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Abstract

One hundred and ninety three odor detection thresholds, ODTs, obtained by Nagata using the Japanese triangular bag method
can be correlated as log (1/ODT) by a linear equation with R2 = 0.748 and a standard deviation, SD, of 0.830 log units; the
latter may be compared with our estimate of 0.66 log units for the self-consistency of Nagata’s data. Aldehydes, acids,
unsaturated esters, and mercaptans were included in the equation through indicator variables that took into account the
higher potency of these compounds. The ODTs obtained by Cometto-Muñiz and Cain, by Cometto-Muñiz and Abraham, and
by Hellman and Small could be put on the same scale as those of Nagata to yield a linear equation for 353 ODTs with R2 =
0.759 and SD = 0.819 log units. The compound descriptors are available for several thousand compounds, and can be
calculated from structure, so that further ODT values on the Nagata scale can be predicted for a host of volatile or semivolatile
compounds.
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Introduction

An odor detection threshold (ODT) is a biological endpoint

that provides a quantitative assessment of the effect of air-

borne chemicals on the olfactory system of a human subject.

ODTs, obtained by approximately the same protocol, for

a series of chemicals then constitute a suitable measure of

the relative effectiveness, or potency, of the chemicals to
elicit an effect. The smaller the ODT, the more ‘‘potent’’

is the chemical. Unfortunately, if ODTs are determined by

2 different protocols, the obtained ODT for a particular

compound may differ by orders of magnitude, as illustrated

for a series of n-alcohols (Cometto-Muñiz and Abraham

2008a). However, their analysis showed that although there

were striking differences in the obtained ODT values as be-

tween different protocols, there was a clear trend of decreas-
ing ODT values with increasing carbon number of the

n-alcohol, that is, along the homologous series. It has been

pointed out (Schmidt and Cain 2006) that in cases where dif-

ferent protocols give rise to very different obtained values of

ODT, the protocol that gives rise to the lowest obtained val-

ues will usually be regarded as the most meaningful. It is gen-

erally acknowledged that weaknesses in methodology, for

example, poor control of concentration, will result in higher

rather than in lower thresholds.

Among other studies cited in comprehensive compilations

(American Industrial Hygiene Association 1989; Devos et al.

1990; Environmental Protection Agency 1992; van Gemert

2003), there are 2 recent protocols for the determination of
ODTs that have both tested a relatively large number of chem-

icals (n ‡ 60) and used a uniform methodology. These are the

Japanese triangle odor bag method (Nagata 2003) and the odor

squeeze bottle method (Cometto-Muñiz and Cain 1990;

Cometto-Muñiz 2001). As has been pointed out (Pierce

et al. 1996), the determination of threshold detection values de-

pends upon such factors as the method of stimulus dilution,

volume of inhalation, type of psychophysical task, and number
of trials presented and requires the need for standardization of

procedures. Both of the procedures of Nagata and of Cometto-

Muñiz and Cain involve standardized protocols.

The triangle odor bag method, an olfactory test used for

environmental regulation in Japan, was first developed in

1972 by the Tokyo metropolitan government (Iwasaki

2003). In this method, 3 polyester gas-sampling bags are
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used, one bag is the odor bag into which a certain amount of

the primary odor is injected (and analytically verified for

concentration) and the 2 other bags are filled with only

odor-free air thereby setting up conditions for forced-choice

testing. The test begins with a concentration that the panel
can easily detect, and the concentration is successively di-

luted by a factor of 3 when the answer of the panelist is cor-

rect. It is continued until an incorrect answer occurs. In this

way, panels can detect the odor threshold concentration by

a concentration descending method. The triangle odor bag

method has been described (in English) in considerable detail

(http://www.env.go.jp/en/air/odor/olfactory_mm/01method_

2-2-2.pdf).
Measurements of ODT values were carried out (Cometto-

Muñiz and Cain 1990) using a uniform procedure that in-

cluded vapor-phase measurements via gas chromatography,

a simple but practical static-dilution delivery system, and

a sensory technique based on a 2-alternative forced-choice

procedure that controlled for biases and for differences in re-

sponse criterion across participants. The odorant is contained

in a squeeze bottle and the ODT is obtained by detecting the
difference from bottles that contain just diluent. Presentations

follow an ascending concentration order. The aim of using an

ascending method is to avoid adaptation, that is, loss of sen-

sitivity from mere stimulation (Cain 1989). We shall refer to

the data set obtained in this way as the C1 data set.

Although the Nagata data set covers 223 chemicals, and

the C1 data set includes 59 chemicals, the number of chem-

icals whose ODT values have been thus determined is but
a small fraction of olfactory agonists. For example, the num-

ber of known compounds just in tobacco smoke exceeded

3800 as measured in 1982 (Dube and Green 1982). A large

number of volatile organic compounds (VOCs), a set of

approximately half a million, can activate olfaction.

The present work has 2 major aims. The first major aim is

to attempt to analyze the Nagata data set in order to provide

an equation or algorithm that will enable the Nagata ODT
values to be predicted and will allow the estimation of ODT

values for thousands of airborne chemicals. The second ma-

jor aim is to attempt to combine other sets of ODT values

with the Nagata set in order to obtain a more general equa-

tion for the prediction of ODT values. We do not suggest

that any combined set of obtained ODT values will consti-

tute an ‘‘absolute scale’’ but only that an extended set of

compounds matched to the Nagata set will be of use both
practically and theoretically.

Methodology

Our general method is based on a procedure we have previ-

ously described for the correlation of the C1 odor detection

data set and detection thresholds for eye irritation and

nasal pungency (Abraham et al. 1996, 2001; Abraham,
Kumarsingh, Cometto-Muñiz, and Cain 1998; Abraham,

Kumarsingh, Cometto-Muñiz, Cain, Roses, et al. 1998).

A very general linear free energy relationship (LFER) for

the correlation of a variety of processes in which VOCs are

transferred from the gas phase to some condensed phase

has been devised (Abraham 1993; Abraham et al. 2004;

Abraham, Acree, and Cometto-Muñiz 2009), as equation (1):

SP = c + eE + sS + aA + bB + lL: ð1Þ

In equation (1), the dependent variable is a set of solute

properties, SP, in a given system. In the present case, SP will
be log (1/ODT) where the ODT values are in parts per mil-

lion by volume. We use 1/ODT in equation (1) so that the

larger the value of log (1/ODT) the more potent is the chem-

ical. The independent variables, or descriptors, in equation

(1) are as follows. E is the solute excess molar refractivity

in units of (dm3 mol–1)/10, S is the solute dipolarity/

polarizability, A and B are the overall or summation hydro-

gen bond acidity and basicity, and L is the logarithm of the
gas to hexadecane partition coefficient at 25 �C.

Equation (1) has been previously used (Abraham et al.

2002) to correlate ODT values of Cometto-Muñiz and Cain.

For 50 varied compounds, equation (2) was obtained:

Logð1=ODTÞ= – 5:145 + 0:533E+ 1:912S

+ 1:276A + 1:559B + 0:699L;
ð2Þ

N = 50; R2 = 0:773; SD= 0:579; F = 28:7:

where N is the number of data points, R is the regression cor-

relation coefficient, SD is the standard deviation in the de-
pendent variable, and F is the F-statistic. Carboxylic acids

and aldehydes were more potent than predicted by equation

(2). In order to include them in the equation, it was necessary

to devise an indicator variable, H, that takes the value H =

1.6 for carboxylic acids and aldehydes and zero for all

other compounds. The equation was also improved by incor-

poration of a parabolic term in L, leading to equation (3):

Logð1=ODTÞ= – 7:720 – 0:060E + 2:080S + 2:829A

+ 1:139B + 2:028L – 0:148L2 + 1:000H;

ð3Þ

N = 60; R2 = 0:85; SD= 0:598; F = 44:0:

The independent variables in equations (2) and (3) were ob-

tained from experimental data, as detailed before (Abraham

et al. 2004); they can also be calculated from structure alone

(Platts et al. 1999; ADME Boxes 2010), so that the equations

can be used to predict further values for any number of VOCs.

Results and discussion

Correlation for the Nagata data set

The Nagata values of ODTs that we use are in Tables 1 and 2

(Nagata 2003). Nagata gives values for 223 compounds, but
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Table 1 Nagata values of ODTs (ppm) used to obtain equation (5)

Substance Log
(1/ODT)

Substance Log (1/ODT)

Sulfur dioxide 0.060 Acetaldehyde 2.824

Chlorine 1.310 Propionaldehyde 3.000

n-Pentane �0.146 n-Butylaldehyde 3.174

Isopentane �0.114 Isobutylaldehyde 3.456

n-Hexane �0.176 n-Valeraldehyde 3.387

2-Methylpentane �0.845 Isovaleraldehyde 4.000

3-Methylpentane �0.949 n-Hexylaldehyde 3.553

2,2-Dimethylbutane �1.301 n-Heptylaldehyde 3.745

2,3-Dimethylbutane 0.377 n-Octylaldehyde 5.000

n-Heptane 0.174 n-Nonylaldehyde 3.469

2-Methylhexane 0.377 n-Decylaldehyde 3.398

3-Methylhexane 0.076 Acrolein 2.444

3-Ethylpentane 0.432 Crotonaldehyde 1.638

2,2-Dimethylpentane �1.580 Methacrolein 2.071

2,3-Dimethylpentane �0.653 Methyl ethyl ketone 0.357

2,4-Dimethylpentane 0.027 Methyl n-propyl ketone 1.553

n-Octane �0.230 Methyl isopropyl ketone 0.301

2-Methylheptane 0.959 Methyl n-butyl ketone 1.620

3-Methylheptane �0.176 Methyl sec-butyl ketone 1.620

4-Methylheptane �0.230 Methyl isobutyl ketone 0.770

2,2,4-Trimethylpentane 0.174 Methyl tert-butyl ketone 1.367

n-Nonane �0.342 Methyl n-amyl ketone 2.167

2,2,5-Trimethylhexane 0.046 Methyl isoamyl ketone 2.678

n-Decane 0.208 Ethyl formate �0.431

n-Undecane 0.060 n-Propyl formate 0.018

n-Dodecane 0.959 Isopropyl formate 0.538

Methylcyclopentane �0.230 n-Butyl formate 1.060

Cyclohexane �0.398 Isobutyl formate 0.310

Methylcyclohexane 0.824 Methyl acetate �0.230

Propylene �1.114 Ethyl acetate 0.060

1-Butene 0.444 n-Propyl acetate 0.620

Isobutene �1.000 Isopropyl acetate 0.796

1-Pentene 1.000 n-Butyl acetate 1.796

1-Hexene 0.854 Isobutyl acetate 2.097

1-Heptene 0.432 sec-Butyl acetate 2.620

1,3-Butadiene 0.638 tert-Butyl acetate 1.149

Isoprene 1.319 n-Hexyl acetate 2.745

Chloroform �0.580 Methyl propionate 1.009

Table 1 Continued

Substance Log
(1/ODT)

Substance Log (1/ODT)

Carbon tetrachloride �0.663 Ethyl propionate 2.155

Trichloroethylene �0.591 n-Propyl propionate 1.237

Tetrachloroethylene 0.114 Isopropyl propionate 2.387

Formaldehyde 0.301 Isobutanol 1.959

n-Butyl propionate 1.444 sec-Butanol 0.658

Isobutyl propionate 1.699 n-Pentanol 1.000

Methyl n-butyrate 2.149 sec-Pentanol 0.538

n-Propyl n-butyrate 1.959 Isopentanol 2.770

Isopropyl n-butyrate 2.208 tert-Pentanol 1.056

n-Butyl n-butyrate 2.319 n-Hexanol 2.222

Isobutyl n-butyrate 2.796 n-Heptanol 2.319

Methyl n-valerate 2.658 n-Octanol 2.569

n-Propyl n-valerate 2.481 n-Nonanol 3.046

n-Butyl isovalerate 1.921 n-Decanol 3.114

Methyl Isobutyrate 2.721 2-Ethoxyethanol 0.237

n-Propyl isobutyrate 2.699 2-n-Butoxyethanol 1.367

Isopropyl isobutyrate 1.456 Diallyl disulfide 3.658

n-Butyl isobutyrate 1.658 Tetrahydrothiophene 3.208

Isobutyl isobutyrate 1.125 Carbon disulfide 0.678

2-Ethoxyethyl acetate 1.310 Benzene �0.431

Acetonitrile �1.114 Toluene 0.481

Acrylonitrile �0.944 Ethylbenzene 0.770

Ammonia �0.176 o-Xylene 0.420

Methylamine 1.456 m-Xylene 1.387

Ethylamine 1.337 p-Xylene 1.237

n-Propylamine 1.215 n-Propylbenzene 2.420

Isopropylamine 1.602 Isopropylbenzene 2.076

n-Butylamine 0.770 1,2,4-Trimethylbenzene 0.921

Isobutylamine 2.824 1,3,5-Trimethylbenzene 0.770

sec-Butylamine 0.770 o-Ethyltoluene 1.131

tert-Butylamine 0.770 m-Ethyltoluene 1.745

Dimethylamine 1.481 p-Ethyltoluene 2.081

Trimethylamine 4.495 n-Butylbenzene 2.071

Diethylamine 1.319 o-Diethylbenzene 2.027

Triethylamine 2.268 m-Diethylbenzene 1.155

Acetic acid 2.222 p-Diethylbenzene 3.409

Propionic acid 2.244 1,2,3,4-Tetramethylbenzene 1.959

n-Butyric acid 3.721 Diacetyl 4.301
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we did not have the required descriptors for 17 of these com-

pounds. We were left with 206 compounds of which 193 are

in Table 1 and 13 are in Table 2. As a first step, we examined

the various homologous series of compounds studied by Na-

gata. For any such homologous series, the descriptors E, S,

A, and B are almost constant, and so equation (2) reduces to

Logð1=ODTÞ= c# + l#L; ð4Þ

where c# is constant for any homologous series and is given

by c# = (c + eE + sS + aA + bB). A preliminary analysis of

Nagata’s data gave l# = 0.55, and so we can then use equation

(4) to calculate log (1/ODT) for any homologous series and

can compare calculated values with the observed values of

Nagata. This is very important in 2 ways. First, it enables

individual outliers to be identified and second it allows
the identification of series of compounds that are systemat-

ically out of line. Thus in the C1 data set, we noticed that the

homologous series of aldehydes were all more potent than

calculated, that is, the observed log (1/ODT) values were

all more positive than calculated. A similar analysis can

be carried out for a series of nonhomologous compounds,

such as esters, that have a constant value of c#.
An example of identification of outliers is shown in Fig-

ure 1, where the line shown in the panel is that calculated

for alkanes from equation (4). It is clear from Figure 1a that

2 alkanes, propane and butane, are out of line by some 2 log

units. We have carried out this analysis for all the homolo-

gous series studied by Nagata and identified a number of

outliers in the various series. In Figure 1, is shown a similar

plot for a series of esters—these are compounds that have

a constant c# value without being a homologous series. Four
outliers can be identified. In addition to the identification

of outliers, we can use the observed plots to make an assess-

ment of the consistency of the data, from the scatter about

the calculated line on equation (4).

The graph shown in Figure 1 for the aliphatic aldehydes is

quite different from those for the alkanes and esters. Now all

the aldehydes are out of line and are all more potent than

calculated. The best line through the observed data points
is almost parallel to the calculated line from equation (4),

suggesting that a simple indicator variable for aldehydes will

bring them all into line. A similar situation was found for the

aliphatic carboxylic acids (graph not shown). The results for

the aldehydes and carboxylic acids are exactly as we found

previously for the C1 data set (Abraham et al. 2002). A ho-

mologous series not studied by Cometto-Muñiz and Cain is

the aliphatic mercaptans, RSH, see Figure 1. All the mercap-
tans are more potent than calculated by nearly 4 log units,

and, again, the best fit line through the observed points and

the calculated line from equation (4) are parallel. This again

means that a simple indicator variable for mercaptans will

bring them into line. Unsaturated esters are another class

of compound that are more potent than calculated from

equation (4) (graph not shown).

If we exclude the 4 series of compounds, the aldehydes, the
acids, the mercaptans, and the unsaturated esters, that re-

quire an indicator variable to bring them into line, and 13

compounds that we identified as outliers, see Table 2, we

are left with 75 compounds for which we have observed

log (1/ODT) values and calculated log (1/ODT) values on

equation (4). An analysis of the 75 observed and calculated

values showed that the average error, AE, between the

observed and the calculated values was –0.06 log units,
the average absolute error, AAE, was 0.54 log units and

the SD was 0.66 log units. The very small AE shows that

Table 1 Continued

Substance Log
(1/ODT)

Substance Log (1/ODT)

Isobutyric acid 2.824 Styrene 1.456

n-Valeric acid 4.432 Phenol 2.252

Isovaleric acid 4.108 o-Cresol 3.553

n-Hexanoic acid 3.222 m-Cresol 4.000

Ethanol 0.284 p-Cresol 4.268

n-Propanol 1.027 Furan �0.996

n-Butanol 1.420 Pyridine 1.201

Hydrogen sulfide 3.387 a-Pinene 1.744

Methyl mercaptan 4.155 b-Pinene 1.481

Ethyl mercaptan 5.060 Limonene 1.420

n-Propyl mercaptan 4.886 n-Butyl acrylate 3.260

Isopropyl mercaptan 5.222 Isobutyl acrylate 3.046

n-Butyl mercaptan 5.553 Methyl methacrylate 0.678

Isobutyl mercaptan 5.167 tert-Butyl mercaptan 4.538

sec-Butyl mercaptan 4.523 n-Amyl mercaptan 6.108

Methyl acrylate 2.456 Isoamyl mercaptan 6.114

Ethyl acrylate 3.585 n-Hexyl mercaptane 4.824

Indole 3.523 Dimethyl sulfide 2.523

Skatole 5.252 Diethyl sulfide 4.481

Thiophene 3.252 Dimethyl disulfide 2.658

Diethyl disulfide 2.699

Table 2 The 13 compounds identified as outliers during the preliminary
analysis

Propane Ethyl isobutyrate

Butane Ethyl n-valerate

1-Octene Methanol

1-Nonene Isopropanol

Methyl formate tert-Butanol

Ethyl n-butyrate Acetone

Dichloromethane

210 M.H. Abraham et al.



there is little bias in the assignments of equation (4), but the

large values of AAE and SD imply that there is a considerable

inconsistency in the Nagata’s data. This in turn suggests that
any equation constructed to correlate Nagata’s data will not

have an AAE value less than about 0.54 log units or an SD

value of less than 0.66 log units, unless the equation is seri-

ously over fitted.

From our preliminary analysis, we excluded the 13 com-

pounds in Table 2, and we assigned indicator variables as

follows. M is the variable for the mercaptans and takes

the value M = 1 for mercaptans and M = 0 for all other com-
pounds. AL is the variable for aldehydes and takes the value

AL = 1 for aldehydes and AL = 0 for all other compounds.

AC is the variable for acids and takes the value AC = 1 for

acids and AC = 0 for all other compounds. UE is the variable

for unsaturated esters and takes the value UE = 1 for unsat-

urated esters and UE = 0 for all other compounds. Applica-

tion of equation (1), plus the indicator variables resulted in

equation (5) where the 193 compounds are those in Table 1:

Logð1=ODTÞ= – 1:826 + 0:882E + 0:408S + 0:999A

+ 2:196B + 0:578L+ 4:065M+ 1:805AL

+ 1:424AC + 1:290UE;

ð5Þ

N = 193; R2 = 0:748; SD = 0:830; F = 59:8:

The statistics of equation (5) can be regarded as reason-

able, especially because we suggest that the self-consistency

of Nagata’s data is around 0.66 log unit. Following our

previous work (Abraham et al. 2001), we added a term in

L2 to equation (5), but it led to no improvement in the sta-

tistics. Equation (5) appears to be the first equation proposed
for the correlation of Nagata’s data.

The indicator variables used in equation (5) are not just

arbitrary variables used to obtain a better fit to the data; they

serve a purpose beyond any increase in fit to the equation.

Alarie, Nielsen, et al. (1998) and Alarie, Schaper, et al.

(1998) investigated the sensory irritation of mice by airborne

chemicals and classed chemicals as acting by a physical

mechanism (p) or by a chemical mechanism (c). Compounds
that induced sensory irritation by a chemical mechanism

were identified through an increase in potency by compari-

son with that calculated for irritation by a physical mecha-

nism. In essence, this is the same procedure that we have used

to identify compounds that are more potent than calculated

from equation (4). It was shown that carboxylic acids, alde-

hydes, and unsaturated esters were more potent than ex-

pected, exactly as we have found (Alarie, Nielsen, et al.
1998; Alarie, Schaper, et al. 1998).

Incorporation of other data sets

The ODT values obtained by Cometto-Muñiz and Cain

as the C1 data set are in Table 3 (Cometto-Muñiz and

Cain 1990, 1991, 1993, 1994; Cometto-Muñiz, Cain, and

Abraham 1998; Cometto-Muñiz, Cain, Abraham, et al.

1998). If we omit acids and aldehydes, because of the prob-
lem of the necessity for indicator variables, the average

difference is 2.129 log units between the Nagata data set

and the C1 data set for 30 common compounds. Thus,

Figure 1 Plots of log (1/ODT) against L for 4 different homologous series of VOCs. Calculated line without the indicator variable ( – – – – – – ). Calculated
line with the indicator variable (– – – – – –). Outliers are shown as s. Note that the slopes of the calculated lines are all the same.
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the Nagata absolute ODT values are lower than the C1 val-

ues by a factor of about 100.

In order to obtain a combined equation that is based on the

Nagata values, we introduced an indicator variable, C1, that

would place the C1 data set on the Nagata scale; C1 = 1 for

the Cometto-Muñiz and Cain values and C1 = 0 for the

Nagata values. We also need indicator variables for the

Cometto-Muñiz and Cain C1 data set for carboxylic acids,

C1AC, and for aldehydes, C1AL.
More recently, complete concentration–detection (called

psychometric) odor functions from which the ODT is ob-

tained have been measured (Cometto-Muñiz and Abraham

2008a, 2008b, 2009a, 2009b, 2010a, 2010b; Cometto-Muñiz

et al. 2008). These ODT values, which we denote as set C2,

are all much smaller than those in set C1 and approach ODT

values for the Nagata data set. The C2 data set is given in

Table 4. We can include this data in our ODT analysis by
use of an indicator variable for the C2 data set; C2 = 1

for compounds in the set and zero for compounds outside

the set. In addition, we need indicator variables for carbox-

ylic acids, C2AC, and for aldehydes, C2AL. If the ODT

values in the C2 data set are statistically close to the Nagata

data set, we expect the coefficient of C2 to be very small.

Finally, we hoped to incorporate the set of ODTs for pet-

rochemicals that has been obtained by Hellman and Small
(Hellman and Small 1974), again using a standard protocol.

Although the ODT values were obtained many years ago, the

data set includes several types of compounds not present in

the Nagata, C1, and C2 data sets, and so it seemed of interest

to see if this set of ODT values could also be scaled to the

Nagata set. We simply used the Hellman and Small, HS, data

set as such and incorporated a new descriptor in order to ad-

just the HS set to the Nagata set. The descriptor HS = 1 for
the HS set of log (1/ODT) values, see Table 5, and HS = 0 for

all other values.

Table 3 Cometto-Muñiz and Cain values (set C1) of ODTs (ppm)

Compound Log (1/ODT) Compound Log (1/ODT)

1-Octene �2.310 Toluene �2.190

1-Octyne �2.130 Ethyl benzene �1.260

Butanal �0.477 Propyl benzene �0.470

Pentanal �0.699 Isopropylbenzene �0.033

Hexanal 1.097 Butyl benzene �0.630

Heptanal 1.523 p-Cymene �0.121

Octanal 2.398 Pentyl benzene 0.004

2-Pentanone �0.930 Hexyl benzene 0.190

2-Heptanone �0.270 Heptyl benzene 0.250

2-Nonanone 0.030 Octyl benzene 0.430

Ethyl acetate �2.240 Chlorobenzene �1.110

Propyl acetate �1.390 Pyridine �0.110

Butyl acetate �0.380 a-Pinene �1.277

sec-Butyl acetate �0.570 b-Pinene �1.070

Pentyl acetate �0.070 (R)-(+)-Limonene �0.994

Hexyl acetate 0.200 (S)-(�)-Limonene �0.659

Heptyl acetate 0.010 a-Terpinene �0.152

Octyl acetate 0.410 c-Terpinene �0.992

Decyl acetate 0.500 1,8-Cineole 0.495

Dodecyl acetate 1.360 Linalool 0.022

Formic acid �0.886 Geraniol 1.070

Butanoic acid 2.444 Menthol 1.660

Hexanoic acid 2.585 b-Phenylethyl alcohol 2.190

Octanoic acid 4.959 D-3-Carene �0.223

Methanol �3.180

Ethanol �1.850

1-Propanol �1.150

2-Propanol �2.700

1-Butanol �0.300

2-Butanol �1.980

2-Methyl-2-propanol �2.780

1-Pentanol �0.110

1-Hexanol 0.050

1-Heptanol 1.000

4-Heptanol �0.910

Table 4 Cometto-Muñiz and Abraham values (set C2) of ODTs (ppm)

Compound Log (1/ODT) Compound Log (1/ODT)

Ethanol 0.48 Ethylbenzene 2.22

1-Butanol 2.10 Butylbenzene 2.61

1-Hexanol 2.09 Hexylbenzene 2.36

1-Octanol 2.36 Octylbenzene 1.05

Ethyl acetate 0.61 Propanal 2.70

Butyl acetate 2.37 Butanal 3.33

Hexyl acetate 2.54 Hexanal 3.48

Octyl acetate 1.69 Octanal 3.76

Propanone 0.08 Nonanal 3.27

2-Pentanone 1.00 Helional 3.87

2-Heptanone 2.32 Acetic acid 2.28

2-Nonanone 2.26 Butyric acid 3.58

Toluene 1.10 Hexanoic acid 2.99

Octanoic acid 3.07
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Table 5 Hellman and Small (set HS) of ODTs (ppm)

Compound Log (1/ODT) Compound Log (1/ODT)

Ethene �2.42 Dipropylamine 1.70

Propene �1.35 Diisopropylamine 0.89

Buta-1,3-diene 0.35 Dibutylamine 1.10

Dicyclopentadiene 1.96 Propylenediamine 1.85

5-Ethylidene-2-norbornene 1.70 Ethylene diamine 0.00

1,2-Dichloroethane �0.78 Methanol �0.63

Propylene dichloride 0.60 Propan-2-ol �0.51

Fluorotrichloromethane �0.70 Butan-1-ol 0.52

Diisopropylether 1.77 2-Methylpropan-1-ol 0.17

Dibutylether 1.16 Butan-2-ol 0.92

Ethylene oxide �2.42 3-Methylbutan-1-ol 0.92

1,2-Propylene oxide �1.00 Pentan-1-ol 0.68

1,2-Butylene oxide 1.16 2-Methylbutan-1-ol 1.40

1,4-Dioxane 0.10 Hexan-1-ol 2.00

Propanone �1.30 2-Methylpentan-1-ol 1.62

Butanone �0.30 2-Ethylbutan-1-ol 1.16

4-Methylpentan-2-one 1.00 2-Ethylhexan-1-ol 1.13

5-Methylhexan-2-one 1.92 Diisobutyl carbinol �0.16

Cyclohexanone 0.92 Isodecanol 1.70

2-Methylpent-2-ene-4-one 1.77 2-Butoxyethanol 1.00

Isophorone 0.70 Isobutyl cellosolve �0.03

2,4-Pentanedione 2.00 Diacetone alcohol �0.01

Ethyl acetate �0.80 Methyl ethanolamine 0.00

Propyl acetate 1.30 Dimethylethanolamine 1.82

Isopropyl acetate 0.31 Diethylethanolamine 1.96

Butyl acetate 2.22 Toluene 0.77

Isobutyl acetate 0.46 Isopropylbenzene 2.10

2-Ethylhexyl acetate 1.00 Styrene 1.30

Vinyl acetate 0.92 a-Methylstyrene 1.28

2-Methoxyethyl acetate 0.47 Styrene oxide 1.20

2-Ethoxyethylacetate 1.25 Acetophenone 0.52

Butyl cellosolve acetate 0.96 1,3-Dioxolane �1.23

Ethylene diacetate 1.03 2-Methylpyridine 1.85

Isopropylamine 0.68 2-Methyl-5-ethylpyridine 2.22

Butylamine 1.10 Morpholine 2.00

Diethylamine 1.70 N-Ethylmorpholine 1.10
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For the combined sets of data, the coefficient of C2 was very

small, at –0.020, rather as we had expected, and so this de-

scriptor was dropped to yield the final general equation (6).

We summarize the various indicator variables in Table 6:

Logð1=ODTÞ = – 1:560 + 0:398E+ 0:571S+ 1:103A

+ 1:355B + 0:580L + 3:817M + 1:935AL

+ 1:462AC + 1:310UE – 2:327C1

+ 1:672C1AL+ 2:570C1AC+ 1:826C2AL

+ 0:934C2AC – 0:785HS;

ð6Þ

N = 353; R2 = 0:759; SD = 0:818; F = 70:7;

PRESS= 254:810; Q2 = 0:728; PSD = 0:869:

The statistics of equation (6) are just as good as those of

equation (5), even though we now have no less than 353 data

points. We include the leave-one-out statistics PRESS and

Q2 so that we can calculate the predictive standard deviation,

PSD, from PRESS. The model is fitted without the ith ob-

servation, and this fitted model is then used to predict the
response, ŷ(i) at xi. This is repeated 352 times, so that each

observation has been once excluded. The PRESS residuals

are defined as e(i) = yi – ŷ(i) and PRESS is given as PRESS =P
e(i)

2. Then Q2 = 1 – (PRESS/SST) where SST is the total

sum of squares. PSD is defined similarly to SD; the latter is

given by SD = O[SSE/(N – 1 – v)] where SSE is the sum of

squares of errors and v is the number of independent varia-

bles and PSD = O[PRESS/(N – 1 – v)] (Abraham, Acree, et al.
2009). A value of PSD = 0.869 log units is probably as good

as one can get, if the self-consistency of Nagata’s data is

around 0.66 log unit. It is difficult to apply any general

method of selection in order to construct a training and a test

set for the 353 data points because the latter are ordered into

groups. We therefore simply selected every second com-

pound as a training set. This gave a training set of 176 com-

pounds and a test set of 177 compounds. The training set was
regressed against the descriptors used in equation (6) to yield

an equation very similar to equation (6), with N = 176, R2 =

0.791, and SD = 0.794. This training equation was then used

to predict values for the remaining 177 compounds in the test

set. For the predicted and observed log (1/ODT) values, we

found the absolute error = 0.078, the average absolute error =

0.692, the root mean square error = 0.874, and SD = 0.877 log

units. The very small absolute error means that there is no
bias in the predictions, and the value of SD, very close to

PSD = 0.869, suggests that equation (6) can be used to pre-

dict further values of log (1/ODT) to around 0.88 log units.

We suggest that equation (6) be used in the prediction of fur-

ther values of log (1/ODT) on the Nagata scale. Of course,

only the Nagata indicator variables, M, AL, AC, and UE

then need to be considered.

Scaling to the Nagata set

A plot of calculated values of log (1/ODT) on equation (6)

against the observed values is shown in Figure 2. The 4 sets of

experimental values are randomly distributed around the

line of identity, showing that the indicator variables do in-

deed bring the Cometto-Muñiz and Cain, the Cometto-

Muñiz and Abraham, and the Hellman and Small ODTs
onto the same scale as the Nagata thresholds. The value

of using all 3 sets can be seen by the very wide range of

the experimental log (1/ODT) values shown in Figure 2—al-

most 9 log units. We can also show how the chemical space of

the compounds is increased by the addition of the 3 other

groups to the Nagata set. We can identify chemical space

in terms of the 5 Abraham descriptors in equation (6).

Table 6 The indicator variables used in equation (6)

Symbol Variable

M Mercaptans

AL Aldehydes

AC Carboxylic acids

UE Unsaturated esters

C1 The Cometto-Muñiz and Cain data set

C1AL Aldehydes in the Cometto-Muñiz and Cain data set

C1AC Carboxylic acids in the Cometto-Muñiz and Cain data set

C2 The Cometto-Muñiz and Abraham data set

C2AL Aldehydes in the Cometto-Muñiz and Abraham data set

C2AC Carboxylic acids in the Cometto-Muñiz and Abraham data set

HS The Hellman and Small data set

Figure 2 A plot of log (1/ODT) calculated on equation (6) against log (1/
ODT) observed: s, Nagata data set; d, the C1 data set; :, the C2 data set;
and n, the HS data set.
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A principal component analysis of the values of the 5 de-

scriptors yields 5 orthogonal PCs that contain all the infor-

mation of the 5 descriptors. The first 2 PCs account for 60%

of the total information, and a plot of the scores of PC2

against PC1 will indicate the chemical space in 2 dimensions,
see Figure 3. This figure shows how the chemical space of the

Nagata data set can be expanded by incorporation of the

other 3 data sets.

We investigated the use of a parabolic relationship in L by

adding a term in L2 to equation (6), but the resulting equa-

tion was no better than equation (6). We also investigated an

alternative equation, equation (7). The general equation (1)

has invariably been used to correlate quantities that refer to
transfer from the gas phase to a condensed phase, for exam-

ple, gas to blood (Abraham et al. 2005), gas to brain (Abra-

ham et al. 2006a), gas to muscle (Abraham et al. 2006b), gas

to olive oil (Abraham and Ibrahim 2006) as well as numerous

other gas to solvent partitions. The alternative Abraham

equation, equation (7), has been used to correlate quantities

that refer to transfer from one condensed phase to another,

for example, water to solvent partitions. In equation (7), the
independent variable, V, is the McGowan volume in units of

(cm3 mol–1)/100:

SP = c + eE + sS + aA + bB + vV: ð7Þ

Although equation (7) usually leads to worse statistics

than equation (1) when applied to gas-to-condensed-phase
transfers, we thought it useful to apply equation (7) to the

entire data set used to construct the general equation (6).

The L descriptor in equation (1) is usually obtained exper-

imentally from data on gas chromatographic retention times

(Abraham et al. 2004) or can be estimated from fragment-

based schemes (Platts et al. 1999; ADME Boxes 2010).

However, there is no need even to estimate V because it is

specifically defined in terms of atom and bond contributions
(Abraham and McGowan 1987). All that is required to cal-

culate V is a knowledge of the molecular formula and a count

of the number of bonds, Bn. The latter can be obtained triv-

ially from the algorithm of Abraham (Abraham 1993): Bn =

Na – 1 – R where Na is the total number of atoms in the

molecule and R is the number of rings. There is thus an ad-
vantage of equation (7) over equation (1) in that one less de-

scriptor needs to be determined or estimated. When we

applied equation (7) to the 353 ODTs, we obtained equation

(8) after leaving out the term in C2 (0.138 ± 0.230):

Logð1=ODTÞ= – 1:434 + 1:077E + 0:990S+ 1:088A

+ 1:490B+ 1:373V + 3:777M + 1:820AL

+ 1:453AC + 1:205UE – 2:168C1

+ 1:554C1AL + 2:478C1AC+ 1:933C2AL

+ 1:013C2AC – 0:812HS;

ð8Þ

N = 353; R2 = 0:701; SD = 0:912; F = 52:6;

PRESS= 327:096; Q2 = 0:651; PSD= 0:985:

Equation (8) is not quite as good as equation (6) but might

be useful in cases where the descriptor L is missing. The co-

efficients of the Abraham descriptors are not the same in

equation (8) as in equation (6), because V and L encode

somewhat different chemical information. Hence in compar-

ison of coefficients for various gas-to-condensed-phase pro-
cesses, equation (6) should be used. However, as a practical

equation for the prediction of further values of ODTs on the

Nagata scale, equation (8) is an alternative to equation (6).

Equations 6 and 8 should lead to predictions of log (1/

ODT) to within an SD value of 0.87 or 0.98 log units, respec-

tively. There is already a data base of several thousand vol-

atile compounds for which the descriptors in equations 6 and

8 are available (Abraham 1993; Abraham et al. 2004; ADME
Boxes 2010), and hence, log (1/ODT) values can be predicted

for these compounds straight away. In addition, it is possible

to predict descriptors just from structure (Platts et al. 1999;

ADME Boxes 2010) and so in principle a log (1/ODT) value

can be predicted for almost any structure. Of course, the

same ‘‘caveats’’ with respect to reactive compounds will ap-

ply to both equations 6 and 8; these equations have indicator

variables for compounds containing specific reactive groups.
Hence, the equations cannot be used to predict ODTs for

compounds that contain other reactive groups that we have

not taken into account. Of course, once log (1/ODT) values

are available for a number of compounds with a new reactive

group, equations 6 and 8 can be amended by the incorpora-

tion of a new indicator variable for the new reactive group.

The principal component analysis, the regression equations,

and the various calculations were all carried out using
Minitab software (Minitab 2003).

In studying thresholds for eye irritation and nasal pun-

gency (2 trigeminal, as opposed to olfactory chemosensory
Figure 3 A plot of PC2 against PC1 for all the data points: s, Nagata data
set; d, the C1 data set; :, the C2 data set; and n, the HS data set.
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endpoints), we have recently shown that for several homol-

ogous series, the potency of the higher members of the series

reaches a ‘‘cutoff’’ point where the homologs fail to even

reach a detection threshold (Cometto-Muñiz et al. 2005a,

2005b, 2006, 2007a, 2007b; Cometto-Muñiz and Abraham
2008a, 2008b). This cutoff in potency seems not to be due

to a physical mechanism such as lack of sufficient concentra-

tion to elicit a response but rather to a chemical mechanism

possibly connected with the size of the irritant and the size of

the irritation, that is, nociceptive receptor(s) (Peier et al.

2002; Julius 2005; Macpherson et al. 2005; Bautista et al.

2006; Owsianik et al. 2006; Bandell et al. 2007). In terms

of olfactory detection thresholds, the existence and basis
for a cutoff point has not been yet systematically investigated

as with trigeminal thresholds. If it turns out that there is

a similar cutoff point for ODTs, then none of the equations

we have constructed will correctly predict ODTs for higher

members of homologous series. Because, at least for eye ir-

ritation thresholds, the cutoff point is not reached until the

chain length is about 11–13 carbon atoms for a simple

aliphatic homologous series, this may not restrict the appli-
cation of our equations for odor thresholds very much.

However, it is another caveat to keep in mind.

Comparison of odor threshold data and chemesthetic

threshold data

Whenever applied to odor threshold data, the Abraham
equation fits less well than when applied to chemesthetic

threshold data. The R2 for the odor data equation (6) is

0.759, whereas the R2 for nasal pungency thresholds is

0.955 (Abraham et al. 2001). This suggests that the mecha-

nism that underlies odor detection is more complex than the

mechanism that underlies chemesthetic detection. For olfac-

tion, the variety of perceived qualities and the size of the fam-

ily of genes needed to support transduction of that variety
exceeds that for chemesthesis by an order of magnitude or

more (Bandell et al. 2007). The large difference in complexity

could easily indicate the need for more, or for different,

parameters for olfaction. Without incorporation of such

parameters, whatever their nature, the LFER would in prin-

ciple lack some level of precision.

Another explanation that rests upon a systematic differ-

ence in transduction between olfaction and chemesthesis
seems just as plausible and has important implications for

the nature of detection. The difference in transduction can

be seen in the psychometric functions for olfactory and

chemesthetic detection. Figure 4 shows functions for the de-

tection of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate and

ethanol (Cain et al. 2005). The odor of each increases less

sharply than does its feel in the nose or eyes. A difference

in sharpness has occurred for every material studied for both
outcomes (Cain et al. 2007; Cain and Schmidt 2009). It is

typically in excess of 1–2 log units, see Figure 4. It follows

that the uncertainty in any estimate of an odor threshold will

be much larger than the uncertainty of an estimate of a chem-
esthetic threshold compare SD = 0.27 log units for our equa-

tion for nasal pungency thresholds (Abraham et al. 2001)

Figure 4 Psychometric functions for chemosensory detection of the
plasticizer 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB) and ethanol.
Top panel shows detection of odor, the middle and bottom panels show
detection of feel or irritation. The measurement of feel in the nose entails
localization of which of the 2 nostrils felt the stimulus. Vertical dashed lines
show saturated vapor concentrations (Cain et al. 2005).

216 M.H. Abraham et al.



with SD = 0.82 log units in equation (6). The shallower func-

tions for olfaction represent a systematic difference from

chemesthesis. Although this shows itself in a probabilistic

measure, such as the SD, it actually represents a systematic

difference in how the 2 modalities function. In this respect,
it does not derive from more instability in olfaction, just

a shallower input–output function. The substantive meaning

is that the Abraham equation predicts each outcome approx-

imately as well.

When previously addressed, and on the premise that the

equation fit chemesthesis relatively better, it made sense to

consider that the 2 modalities differed in terms of the spec-

ificity of their determining factors. In light of this new inter-
pretation, they need not differ. The fit of the Abraham

equation to olfaction, as examined here, might be as good

as it is possible to get. If true, then a linear combination

of solvation properties might explain all of olfactory sensi-

tivity except for the groups of chemicals that require index

variables. Nevertheless, insofar as the index variables are ac-

tually constant per group, then the solvation properties

would hold within the group.
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correlation and prediction of VOC thresholds for nasal pungency, eye
irritation and odour in humans. Indoor Built Environ. 10:252–257.

Abraham MH, Gola JRM, Cometto-Muñiz JE, Cain WS. 2002. A model for
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