂i is associated with the following: (a) the degree of the polynomial
in (2); (b) Σθ, that is, the between-subject variability; (c) , the within-subject variability;
(d) tij, the time of the repeated measurements of the longitudinal data. Larger ti j imply a
longer follow-up period, or more data collection points toward the end of the trial, and (e)
mi, the frequency of the repeated measurements. (a)–(c) above are likely to be determined by
the intrinsic nature of the longitudinal data, and have little to do with the data collection
strategy during the trial design. Based on (7), Σθ ̂i is associated with the inverse of ,
meaning larger  will lead to smaller Σθ ̂i, and thus a decrease in the power for estimating β.
This is confirmed in the simulation studies (Table II).

Although , the within-subject variability, can be reduced by using a more reliable
measurement instrument, this is not always possible. We therefore focus on investigating the
impact of (d) and (e). Note that the hazard function can be written as λi (t) = λ0(t)exp{β (θ0i
+ θ1i t + ···+ θpi tp)+ θ* Zi }, where β* = βγ+ α. In the design stage, instead of considering a
trajectory with γ ≠ 0 and a direct treatment effect of α, we can consider a trajectory with γ= 0
and a direct treatment effect of α+ βγ. This will simplify the calculations for Σθ ̂i. Since
formula (7) represents Σθ ̂i when Zi = 0, it should provide good approximation when Σθ ̂i is
similar between the two treatment groups. To see the relationship between mi, ti j and Σθ ̂i, let
us consider the alternative trajectory with γ= 0. Equation (7) then simplifies to
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(8)

and

(9)

When the trajectory is linear. Wi jk is the element in the jth row and kth column of Wi. Now
we decompose Vi as , where Pi is an mi × mi matrix with orthonormal columns, and
Dgi is a diagonal matrix with non-negative eigenvalues. Let Pi jk denote the element of the
jth row and kth column of Pi, and Dgij denotes the element in the jth row and jth column of
Dgi. Then the diagonal elements of Q in (9) can be expressed as

(10)

and

(11)

We can see that both equations (10) and (11) are sums of mi non-negative elements, and thus
are non-decreasing functions of mi. Equation (11) is also positively associated with ti j,
implying a larger variance with longer follow-up period or with longitudinal data collected
at a later stage of the trial. However, we should keep in mind that some subjects may have
failed or are censored due to early termination. If we schedule most data collection time
point toward the end of the study, mi could be reduced significantly in many subjects. An
ideal data collection strategy should take into account drop-out and failure rates and balance
ti j and mi for a fixed maximum follow-up period.

The maximum follow-up period is usually prefixed due to timeline or budget constraints.
We can observe more events with a longer follow-up and the increase in power is likely to
be more significant due to an increased number of events. With a prefixed follow-up period,
the most important decision is perhaps to describe an optimal number of data collection
points. Here, we speculate that the power would reach a plateau as mi increases. The number
of data collection points required to reach the plateau is likely to be related to the degree of
the polynomial in the trajectory function. A lower order polynomial may require smaller mi.

4.3. Simulation studies and illustrations of using Σθ̂i in sample size calculation
We investigated the power assuming an unknown Σθ for different mi ’s in simulation
studies. The results are summarized in Table II for a linear trajectory, and in Table III for a
quadratic trajectory. We note that the longitudinal data, Yi j, are missing after the event
occurs or after the subject is censored and is assumed to be missing at random. Therefore, mi
varies among subjects. Let mx denote the scheduled, or maximum number of data collection
points if the subject has not had an event and is not censored at the end of the follow-up

Chen et al. Page 7

Stat Med. Author manuscript; available in PMC 2012 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



period. In the simulation studies described in Tables II and III, mx was assumed to be the
same for all subjects, and ti j was equally spaced. In the linear trajectory simulation studies,
we further assumed that the longitudinal data was also collected when the subject exits the
study due to an event or censoring, so that each subject would have at least two
measurements (baseline and the end of the study). In the quadratic trajectory simulation
studies, the longitudinal data was also collected when the subject exited the study before
their first post-baseline scheduled measurement. Therefore, Ri in equation (8) was not the
same for all subjects. Some had different numbers of measurements; and some had
measurements at different ti j ’s. This results in a different Σθ ̂i for each subject.

Note that Σθ ̂i converges to Σθ when . However, Σθ ̂i does not converge to Σθ when
. It is not an estimator for Σθ as it is influenced by the magnitude of the residual

(measurement error), . During the design stage, we need to find a single quantity that can
represent an average effect of Σθ ̂i, which will take into account the impact of , to replace
Σθ in the sample size calculation. One choice of such a quantity is to assume that all subjects
will have the same number of measurements at the same time points, and thus Σθ ̂i will be the
same for all subjects. As the measurement error will have a greater impact on the ‘bias’
when the number of measurements are small, assuming a maximum number of
measurements for all subjects will result in an over-estimation of the power, while assuming
a minimum number of measurements for all subjects will result in an under-estimation of the
power. Assuming a median number of measurements may be adequate in assessing the
average effect of Σθ ̂i. We recommend using the weighted average of Σθ ̂i’s because it takes
into account the impact of  from the smallest to the largest number of measurements. For
a fixed mx, the weighted average can be calculated as

(12)

where ξm is the % of non-censored subjects who have m measurements of the longitudinal
data, Im is the m × m identity matrix, and R·m is the R matrix with m measurements,

t·k in the R·m matrix represents the mean measurement time of the kth measurement in the
subjects who had m measurements if not all measurements are taken at a fixed time point.

In the second to the last column of Tables II and III, we present the calculated power based
on the maximum Σθ ̂i instead of a weighted average of Σθ ̂i’s. The maximum

. The simulation setup in Tables II and III is
the same as in Section 3.3. The longitudinal data Yi j was simulated via a normal distribution

with mean θ0i + θ1i ti j + γZi (linear), or  (quadratic), and variance . Yi j
was set to be missing after an event or censoring occurred.
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When the measurement error is relatively small and non-systematic, the two-step inferential
approach yields nearly unbiased estimates of the longitudinal effect. The number of data
collection points did not seem to be critical when the trajectory is linear as long as each
subject had at least two measurements of the longitudinal data. There is a slight decrease in
the power when mx < 5 and  is large. When the trajectory is quadratic, mx plays a more
important role. The power for estimating β decreases as mx decreases. Smaller numbers of
measurements (mx < 4) can also lead to a biased estimate of the longitudinal effect and result
in a significant loss of power. The effect of mx on estimates and power is more significant
when  is large. Note that when , Σθ ̂i reduces to Σθ, and is unrelated to mx. The effect
of mx comes from the magnitude of reducing the contribution of the within-subject
variability, . If we have a very accurate and reliable measurement instrument, we can
reduce the number of repeated measurements and can still obtain unbiased estimates and
maximum power.

The power calculation under the assumption of known Σθ or perfect data collection
(maximum Σθ ̂i) can result in a significant over-estimation of the power especially when 
is large. We next demonstrate that if we use the weighted average of Σθ ̂i’s, we can obtain a
good estimate of power based on formula (5).

Example 1 from Table II: For the scenario with  and mx = 2, we observed that the
mean measurement time for the subjects who had an event in the simulated data is about 0.5

y. We used  to calculate Σθ ̂i instead of setting  which assumes
that the second measurement was taken at 2 y. As a result, the power based on formula (5)
changed from 77.4 to 74.4 per cent, which is more closer to the empirical power of 74.0 per
cent. We used the mean measurement time in the non-censored subjects, because the power
calculation is mainly based on the number of events. In practice, we need to make certain
assumptions about t·k based on the median survival and length of the follow-up period.

Example 2 from Table III: For demonstration, we chose the scenario with  and mx =
4. In this example, the second measurement was taken at 0.45 y (on average) in subjects who
had only two measurements. For subjects who had more than two measurements,
longitudinal data was collected at scheduled time points of 0, 0.5, 1, and 1.5. Therefore,

A weighted average of the Σθ ̂i’s was calculated based on formula (12). The resulting power
is 78.8 percent instead of 84.7 per cent, which is close to the empirical power of 79.1 per
cent.

For trajectories that are quadratic or higher, it is important to schedule data collection to
ensure mi is large enough for a reasonable proportion of subjects. For example, when the
trajectory is quadratic and only a small proportion of subjects had three measurements of the
longitudinal data (mx = 3 in Table III), we obtain a very biased estimate of β.
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5. Sample size determination for the treatment effect
Using the same model as specified in Section 3, the overall treatment effect is βγ + α. Thus,
the null hypothesis is H0: βγ + α = 0. Following the framework of Schoenfeld [26], we show
that Schoenfeld’s formula can be extended to a joint modeling study design by taking into
account the additional parameters β and γ. The number of events required for a one-sided
level α̃ test with power β̃, assuming the hazard and trajectory follow (1) and (2) in Section 2,
is given by

(13)

where p1 is the % of patients assigned to treatment 1 (Zi = 1). The properties of the random
effects in the trajectory do not play a significant role in the sample size and power
determination for the overall treatment effect at the design stage. However, correct
assumptions must be made with regard to the overall treatment effect (βγ + α). If the
longitudinal effect is a biomarker, αand βγ should have the same sign (aggregated treatment
effect). We acknowledge that under the proposed longitudinal and survival model, the ratio
of the hazard functions of the two treatment groups will be non-proportional, as the
trajectory is time dependent. However, the method of using the partial likelihood can readily
be generalized to allow for non-proportional hazards. It is unlikely that the proportional
hazards assumption is ever exactly satisfied in practice. When the assumption is violated, the
coefficient estimated from the model will be the ‘average effect’ over the range of time
observed in the data [27]. Thus, the sample size formula developed using the partial
likelihood method should provide good approximation of the power for estimating the
overall treatment effect in a joint modeling setting.

The simulation studies presented in Table IV show that formula (13) works approximately
well in the two-step inferential approach when the primary objective is to investigate the
overall treatment effect. The power is not sensitive to Σθ, and works well with different sizes
of β and γ. We show in Sections 6 and the supplemental material that the two-step inferential
approach and the full joint likelihood approach yield similar unbiased estimates of the
overall treatment effect and have similar efficiency.

6. Biased estimates of the treatment effect when ignoring the longitudinal
trajectory

When a treatment has an effect on the longitudinal process (i.e. γ ≠ 0 in equation (2)) and the
longitudinal process is associated with survival (i.e. β ≠ 0 in equation (1)), the overall
treatment effect on the time-to-event is βγ + α. Thus, it is obvious that ignoring the
longitudinal process in the proportional hazards model can result in a biased estimate of the
treatment effect on survival. When the longitudinal process is not associated with the
treatment (i.e. γ = 0 in equation (2)), it is not obvious that ignoring the longitudinal trajectory
in the proportional hazards model would result in an attenuated estimate of the hazard ratio
for the treatment effect on survival (i.e. bias toward the null). This attenuation is known in
the econometrics literature as the attenuation due to unobserved heterogeneity [28, 29], and
has been discussed in the work by Gail et al. [30].

We demonstrated in simulation studies (Table V) that the bias associated with ignoring the
longitudinal effect is related to the size of β in the joint modeling setting.
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7. Retrospective power analysis for the ECOG trial E1193
To illustrate parameter selection and the impact of incorporating Σθ ̂i in the power
calculation, we apply the sample size calculation formula retrospectively based on the
parameters obtained from the Eastern Cooperative Oncology Group (ECOG) E1193 trial
[31, 32]. E1193 is a phase III cancer clinical trial of doxorubicin, paclitaxel, and the
combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast
cancer. Patients receiving single-agent doxorubicin or paclitaxel crossed over to the other
agent at the time of progression. QOL was assessed using the FACT-B scale at two time
points during induction therapy. The FACT-B includes five general subscales (physical,
social, relationship with physician, emotional, and functional), as well as a breast cancer-
specific subscale. The maximum possible score is 148 points. A higher score is indicative of
a better QOL. In this subset analysis, we analyzed the overall survival after entry to the
crossover phase (survival after disease progression), and its association with treatment and
QOL. A total of 252 patients entered the crossover phase and have at least one QOL
measurement, 124 patients crossed over from paclitaxel to doxorubicin (median survival is
13.0 months in this subgroup), 128 patients crossed over from doxorubicin to paclitaxel
(median survival is 14.9 months in this subgroup). The data we used are quite mature, with
only two subjects who crossed over to doxorubicin and six subjects who crossed over to
paclitaxel being censored. We applied the Cox model with treatment effect only, the two
step model incorporating the two QOL measurements, and the proposed joint model as
specified in Section 2 of the paper, to analyze the treatment effect and effect of QOL. Since
there are only two QOL measurements, we fit a linear mixed model. To satisfy the normality

assumption for the longitudinal QOL, we transformed the observed QOL into . The
results are report in Table VI. Similar results are also reported by the same authors [32].

Treatment effects are similar between the two-step model and the joint model. The
difference in the QOL effect, β ̂, is similar to that of Wulfsohn and Tsiatis [2]. They reported
a slightly larger β ̂ and standard error in the joint model as compared with the two-step
model. In Section 6 of this paper, we used simulation studies to demonstrate that β ̂ is
sensitive to whether the constant hazard assumption is satisfied in the joint model we used.
We obtained the following parameter estimates for the retrospective power calculation: The

median overall survival is 13.56 months , σe = 0.7188, the mean
measurement time for the first QOL is 0.052 months, the mean measurement time for the
second QOL is 2.255 months, and 35 per cent of the subjects had only one QOL
measurement. If we assume a known Σθ, the power with 243 events and β = 0.3 is 98 per
cent. When we assume an unknown Σθ and use a weighted average of Σθ ̂i, the power is
reduced to 90 per cent. The relationship between sample size and power for both known and
unknown Σθ cases is illustrated in Figure 1.

8. Discussion
In this paper, we have provided a closed-form sample size formula for estimating the effect
of the longitudinal data on time-to-event and discussed optimal data collection strategies.
The number of events required to study the association between event time and the
longitudinal process for a given follow-up period is related to the covariance matrix of the
random effects (coefficients for the p-polynomial), within-subject variability, frequency of
repeated measurements, and timing of the repeated measurements. Only a few parameters
are required in the sample size formula. The median event time and mean follow-up time are
needed to calculate the truncated moments. The mean follow-up time can be approximated
by the average of the minimum and maximum follow-up times under the assumption of
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uniform censoring. A structured covariance matrix can be used when we do not have prior
data to determine each element of Σθ. More robust estimates can be achieved by assuming
an unknown Σθ. An unknown Σθ requires further assumptions about the number and timing
of repeated measurements, and the percentage of subjects who are still on-study at each
scheduled measurement time. This is exactly what researchers should consider during the
design stage. It is useful to consider a few scenarios and compare the calculated power.
When the measurement error is small, estimates with known Σθ also provide good
approximation of power.

We have also extended Schoenfeld’s [26] sample size estimation formula to the joint
modeling setting for estimating an overall treatment effect. When the longitudinal data was
associated with treatment, the overall treatment effect is an aggregated effect on time-to-
event directly and on the longitudinal process. When the longitudinal data is not associated
with treatment, ignoring the longitudinal data will still lead to attenuated estimates of the
treatment effect due to unobserved heterogeneity. The degree of attenuation depends on the
degree of the association between the longitudinal data and time-to-event data. Use of a joint
modeling analysis strategy leads to reduction of bias and increase in power in estimating the
treatment effect. However, joint modeling is not yet commonly used in designing clinical
trials. Most applications of joint modeling in the literature focus on estimating the effect of
the longitudinal outcome on time-to-event.

The sample size formula we derived was based on a score test. Under the assumption that
the fixed covariates are independent of the probability that the patient receives treatment
assignment, the fixed covariates cancel from the final score statistic. Therefore, the number
of patients required for a study does not depend on the effects of other fixed covariates.
However, this does not mean that we should exclude all covariates from the analysis model,
as they may be required to build an appropriate model.

The sample size formula we considered in this paper is based on the two-step inferential
approach proposed by Tsiatis et al. [1], which is known to have several drawbacks [2]. In
the supplementary material of this paper, we examined two joint modeling approaches: the
two-step model and a model that is based on the full likelihood as specified in (3). The
purpose of the supplemental section is to compare robustness and efficiency of the two joint
models and evaluate whether the current sample size determination method can still provide
an approximate estimate for the parametric joint model. We show that: (1) the two-step
model may be more robust than the parametric joint model, especially when the parametric
model is miss-specified; (2) if the parametric model is correctly specified, it is more efficient
than the two-step model. Thus, a sample size based on the proposed method in this paper
will be conservative for the parametric joint model for testing β; and (3) when testing the
overall treatment effect, the two modeling approaches have similar efficiency and thus the
method proposed can provide good estimate of sample size for both joint models.

Missing longitudinal data in practice is typically non-ignorably missing in the sense that the
probability of missingness depends on the longitudinal variable that would have been
observed. In order to examine the robustness of our sample size formulas to non-ignorable
missingness, we conducted several simulation studies in which the empirical power was
computed under a non-ignorable missing data mechanism using a selection model. Under
several scenarios, our calculated powers based on the proposed sample size formulas were
quite close to the empirical powers, therefore illustrating that our sample size formulas are
quite robust to non-ignorable missing data. Developing closed-form sample size formulas in
the presence of non-ignorable missing data is a very challenging problem that requires much
further research.
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One known drawback of the two-step method is that the random effects are assumed to be
normally distributed in those at risk at every event time. This is unrealistic under informative
dropout. It is also known that the empirical Bayes estimate of the random effect, θ ̂i, from the
Laird and Ware method [24] is biased under informative dropout. Therefore, non-
informative censoring of the longitudinal process is an important assumption for the
proposed method. Another limitation of this method is that we did not consider the
treatment-by-time interaction in the model, which precludes the random slopes model. An
extension of the classical Cox model introduces interaction between time and covariates,
with the purpose of testing or estimating the interaction via a smoothing method. When
testing a treatment effect alone, we are interested in showing that the treatment effect is
constant over time (no interaction). Therefore, in the sample size calculation, we should not
assume both a treatment effect and a treatment-by-time interaction. When the purpose is to
test the effect of the longitudinal data on survival, if we need to assume a treatment-by-time
interaction, we should fit a separate two-step model for each treatment.

Finally, we mention here that although simulations and distributional assumptions of the
random effects in this paper were based on a Gaussian distribution, such distributional
assumptions are not required for the formula. It may be applied to more general joint
modeling design settings. To the best of our knowledge, this is the first paper that addresses
trial design aspects using joint modeling.

†Calculated based on the mean number of deaths from simulations and fixed value of p1 =
0.5, β, γ, and α.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Truncated moments of T
To obtain the truncated moments of Tq, E{(I ≤ t̄f)Tq}, in equation (6), we must assume a
distribution for T. In practice, the exact distribution for T is unknown. However, the median
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event time or event rate at a fixed time point for the study population can usually be
obtained from the literature. It is a common practice to assume that T follows an exponential
distribution with exponential parameter η in the study design stage. Thus, the truncated
moment of Tq only depends on η and t̄f, and has the following form:

where Γ(q + 1, t̄f) is a lower incomplete gamma function with q = {1, 2, 3, ……}. η can be
estimated based on the median event time or event rate at a fixed time point. e.g. if the
median event time, TM, is known for the study population, η = −log(0.5)/TM. When the
trajectory is a linear function of time,

Both E{I (T ≤ t̄f)T2} and E{I (T ≤ t̄f)T } have closed-form expressions, given by

and

There are certain limitations of this distributional assumption for T. It does not take into
account covariates that are usually considered in the exponential or Cox model for S. A
more complex distributional assumption can be used to estimate E{(I ≤ t̄f)Tq} if more
information is available. However, simple distributional assumptions for T, without the
inclusion of covariates or using an average effect of all covariates, are easy to implement
and it is usually adequate for sample size or power determination.

E{(I ≤ t̄f)Tq} also depends on t̄f, the mean follow-up time for all subjects. It is truncated
because we typically cannot observe all events in a study. Therefore, it is heavily driven by
the censoring mechanism, and can be approximated by the mean follow-up time in censored
subjects. One way to estimate t̄f is to take the average of the minimum and maximum
follow-up times if censoring is uniform between the minimum and maximum follow-up
times. It can also be estimated based on more complex methods. If data from a similar study
are available, t̄f can be estimated with the product-limit method by switching the censoring
indicator so that censored cases would be considered as events and events would be
considered as censored.
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Figure 1.
Retrospective power analysis for the E1193 trial with known and unknown Σθ.
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Table V

Effect of β on the estimation of direct treatment effect on survival (α) based on different models.

β

λi (t) = λ0(t)exp(αZi ) λi (t) = λ0(t)exp{β (θ0i + θ1i )t + αZi }

exp(α ̂) * based on Cox
partial likelihood

exp(α ̂) based on known
trajectory

exp(α ̂) based on two-step
approach (partial likelihood)†

exp(α ̂) based on full joint
likelihood as specified in (3)

0 0.668 (0.062) 0.667 (0.062) 0.667 (0.062) 0.667 (0.062)

0.4 0.697 (0.057) 0.668 (0.053) 0.667 (0.053) 0.667 (0.053)

0.8 0.755 (0.063) 0.670 (0.050) 0.673 (0.050) 0.668 (0.051)

1.2 0.800 (0.068) 0.670 (0.049) 0.684 (0.051) 0.668 (0.051)

*
exp(α̂) is the average value based on 1000 simulations, each with 200 subjects per arm. Minimum follow-up time is set to be 0.75 y (9 months),

and maximum follow-up time is set to be 2 y. The baseline hazard is assumed constant with λ0 = 0.85, and the true direct treatment effect on
survival α= −0.4 (i.e. HR = 0.670).

†
Longitudinal data is measured at years 0, 0.5, 1, 1.5 and at exit with a linear trajectory and .
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Table VI

Parameter estimates with standard errors for the E1193 data.

Parameters Cox model with treatment only Two-step model Joint model

Overall treatment (α̂ + β ̂γ ̂) 0.251 (0.1302) 0.261(0.1304) 0.271 (0.1413)

α̂ 0.245 (0.1362)

γ ̂ −0.073 (0.1291)

β ̂ −0.277 (0.0708) −0.445 (0.1184)
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