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Abstract

Odorants and flavorants typically contain many components. It is generally easier to detect multicomponent stimuli than to
detect a single component, through either neural integration or probability summation (PS) (or both). PS assumes that the
sensory effects of 2 (or more) stimulus components (e.g., gustatory and olfactory components of a flavorant) are detected in
statistically independent channels, that each channel makes a separate decision whether a component is detected, and that
the behavioral response depends solely on the separate decisions. Models of PS traditionally assume high thresholds for
detecting each component, noise being irrelevant. The core assumptions may be adapted, however, to signal-detection theory,
where noise limits detection. The present article derives predictions of high-threshold and signal-detection models of
independent-decision PS in detecting gustatory–olfactory flavorants, comparing predictions in yes/no and 2-alternative forced-
choice tasks using blocked and intermixed stimulus designs. The models also extend to measures of response times to
suprathreshold flavorants. Predictions derived from high-threshold and signal-detection models differ markedly. Available
empirical evidence on gustatory–olfactory flavor detection suggests that neither the high-threshold nor the signal-detection
versions of PS can readily account for the results, which likely reflect neural integration in the flavor system.
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Introduction

In the chemical senses, as in other sensory systems, the ability

to detect a weak stimulus—taste, odor, and flavor—often im-
proves when the number of stimulus components increases.

Several formulations have been offered to account for the im-

provement in chemosensory detection, including summation

of the effective concentrations of the stimulus components

(e.g., Stevens 1997; Cometto-Muñiz et al. 2003; Wise et al.

2007) and summation of the sensory responses to the compo-

nents (e.g., Marks et al. 2007; Wise et al. 2007). It may be

tempting to assess improvements in performance against
benchmarks defined by, say, the best detected or most quickly

detected individual component. But such benchmarks fail to

take account of what has been called ‘‘statistical summation’’

(Fidell 1970) or ‘‘probability summation (PS)’’ (Loveless et al.

1970; Graham and Nachmias 1971; Delwiche and Heffelfinger

2005): The improvement in performance that can occur by

chance when a stimulus contains 2 or more components that

are detected independently. To use a familiar analogy: detect-

ing a stimulus that has 2 components is like flipping a coin
twice instead of once. If the probability of detecting each com-

ponent is 0.5, like the probability of flipping a single head, then

the probability of detecting at least 1 of the 2 components in the

mixture would be 0.75, like the probability of turning up at

least 1 head in 2 flips.

Traditional models of PS are sometimes called ‘‘separate-

decision’’ or ‘‘independent-decision models’’ (e.g., Green and

Swets 1966; Fidell 1970; Loveless et al. 1970; Mulligan and
Shaw 1980). These models assume that the processing of each

stimulus component is independent of the processing of other

components and that the neural outputs do not combine. Fol-

lowing common terminology, a subsystem capable of detecting

a given stimulus component is termed a ‘‘channel.’’ Instead of

assuming that stimulus inputs or sensory outputs combine, PS

assumes that a separate decision is made in each channel
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whether a stimulus is detected, a positive response being made if

at least one of the separate decisions is ‘‘yes.’’ Overall detection

performance increases as the number of components increases

when each additional component provides another opportunity

(in an additional channel) to detect the stimulus.
In this article, we describe and evaluate several models of

PS that might apply to chemosensory detection, especially

the detection of compound (gustatory–olfactory) flavorants

presented to the mouth. For example, Ashkenazi and Marks

(2004) and Marks et al. (2007) measured sensitivity to van-

illin (olfactory) and sucrose (gustatory), separately and com-

bined, and found greater sensitivity to the combinations.

DelwicheandHeffelfinger(2005)measuredthresholdstopine-
apple (olfactory) and, in different experiments, aspartame/

acesulfameorMSG(gustatory),separatelyandcombined,also

found greater sensitivity to the combinations, and raised the

possibility that PS might account for the results. We consider

these findings later, after we derive appropriate predictions

from models of PS.

Goals

The present article has 4 main goals: 1) One is to compare the pre-

dictions of separate-decisionmodels of PSderived within 2 broad

theoretical frameworks about detection and discrimination: a

traditional PS framework of ‘‘high-threshold theory,’’ which

assumes little or no sensory noise, and a framework of ‘‘signal-

detection theory (SDT),’’ which assumes substantial noise. 2)

A second goal is to derive predictions of both high-threshold
and signal-detection models of PS in 2 popular detection tasks:

yes/no and 2-alternative forced choice (2AFC). 3) The third goal

is to derive and compare predictions in 2 experimental designs: in

blocked designs, where each possible flavorant, for example, gus-

tatory(G),olfactory(O),andgustatory–olfactorymixture(M), is

presented in a separate block of trials, and in interleaved designs,

where trials containingsingleandcompoundflavorantsare inter-

leaved within the same block. 4) The fourth goal is to assess PS
models not only when subjects try to detect weak (threshold-

level) stimuli, where signal-detection models seem more ap-

propriate than high-threshold models but also when subjects

try to respond as quickly as possible to flavorants presented at

suprathreshold concentrations, where high-threshold models

are more plausible. Note that even though we couch the predic-

tionsintermsofthedetectionofgustatory–olfactoryflavormix-

tures, theframeworkofPSisabroadone,as itmayalsoapplyto
the detection of gustatory mixtures, olfactory mixtures, or in-

deed multisensory stimuli in any modality—as long as the sto-

chastically independent sensory channels produce separate

decisions about the detection of each component.

High-threshold versus signal-detection
frameworks

In seeking to account for sensory detection, models of PS tra-

ditionally assume a high-threshold process, in which sensory

responses are triggered only by stimulus events, intrinsic sen-

sory noise being absent or negligible. When subjects do make

false-positive responses (i.e., respond yes when the stimulus is

absent), the responses are interpreted not as the result of noise

in the perceptual system but as randomly occurring guesses.
Evidence is substantial, however, that in detecting weak stimuli,

false positives typically do reflect noise in the system, noise that

is confused with effects of external stimuli (Green and Swets

1966). Noise is a critical factor limiting detection in virtually

all sensory systems—including the chemical senses (e.g., Linker

et al. 1964; Semb 1968; O’Mahony 1972; Irwin et al. 1992).

Consequently, a central aim of the present article is to develop

and compare high-threshold and signal-detection models of
PS as they could apply to the detection of gustatory–olfactory

flavor mixtures.

Assumptions of the PS models

To repeat, the present models of PS are formulated to describe

the detection of flavorants comprising a G component or/and
an O component. The models rest on 3 main assumptions:

First, each component is detected by a separate subsystem

or channel, meaning that activity in the 2 channels is ‘‘stochas-

tically independent and uncorrelated’’: If noise is present, it is

uncorrelated across channels. Moment-to-moment or trial-

by-trial variations in the levels of sensory activity produced

by the components are uncorrelated. And the probability

on any trial of detecting one component is unaffected by
the presence of the other component or whether the other

component is detected when it is present. Second, on each trial

(yes/no task) or in each observation interval of a trial (tempo-

ral 2AFC), a separate decision is made in each channel as to

whether or in which interval a stimulus (signal) is present. And

third, in yes/no tasks, the subject responds yes if the decision is

positive in either channel or both. In 2AFC tasks, the subject

chooses the interval in which one channel or both detects the
stimulus; if neither channel detects the stimulus, the subject

guesses.

For convenience of exposition, our models also make 3 aux-

iliary assumptions: first, that people fully monitor the gustatory

channel, the olfactory channel, or both when the psychophys-

ical task requires or encourages it; second, that guessing mech-

anisms are unbiased in forced-choice tasks; and third, that, in

yes/no tasks, subjects maintain constant response criteria
across, for example, different blocks of trials. For details

regarding the auxiliary assumptions, see Appendix A.

Blocked versus interleaved designs

Within the framework of SDT, models of PS can make mark-

edly different and often surprising predictions depending on

whether the flavorants, G, O, and M, are presented in blocked
or in interleaved designs (analogous predictions also derive

from signal-detection models that assume neural integration

of the components; see Marks et al. 2007). In blocked designs,
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subjects can attend to just the G channel when all stimuli

within a block are gustatory and to just the O channel when

all stimuli are olfactory. In blocks containing mixtures, how-

ever, the subjects must attend to both channels. Because each

channel has its own intrinsic noise, overall noise will be greater
when subjects attend to both channels rather than only one. In

blocked designs, therefore, noise will be greater in blocks with

mixtures than in blocks with single-component flavorants, and

so, correspondingly, the rate of false-positive responses will be

greater. This is not so in intermixed designs, where there is al-

ways noise in both channels and where, therefore, the rate of

false positives is the same for all flavorants. Ceteris paribus,

false-positive rates for mixtures will be the same in interleaved
and blocked designs, whereas false-positive rates for single-

component flavorants will be greater in interleaved designs.

As a consequence, signal-detection models predict different

magnitudes of PS when trials are interleaved and blocked.

High-threshold models of PS

Yes/no tasks

No correction for guessing

PS has traditionally been used within the framework of

high-threshold models of detection (e.g., Green and Swets

1966; Brown and Hopkins 1967), which assume that noise

in each sensory channel is negligible and may be ignored.

Consequently, when a stimulus is presented to a given channel,

the channel either detects the signal or does not. In yes/no para-

digms, the subject is instructed to respond ‘‘yes’’ on trials that

the stimulus is detected and ‘‘no’’ on trials that it is not. Sub-

jects may give a small number of false-positive responses on
nonstimulus trials, but false positives are treated as random

guesses, amenable to correction. Within high-threshold theory,

absolute threshold has typically been defined as the level of the

stimulus that produces a probability of detection = 0.5.

Consider the detection of gustatory and olfactory flavor-

ants, where pG and pO are the high-threshold probabilities that

the gustatory channel detects G and the olfactory channel de-

tects O, respectively, when each component is presented alone.
PS states that M, a mixture of G and O, essentially provides

the subject with 2 independent opportunities to detect the

stimulus, so M will be detected with probability, pM, as given

by the equation:

pM = 1 – ð1 – pGÞ � ð1 – pOÞ= pG + pO – pG � pO: ð1Þ

Equation (1) also appears in Table 1, which summarizes all of

the main predictions of the various PS models. If G and O are

bothpresentedattheir thresholdconcentrations(pG=pO=0.5),

then PS predicts that pM will equal 0.75.

Thresholds predicted by PS

Because the probability of detecting a flavorant generally in-
creases as its concentration increases, threshold concentrations

Table 1 Equations describing the predictions of PS for detection of gustatory–olfactory flavorants (independent decisions), applied to 1) high-threshold and
signal-detection models of detection, 2) 2 psychophysical tasks (yes/no; 2AFC), and 3) 2 experimental designs (single flavorants and mixtures presented in
separate blocks of trials; single flavorants and mixtures intermixed within a single block of trials)

Blocked Intermixed

High threshold

Yes/no pM =pG +pO �pG ·pO

p#
M
= pG � F

ð1� FÞ+
pO � F
ð1� FÞ �

pG � F
ð1� FÞ·

pO � F
ð1� FÞ

2AFC pcM = 2 · ðpcG +pcO �pcG · pcOÞ� 1= 0:5 ·
�
1+p1M

�

Signal detection

Yes/no dG#= zðHGÞ� zðFGÞ dG#= zðHGÞ� zðFG + FO � FG · FOÞ

dO#= zðHOÞ� zðFOÞ dO#= zðHOÞ� zðFG + FO � FG · FOÞ

dM#= zðHG +HO �HG ·HOÞ� zðFG + FO � FG · FOÞ

2AFC pcG =pcG# pcG =0:75· pcG#

pcO =pcO# pcO =0:75· pcO#

pcM = 0:5 · ðpcG +pcOÞ

pG, probability of detecting the gustatory flavor component; pO, probability of detecting the olfactory flavor component; pM, predicted probability of detecting
the gustatory–olfactorymixture, not corrected for guessing; F , rate of guessing, in high-thresholdmodels; p#M, predicted probability of detecting the gustatory–
olfactory mixture, corrected for guessing; pcG, probability of correctly detecting the interval containing the gustatory component; pcO, probability of correctly
detecting the interval containing the olfactory component; pcM, predicted probability of correctly detecting the interval containing the mixture; HG and HO, hit
(correct detection) rates for the gustatory and olfactory components, respectively; HM, predicted hit (correct detection) rate for the mixture; FG and FO, false
alarm (false positive) rates when no stimulus is presented in the gustatory and olfactory channels, respectively; d#

G and d#
O, detectability of the gustatory and

olfactory components, respectively; d#
M, predicted detectability of the mixture; pc#G and pc#O, probability of correctly detecting the interval containing the

gustatory or olfactory component, respectively, corrected for guessing.
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of the G and O components (concentrations producing detec-

tion probability = 0.5) are smaller in mixtures than they are

when either G or O is presented alone. In this respect, thresh-

olds for flavor mixtures may suggest some kind of sensory

‘‘addition.’’ But PS alone does not does not specify how far
threshold will decline as the number of components increases.

The decline in threshold depends on both the number of stim-

ulus components and the slopes of the psychometric functions

relating probability of detection to stimulus concentration: the

steeper the slope of either component, the greater the change in

detection with a given change in concentration, and hence, the

smaller the effect of adding a second component, as measured

in units of concentration.
Figure 1 gives 2 sets of examples, each showing theoretical

psychometric functions for G and O flavorants (assumed for

simplicity to be identical) and for their mixture M. In both sets,

the psychometric function for M follows the prediction of the

high-threshold model of PS. In the set on the left, PS predicts

that the function for the mixture will be separated horizontally

from the function for the single components by a factor of 2 in

concentration: The threshold of M equals 1 unit on the con-
centration scale (1 unit of G combined with 1 unit of O) com-

pared with 2 units for G or O alone. In other words, these

theoretical functions are consistent with ‘‘simple addition of

effective stimulus concentration’’ (as reported by Stevens

1997 for gustatory mixtures and by Cometto-Muñiz et al.

2003 for weak odor mixtures). The appearance of stimulus ad-

dition in Figure 1, however, is wholly a consequence of PS.

In the set on the right, both psychophysical functions are
considerably flatter in slope. As a result, PS now predicts that

the psychometric function for M will be displaced horizontally

from the function for G and O by a factor exceeding 4. That is,

the threshold for each component in M is less than 1/4 the

threshold for G or O presented alone. This outcome by itself

might suggest some kind of ‘‘superaddition,’’ but here it sim-

ply reflects the outcome of PS when G and O have relatively

flat psychometric functions. As a general rule, given a high-

threshold model of PS, the summation ratio (the ratio of

threshold concentration of each component presented alone

to threshold concentration in the mixture) varies inversely

with the slopes of the psychometric functions.

Correction for guessing

The simple PS model expressed in equation (1) assumes that
subjects never produce false-positive responses by guessing.

It is straightforward to extend the model to incorporate

false-positive guesses, F, which can be estimated from the

proportion of yes responses on trials containing just water

(see Appendix B). Knowing F makes it possible to calculate

p#
M

, the ‘‘true’’ probability of correctly detecting the mixture

when adjusted for guesses:

p#
M
= ðpG –FÞ=ð1 –FÞ + ðpO –FÞ=ð1 –FÞ
– ðpG –FÞ=ð1 –FÞ � ðpO –FÞ=ð1 –FÞ;

ð2Þ

where pG > F and pO > F (see Macmillan and Creelman

2005).

2AFC tasks

Predictions of the model

The PS model can also apply to results obtained with forced-

choice methods, for instance, the commonly used 2AFC,

where a flavorant, single or mixture, is presented on each trial

in either the first or the second interval, water in the other, and

the subject must decide which interval contained the flavorant.

According to high-threshold theory, noise per se never leads to

detection, so nothing is detected in the interval that contains
only water. Defining pcG, pcO, and pcM as the proportions of

correct responses given to the gustatory and olfactory compo-

nents and to their mixture, respectively, the high-threshold

model of PS predicts that

pcM = 2 � ðpcG + pcO – pcG � pcOÞ: ð3Þ

For details, see Appendix C.

In a yes/no task, the proportion of detections (assuming no

guesses) increases from 0 (undetected) to 1.0 (always de-

tected). In 2AFC, however, the corresponding proportion

of correct responses increases from 0.5 to 1.0. A threshold

defined by p = 0.5 in yes/no detection is therefore equivalent
to threshold defined by pc = 0.75 in 2AFC. With individual

components at threshold (p = 0.5 in yes/no; pc = 0.75 in

2AFC), the high-threshold model predicts detection proba-

bility of the mixture to be 0.75 in yes/no and 0.875 in 2AFC.

A graphic illustration

Figure 2 illustrates the predictions made by the high-threshold

model of PS for performance in 2AFC. Each curve predicts

how the probability of correctly detecting the mixture, pcM,
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Figure 1 Theoretical psychometric functions for single flavorants (gusta-
tory, olfactory) presented alone (lower curve in each pair) and together as
a mixture (upper curve in each pair). Detection of the mixture is calculated
from a model of PS that assumes high thresholds (negligible noise). The
slopes of the functions are shallower in the pair on the right than the pair on
the left, thereby producing a greater difference between the thresholds for
single components and their mixture (horizontal separation).
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increases with increasing detectability of the gustatory compo-

nent, pcG, 0.5 < pcG < 1, given a fixed probability of correctly

detecting the olfactory component, pcO, 0.5 < pcO < 1. Fol-

lowing equation (3), for a given level of pcO, pcM increases

linearly with pcG and, for a given level of pcG, pcM increases

linearly with pcO. The circles, connected by dashed lines, show

how the predicted value of pcM varies when the 2 components
are equally detectable: pcG = pcO.

Signal-detection models

High-threshold theory has a notable weakness: It fails to rec-

ognize the role of noise in limiting sensory detection. In yes/no

tasks, plots of the proportion of correct detections against the

proportion of false-positive responses (receiver-operating char-

acteristics or ROCs) are typically curvilinear, contrary to the

straight lines predicted by high-threshold theories that treat

false positives as guesses but consistent with the concave func-
tions predicted by SDT (Swets et al. 1961; Green and Swets

1966; Macmillan and Creelman 2005; for ROCs in taste, see

the plot by Irwin et al. 1992 of the data of Linker et al. 1964).

In SDT models of PS, increasing the number of stimulus

components, and hence, the number of detection channels,

increases the number of opportunities to correctly respond

to a signal but also increases the number of opportunities

to incorrectly respond to noise. Again, it is useful to assess
the predictions of PS in 2 psychophysical tasks, yes/no and

forced choice. Within a framework of SDT, moreover, the

predictions of PS can differ markedly with different experi-

mental designs, in particular, when single-component flavor-

ants and mixtures are presented in separate blocks of trials or

interleaved within the same block.

Although several investigators in vision have developed

variants of PS that incorporate sensory noise (e.g., Graham

1989; Eckstein et al. 1996; Shimozaki et al. 2002), these mod-

els abandon the traditional framework of a separate decision

in each channel. A notable example is the model of visual

detection proposed by Tyler and Chen (2000). That model

is predicated on the existence of very large numbers, perhaps
thousands, of cortical detectors responsible for detecting

visual stimuli. Tyler and Chen’s model is not, however,

one of separate decisions but of ‘‘maximization.’’ The model

assumes that, across both intervals of a 2AFC, the detection

apparatus scans all of the channels for the maximal level

of activity (which could be produced by noise alone or by

signal + noise) and then chooses the interval in which activity

is greatest (the model also assumes that all channels are
equally sensitive and have identical Gaussian noise). Al-

though maximization models typically assume that channels

are independent, Tyler and Chen do not assume a separate

decision in each channel—clearly implausible given the pu-

tative existence of perhaps thousands of them. By way of

contrast, the present models follow the traditional sepa-

rate-decision principle of PS. Our models assume that, given

gustatory and olfactory flavorants, the flavor system makes
separate decisions in just 2 channels and then uses the deci-

sions to make a single behavioral response.

Yes/no tasks

Blocked conditions

In yes/no tasks, each trial either contains a flavorant or does

not, and, according to SDT, the subject responds yes when

the level of internal activity surpasses criterion, whether this

activity is produced by signal + noise or by noise alone.
When the level of activity falls below criterion, the subject

responds no. In blocked conditions, when trials contain

a single flavorant, the subject can ignore the O channel

when detecting G or ignore the G channel when detecting

O. Performance with single flavorants then may be charac-

terized by HG and FG, the hit and false-positive rates in the

G channel, and by HO and FO, the corresponding rates in

the O channel. Using a simple version of SDT in which
noise and signal + noise have equal variance, the detectabil-

ity of each flavorant presented alone, d#
G and d#

O, equals the

difference between the corresponding z-transformed hit

and false-positive rates:

dG# = z
�
HG

�
– z

�
FG

�
; ð4aÞ

dO# = z
�
HO

�
– z

�
FO

�
: ð4bÞ

In blocks of trials containing mixtures, however, the sub-
jects must monitor both channels, responding yes whenever

activity in either channel surpasses that channel’s criterion.

In the equal-variance SDT version of PS with criterion con-

stant across blocks of trials, the detectability of the mixtures

is given by

Figure 2 Predicted proportion correct detection of flavor mixtures (pcM) in
2AFC, plotted as a function of the detectability of the gustatory component
(pcG = 0.55–0.95) for each of 5 levels of detectability of the olfactory
component (pcO = 0.55–0.95). The dashed line connects points at which
pcG = pcO. The predictions derive from a high-threshold model of PS.
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dM# = z
�
HG +HO –HG �HO

�
– z

�
FG +FO –FG � FO

�
ð5Þ

For details, see Appendix D-1.

A graphic illustration

Unfortunately, equations (4) and (5) do not allow a simple way
to characterize how sensitivity (d#) to the mixtures depends on

sensitivity to the components across all of the possible combi-

nationsofhitandfalse-positiveratesinGandO.Toexaminethe

relation between dM# and dS# (defined as the average d# for the

single components, dG# and dO#), we used equations (4) and (5)

to calculate values of dG#, dO#, and d#
M over possible hit rates

and false-positive rates between 0.1 and 0.9 in steps of 0.1, under

theconstraintthat, foreachcombinationofHandFandforboth
G and O,H> F. Using these calculated values, Figure 3 plots dM#
againstdS#, the average ofdG# anddO#. The left panel shows results

for the subset of hit and false-positive rates where bothH(G)=

H(O) and F(G) = F(O); the right panel shows results where

H(G) 6¼ H(O) and/or F(G) 6¼ F(O).

When H(G) =H(O) and F(G) = F(O), the relation between

dM# and dS# is a simple and precise one: dM# is directly propor-

tional to dS# and all of the predicted values fall close to the
linear function (r2 = 0.999). The slope of the function is

1.25, meaning that dM# is 25% greater than dS#. An increase

in sensitivity of 25% slightly exceeds the increase of about

19% derived from the maximization model of Tyler and

Chen (2000) applied to a system with 2 channels. As the right

panel of Figure 3 indicates, the same linear function also

broadly characterizes the results when H and/or F differ

in G and in O. In some instances, however, the variations
around the linear function are substantial, the implications

therefore consequential.

Consider the following example: a subject responds yes to

a gustatory flavorant with p = 0.5 (HG = 0.5) and to water

with p = 0.05 (FG = 0.05), giving a value of dG# = 1.64. Further-

more, assume corresponding values for the olfactory flavorant

of HO = 0.5 and FO = 0.2, giving dO# = 0.84. If the criteria in the

G and O channels remain the same in trials containing mix-

tures, then PS predicts HM = 0.75 and FM = 0.24, giving dM# =
1.38. In this example, sensitivity to the mixture is actually

smaller than sensitivity to the gustatory flavorant alone:

With a signal-detection model of PS, the predicted sensitivity

to a mixture can vary widely with changes in the locations of

the decision criteria in the 2 channels—even when values of

d# do not change. Given certain locations of response crite-

ria, the addition of a second flavorant could have a greater

effect on false positives than on hits, the net result being a re-
duction rather than an increase in overall sensitivity. It is

plausible, however, that subjects would avoid setting their

response criteria this way but would adjust the locations

of the criteria to avoid such an outcome.

Interleaved conditions

In interleaved conditions, the PS model assumes that subjects

fully monitor both the G and the O channels on trials contain-
ing single flavorants as well as trials containing mixtures.

Thus, with interleaved trials, the same false-positive rate

(FG + FO – FG * FO) limits the detectability of single compo-

nents and mixtures alike. Sensitivity to mixtures is once again

given by

dM# = z
�
HG +HO –HG �HO

�
– z

�
FG +FO –FG � FO

�
: ð6Þ

Equation (6) is identical to equation (5), characterizing dM# in

blocked conditions, where HG = HG/M, HO = HO/M, FG =

FG/M, and FO = FO/M. Sensitivity to single flavorants, however,

is now given by

dG# = z
�
HG

�
– z

�
FG +FO –FG � FO

�
; ð7aÞ

dO# = z
�
HO

�
– z

�
FG +FO –FG � FO

�
ð7bÞ

Comparing equations (7a) and (7b) to (4a) and (4b) makes

it clear why the SDT framework predicts greater PS when

stimuli are interleaved rather than blocked: not because sen-

sitivity to the mixture is better when stimuli are interleaved,
but because sensitivity to the single flavorants is poorer. When

trials containing single flavorants and mixtures are interleaved

within the same block, all flavorants share a common pooled

false-positive rate. Consequently, as long as dG# > 0 and dO# > 0,

then dM# > dG# and dM# > dO# ; that is, sensitivity to the mixtures

is always greater than sensitivity to each of the components.

Note that the signal-detection models predict different out-

comes when single-component trials and mixture trials are
blocked versus interleaved because the models assume that

people can attend selectively to the gustatory and olfactory

flavorants. If the flavor system were to operate as a unitary

attentional channel, attention always being directed fully to

both gustatory and olfactory flavorants, then the model

Figure 3 Predicted sensitivity (d#M) to flavor mixtures, plotted as a function
of the average sensitivity (d#S) to each component, gustatory and olfactory.
The left panel shows the predictions when the hit rates and false-positive
rates for the 2 components are equal. The right panel shows the prediction
when the hit rates and/or false-positive rates for the 2 components are
unequal. The predictions derive from a signal-detection model of PS, applied
to yes/no tasks in which each single-component flavor and the flavor
mixture are presented in different blocks of trials.
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would predict equivalent performance in both blocked and

interleaved designs. In both, the model would predict the

performance derived here for the interleaved condition.

2AFC tasks

In 2AFC, the probability of responding correctly varies from

0.5 (chance) to 1.0 (perfect performance). Once again, it is

necessary to treat the blocked and interleaved conditions
separately because the signal-detection version of PS makes

substantially different predictions in these 2 conditions.

Blocked conditions

When trials are blocked, subjects need monitor only the G or

O channel in blocks containing only the gustatory or olfactory

flavorant, respectively. Consequently, the overt response

probabilities of correctly choosing the intervals containing

G and O presented alone, pcG and pcO, are equal to the un-

derlying probabilities, pcG#, and pcO#, that the intervals con-

taining G and O are chosen correctly within the G and O
channels, respectively,

pcG = pcG#; ð8aÞ

pcO = pcO#: ð8bÞ

With mixtures, M, subjects obviously must monitor both

channels, so pcM is given by

pcM = pcG# � pcO# + 0:5 �
�
pcG# – pcG# � pcO#

�

+ 0:5 �
�
pcO# – pcG# � pcO#

�
= 0:5 �

�
pcG# + pcO#

�

See Appendix D-2. Combining equation (9) with equations

(8a) and (8b) gives

pcM = 0:5 � ðpcG + pcOÞ: ð10Þ

This is a remarkable outcome: Given a signal-detection

framework, a 2AFC method, and conditions in which the gus-

tatory flavorants, olfactory flavorants, and mixtures are pre-

sented in separate blocks of trials, an independent-decision

process of PS predicts averaging. If the individually presented

gustatory and olfactory components G and O are equally de-
tectable, pc = pcG = pcO, then PS predicts that detection of the

mixture M will be the same as the detection of each component

alone—that is, the PS model predicts no improvement at all in

forced-choice performance. If the components are unequally

detectable, PS predicts the detection of the mixture to fall be-

tween the detection of the component measures.

Finally, it is important to keep in mind that this prediction

follows from the assumption that people can attend separately
to gustatory and olfactory flavorants. If not, if attention to

both gustatory and olfactory components were always man-

datory, then the PS model predicts that performance would

be the same when trials are blocked and when they are

interleaved.

Interleaved conditions

Within a framework of SDT, a separate-decision model of PS

does predict improvement in the detection of mixtures com-
pared with detection of separate components in 2AFC—when

trials containing single flavorants and mixtures are interleaved

within the same block. Improvement in the detection of

mixtures does not occur because the probability of correctly

choosing the intervals with the mixtures improves with

interleaving—forced-choice detection of mixtures again being

described by equation (9)—but because the probabilities of

correctly choosing the intervals containing G alone and O
alone, pcG and pcO, are smaller when trials are interleaved

(see Appendix D-3):

pcG = 0:75 � pcG#; ð11aÞ

pcO = 0:75 � pcO#: ð11bÞ

In other words, given PS, interleaving individual gustatory

and olfactory flavorants within the same block of trials instead
of presenting them in separate blocks results in a 25% reduc-

tion in the proportion of correct 2AFC responses (eqs. 11a

and 11b vs. eqs. 8a and 8b)—essentially, the result of adding

false-positive responses in the unstimulated channel.

When each flavor component is undetectable, performance

in both blocked and interleaved conditions is chance, pcS = 0.5.

When performance in the blocked condition increases to

pcS = 0.75, the level used traditionally to define threshold,
pcS in the interleaved condition is predicted to equal 0.625.

What is the empirical evidence?

To the best of our knowledge, only 3 studies have measured

sensitivity to threshold-level gustatory and olfactory flavorants

and their mixtures in ways that permit analysis in terms of PS.

Delwiche and Heffelfinger (2005) measured detection sensitiv-
ity to 2 gustatory flavorants, MSG and aspartame/acesulfame

potassium mixture, an olfactory flavorant (pineapple), and the

2 possible gustatory–olfactory mixtures, MSG-pineapple and

aspartame/acesulfame-pineapple. By combining pineapple

with both the sweet aspartame/acesulfame and the savory

MSG, the authors could ask whether the detection of flavor

mixtures differs when the components were more or less ‘‘har-

monious.’’ Sensitivity was measured by presenting, on each tri-
al, either a flavorant or water and by obtaining graded

measures of the subject’s certainty that the trial contained

the one or the other. The authors then transformed these meas-

ures into values equivalent to proportion correct in 2AFC.

Results were similar for both mixtures, suggesting that ‘‘har-

mony’’ (or perhaps prior familiarity) had little effect. Because

the individual flavorants were presented at several concentra-

tions, Delwiche and Heffelfinger also sought to analyze the re-
sults from the perspective of PS, concluding that, in general,

their model of PS did not provide a satisfactory account of

their results. Unfortunately, this conclusion is not tenable,

ð9Þ
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given that the authors analyzed the data using equation (1),

which applies to yes/no tasks rather than equation (3), which

applies to forced choice. Relative to the prediction of equation

(3), equation (1) substantially overestimates the predicted val-

ues. In principle, signal-detection as well as high-threshold
models of PS could be tested against the original data, given

that Delwiche and Heffelfinger measured hits and false alarms,

from which they derived the measures of proportion correct in

forced choice.

Marks et al. (2007) used a 2AFC method to measure the de-

tectionofsucrose(gustatory),vanillin (olfactory),andsucrose–

vanillin flavor mixtures. In the main experiment, 8 subjects

detected 9 mixtures produced by combining each of 3 possible
concentrationsofsucrosewitheachof3possibleconcentrations

of vanillin; trials containing the 9 mixtures were interleaved

within each test session and each subject was tested in multiple

sessions. The 3 concentrations of each flavorant were selected

on the basis of preliminary tests to produce proportions of cor-

rectdetectionsofapproximately0.65,0.75,and0.85.Sensitivity

to the 3 concentrations of the single flavorants was then mea-

sured in an auxiliary experiment, sessions of which were inter-
polated between sessions of the main experiment.

Although Marks et al. (2007) did not analyze their results

in terms of PS, it is possible to compare their data to the pre-

dictions of both the high-threshold and the signal-detection

models. See Figure 4. According to equation (3), which char-

acterizes the high-threshold model, the proportion of correct

responses to the mixtures, pcM, should equal 2 * (pcG + pcO –

pcG * pcO) – 1. Values of pcG and pcO were jointly estimated
by an iterative method that minimized the sum of squared

deviations between predicted and observed values. From

equation (3), pcM should be linearly related to the underlying

value of pcG given a fixed value of pcO, and, furthermore, the

linear functions for different values of pcO should tend to

converge, given how the slopes of the linear functions vary

with pcO. As the left panel of Figure 4 indicates, the predicted
values provide a reasonable description of the results, in that

the data do conform to a set of converging functions. Recall

that the signal-detection model, equation (10), predicts aver-

aging of the component probabilities pcG and pcO, hence,

parallel functions, as shown by the straight lines in the right

panel of Figure 4.

Statistical reanalysis of data of Marks et al. (2007) (3 · 3

repeated-measures ANOVA) reveals a significant interaction
between gustatory concentration and olfactory concentra-

tion, F2,14 = 3.35, P < 0.025. This interaction signifies a de-

parture from parallelism, inconsistent with the prediction of

the signal-detection model, although compatible with the

prediction of the high-threshold model. Furthermore, the

high-threshold model provides a better overall fit to the data,

as quantified by the sum of squared deviations between pre-

dicted and observed values: 0.00242 for the high-threshold
model versus 0.00433 for the signal-detection model.

It is also possible to compare the predictions of the 2 models

of PS with regard to the measures of sensitivity to the pure gus-

tatory and olfactory flavorants, obtained in the auxiliary exper-

iment on the same 8 subjects. Because the high-threshold model

predicts ‘‘summation’’ of pcG and pcO, whereas the signal-

detection model predicts averaging, fitting the high-threshold

model to the data produces smaller estimates of pcG and
pcO than does fitting the signal-detection model. The mea-

sured values of pcG and pcO as well as the values estimated

Figure 4 Average proportions of correct detections of 9 flavor mixtures (sucrose and vanillin), pcM, compared with the predictions of 2 models of PS: high
threshold (left panel) and signal detection (right panel). The straight lines represent best fits based on the 2 models, each of which requires estimating the
proportions of correct detections of the individual flavorants, pcG (sucrose) and pcO (vanillin). These estimates differ in the 2 models. In each panel, the
measures of pcM are plotted as a function of the estimated value of pcG, separately for each estimated value of pcO. Data are from Marks et al. (2007).
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from the 2 models all appear in Figure 4. It is clear that the

high-threshold model of PS underestimates all 3 values of pcG

for pure sucrose and all 3 values of pcO for pure vanillin,

whereas the signal-detection model overestimates all 6 values.

Note, however, that detection of pure sucrose and detection of
pure vanillin were measured in separate blocks of trials, a con-

dition that, according to the signal-detection model, can lead,

through selective attention, to higher values of pcG and pcO;

results of a second auxiliary experiment by Marks et al. (2007),

conducted on 4 of the 8 subjects of the main and first auxiliary

experiments, supported this prediction. The results of the sec-

ond auxiliary experiment gave lower values of pcG and pcO

when the single flavorants were intermixed rather than blocked.
Takentogether,theresultsofMarksetal. (2007)fail tosupport

either the high-threshold model or the signal-detection model of

PS.Theresultsof themainexperiments,onthe9flavormixtures,

are consistent with predictions of the high-threshold model but

contravenethepredictionsofthesignal-detectionmodel.Results

obtained on single gustatory and olfactory flavorants, however,

are inconsistent with values estimated by the high-threshold

model, though compatible with those of the signal-detection
model. In sum, the empirical results suggest the need for a differ-

entmodel,perhapsasignal-detectionmodel thatassumesneural

integration.

This conclusion needs be tempered by results reported by

Ashkenazi and Marks (2004). Although that study did not ad-

dress flavor summation per se, results pertinent to PS were ob-

tained in preliminary experiments of the study, which used

a 2AFC method to measure the following: the detectability
of 6 concentrations of sucrose, preselected to produce values

ofpcGrangingfrom0.55to0.95instepsof0.08; thedetectability

of 6 concentrations of vanillin, preselected to produce values of

pcO identical to the values of pcG; and the detectability of the

6 mixtures of sucrose + vanillin created by combining concen-

trations of sucrose and vanillin having the same values of pc.

Two findings of Ashkenazi and Marks (2004) are pertinent

here.First, theresultsshowninFigure1oftheirarticlecompared
the detection of pure sucrose and pure vanillin in blocked and in

intermixed conditions and showed essentially no difference be-

tween conditions—unlike the results of Marks et al. (2007),

which showed better performance when those same flavorants

were blocked, in accord with the predictions of the selective-

attention signal-detection model. This finding of Ashkenazi

and Marks is more compatible with the high-threshold model

thanthesignal-detectionmodel—althoughit isconceivablethat,
for reasons unknown, the subjects in Ashkenazi and Marks’s

study simply failed to capitalize on the opportunity to attend se-

lectively in the blocked condition.

Also pertinent to PS are measures obtained by Ashkenazi

and Marks (2004) of detection (proportion correct) of the

single gustatory and olfactory flavorants, pcG and pcO, rela-

tive to the proportion correct detection of their mixtures,

pcM. The circles in Figure 5 plot the values of pcM as a func-
tion of the average value of pcG and pcO. The solid line in the

figure shows the prediction derived from the high-threshold

PS model, assuming no bias in guessing. To make this predic-

tion, we used equations (C2a) and (C2b) to estimate the values

of pG
# and pO

# from pcG and pcO, then entered the values of

pG
# and pO

# into equation (3) in order to calculate predicted

values of pcM. The high-threshold PS model overestimates the

observed values of pcM, the fit of the predictions to the data

being only modest. By way of comparison, the line with small

dashes shows the prediction of the signal-detection model of
PS—equation (10), which states that pcM should equal the

average of pcG and pcO. Clearly, the signal-detection model

of PS fails to account for the fact that detection of the flavor

mixtures exceeds the detection of the individual components

presented alone. In general, neither the high-threshold nor the

signal-detection model provides a very good fit. A better fit

comes from a signal-detection model of ‘‘sensory integration,’’

that is, a model that assumes that the sensory (neural) effects
of the 2 components are independent but combine linearly.

Green and Swets (1966) showed that this model predicts

root-mean-square summation:

dM#=
�
dG#

2 + dO#
2
�1=2

: ð12Þ

The large-dashed line in Figure 5 shows the prediction

based on equation (12), a prediction that describes the
results reasonably well.

Simple response times

The PS model readily applies also to tasks that measure simple

response times (RTs) to single flavorants and mixtures. Tasks

Figure 5 Probability of correct detection of sucrose–vanillin mixtures (pcM),
plotted against the average probability of correct detection of sucrose alone
(pcG) and vanillin alone (pcO) in 2AFC. Data are from Ashkenazi and Marks
(2004). The solid and small-dashed lines show the predictions of the high-
threshold and signal-detection models of PS, respectively. For comparison,
the large-dashed line shows the prediction of a signal-detection model of
neural integration (Green and Swets 1966), which predicts that the
detectability of the mixture, quantified by d#, will equal the square root of
the sum of the squared values of d# of the components.
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of this sort are often called ‘‘detection,’’ as subjects are com-

monly instructed to respond as soon as they ‘‘detect’’ the stim-

ulus. But it is important to keep in mind that the stimuli used

in tasks of ‘‘speeded detection’’ are typically presented at

suprathreshold levels, well above the region of probabilistic
detection, so subjects would have no difficult detecting the

stimuli in a threshold detection task without time constraint.

When stimulus concentrations are sufficiently great, therefore,

it may be plausible to adopt the assumption of high-threshold

theory that internal noise is inconsequential.

Veldhuizen et al. (2010) recently reported the results of

a series of experiments in which subjects were instructed

to respond as quickly as possible by pressing a key to any
of 3 possible flavorants—sucrose (G), citral (O), and sucrose

+ citral (M)—but withhold responding to water. Responses

to M were faster than responses to the either G or O alone

(responses to G were typically faster than responses to O,

despite preliminary tests aimed at equating RTs to the single

flavorants). The main question was whether PS could explain

the results. If performance exceeds the prediction of PS, then

the increase in speed of response to the mixture would pre-
sumably reflect some kind of neural integration of the G and

O signals. Half a century ago, Raab (1962) showed how

models of PS could apply to RTs, under the assumption that

a response is initiated as soon as activity in any channel sur-

passes its criterion—what has been called a ‘‘race model.’’

Three decades later, Miller (1982, 1991) applied a similar

model of PS to RT measurements in vision and hearing,

without, however, assuming stochastic independence. Given
that the distributions of RTs to, say, G and O overlap, then,

following Miller’s general analytic approach, it is possible

to construct cumulative distributions of RTs to G and O

in order to predict the cumulative distribution of RTs to

M, under the assumption of stochastic independence.

Figure 6 gives an example, using data from one of the sub-

jects of Veldhuizen et al. (2010). In this example, the cumu-

lative distribution for G (sucrose) passes through 0.5 at 3020
ms, which means the probability of responding to G within

3020 ms is 0.5, marked as point a. Moving to the distribution

for O (citral), the probability of responding within the same

3020 ms is 0.25, marked as point b. Using the high-threshold

model, PS predicts that the mixture should produce a distri-

bution of RTs that, at 3020 ms, would have a cumulative

probability of 0.5 + 0.25 – 0.5 * 0.25 = 0.625, marked as point

c. The observed probability on the observed M (mixture) dis-
tribution (point g) is about 0.76, inconsistent with the pre-

diction of the PS model but consistent with some kind of

neural integration. More generally, given any value of RT,

such that pGRT
and pORT

are the proportions of responses

to the gustatory and olfactory stimuli, respectively, that

are £RT, if the distributions of RTs to G and to O are sto-

chastically independent, and if subjects respond as soon as

a response is triggered in either the G or O channel (PS),
then, by analogy to equation (1), the proportion of responses

to the mixture, pMRT
, that is £RT will be given by

pMRT
= pGRT

+ pORT
– pGRT

� pORT
: ð13Þ

Veldhuizen et al. (2010) used the analytic procedure de-
scribed above to produce, for each subject, a distribution

of predicted RTs for the mixture that the authors could

compare with the empirical distribution. The results, ex-

emplified in Figure 6, showed that the RTs to the mixture

were smaller—response speed was greater—than the values

predicted by the high-threshold model of PS. Moreover,

Veldhuizen et al. compared results obtained with a blocked

as well as an interleaved design, with implications for selective
attention (see Appendix E).

Veldhuizen et al. (2010) also presented water as a stimulus,

to which the subjects sometimes responded, thereby also pro-

ducing a distribution of false-positive RTs. Analyzing the

data under the assumption that a process of random guessing

was superimposed on the process of high-threshold detec-

tion, the proportion of false positives at a given RT, FRT,

provides an estimate of the guess rate at time RT. Using these
assumptions, Veldhuizen et al. (2010) could take into ac-

count the false-positive responses to G, O, and M, following

the derivations described in Appendix B. If p#
GRT

and p#
ORT

are

the ‘‘true’’ cumulative proportions of detection responses to

flavorants G and O, respectively, in time RT, then the true

cumulative proportion of detection responses to the mixture,

p#
MRT

, is given by

p#
MRT

=
�
pMRT

–FRT

���
1 –FRT

�
: ð14Þ

Equation (14) is the RT equivalent to equation (2), which gives

the prediction of the high-threshold model of PS in traditional

yes/no detection tasks, corrected for false-positive responses.

Figure 6 An example of cumulative distributions of simple RTs to individual
flavorants and their mixture. Also shown is the cumulative distribution
predicted by a high-threshold model of PS. The subject’s task was to press
a key as quickly as possible in response to any flavorant—sucrose, citral, or
their mixture—but not to water. Shown are the data of one subject, taken
from Veldhuizen et al. (2010).
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The data of Veldhuizen et al. showed that response speed to M

exceeded the predictions of the high-threshold model of PS

when false positives were taken into account (eq. 14) as well

as when false positives were ignored (eq. 13).

Both equations (13) and (14) give predictions derived
from high-threshold theory. It is also possible to analyze

results of speeded-detection tasks within a framework of

SDT—althoughVeldhuizen et al. (2010) did not do this. Even

though a high-threshold model is plausible with the supra-

threshold flavorants used by Veldhuizen et al., it is conceiv-

able that the false-positive responses resulted not from

guesses, as high-threshold theory assumes, but from sensory

noise, some of this noise coming from the gustatory channel
and some from the olfactory channel, as SDT would postu-

late (see Appendix F). Unfortunately, false-positive re-

sponses tend to be infrequent in experiments that measure

RT, as in the study by Veldhuizen et al. (2010) and small num-

bers of false-positives preclude testing the signal-detection

model. To test signal-detection models of PS, it is useful to

encourage relatively high levels of false-positive responding,

for instance, by instructing or training subjects to respond
very rapidly, with short response deadlines.

Conclusions

Models that assume PS—improvement in detection based on

separate decisions made to signals presented in 2 or more sto-

chastically independent channels—have often been applied
outside the chemical senses, especially in vision. Nevertheless,

PS may plausibly apply in the chemical senses, for example, to

account for the detection of flavorants containing gustatory

and olfactory components. Nearly half a century ago, Green

and Swets (1966) pointed out that the principle of separate de-

cisions, which underlies PS, does not require a high-threshold

mechanism for detection but could also apply to decisions

made within a signal-detection framework.
In this article, we focus on the detection of gustatory–

olfactory flavorants, developing and comparing predictions

that derive from models of separate-decision PS formulated

within both high-threshold and signal-detection frame-

works. The predictions differ markedly within the 2 frame-

works, the high-threshold framework generally predicting

greater improvement in detection.

The predictions deriving from PS depend not only on the the-
oretical framework of detection but also on the psychophysical

task, yes/no detection, or 2AFC and on the experimental design,

single-component flavorants and mixtures presented in separate

blocks of trials or interleaved within a single block. In high-

thresholdtheory,PSpredicts substantial improvement indetect-

ingmixturesregardlessofthetaskortheexperimentaldesign.But

in SDT, the predictions deriving from PS are complex: PS gen-

erallypredictsimprovementindetectionwithinterleaveddesigns
using both yes/no and 2AFCtasks and can predict improvement

with blocked designs using yes/no tasks; but PS predicts no im-

provement with blocked designs using 2AFC tasks.

Our final point speaks to the generality of PS. Although

this article focuses on the potential application of PS to

the detection of gustatory–olfactory flavorants, models of

PS may apply in principle to many domains of multicomponent

detection—for instance, to flavor stimuli with somatosen-
sory as well as gustatory and olfactory components. Fur-

thermore, PS could also apply to unisensory mixtures of

gustatory, olfactory, or chemesthetic stimuli in the chemical

senses—and, indeed, beyond the chemical senses, to multi-

component stimuli presented within or between any of the

senses. Although the available evidence pertinent to summa-

tion of gustatory and olfactory flavorants in tasks of threshold

detection (Ashkenazi and Marks 2004; Marks et al. 2007) and
speeded response (Veldhuizen et al. 2010), reviewed above, ap-

pear inconsistent with both high-threshold and signal-detection

based models of PS, sensory responses to multicomponent

stimuli may nevertheless be usefully evaluated in these terms,

and the models described here provide a useful quantitative

framework.

Recommendations

Toward the pragmatic goal just mentioned, we make 3 rec-

ommendations regarding the design of experiments to study

the detection of multicomponent stimuli:

First, we recommend measuring psychometric functions

rather than (just) stimulus thresholds. Psychometric functions

not only make it possible to calculate thresholds (Figure 1 and
discussion thereof) but also make it possible to test models of

PS, which require response probabilities or proportions of

correct responses. Measuring psychometric functions, how-

ever, commonly requires considerable time and effort, a con-

sideration that leads to the next recommendation.

Second, given the evidence that SDT provides better ac-

counts of detection than does high-threshold theory, for prac-

tical reasons, we recommend using forced-choice methods over
yes/no methods. To apply signal-detection models to yes/no

data and calculate reliable values of d#, it is necessary to obtain

relatively large proportions of false-positive responses as well

as correct detections. Forced-choice methods are often more

efficient in this regard.

Finally, careful consideration needs be given as to whether to

present each single component and multicomponent stimulus

in its own block of trials or to interleave all stimuli within the
same block. Blocked designs encourage selective attention to

individual channels in blocks containing single-component

stimuli and, in signal-detection models, selective attention

can thereby reduce noise and increase detectability of these

stimuli, thereby leading to smaller predicted PS. Under ideal

circumstances, running experiments under both blocked and

interleaved conditions makes it possible to assess the role

of selective attention. In their study of speeded detection of
suprathreshold flavorants, Veldhuizen et al. (2010) did just

this, comparing distributions of RTs to single-component fla-

vorants and mixtures obtained in both blocked and intermixed
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conditions. The distributions in the 2 conditions were virtually

identical over short RTs, but diverged at long RTs, consistent

with the inference that selective attention takes time. The im-

plication is that, in flavor perception at least, subjects may be

able to capitalize on selective attention in traditional unspeeded
tasks of sensory detection. Ideally, therefore, experimental de-

signs would compare results obtained with stimuli blocked and

interleaved. But this, of course, is easy for us to say.
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Appendix A Auxiliary assumptions of the models

In addition to the primary assumptions, the models make 3

auxiliary assumptions. First, the models assume that people

fully monitor the G channel, the O channel, or both, when-

ever the psychophysical task requires or encourages it. That
is, the models ignore the possibility that subjects may attend

only partially to one channel or another (share attention) or

that subjects may switch attention between channels, either

during a trial or between trials. Furthermore, the models as-

sume that when subjects receive a single flavorant, G or O, in

a given block of trials, the subjects attend to only the channel

that detects that flavorant. Implicit in this assumption is the

hypothesis that people can attend selectively to either G or
O. An alternative assumption—that when flavorants are in-

troduced into the mouth, the flavor system by necessity at-

tends to both the gustatory and olfactory components—is

treated briefly in Appendix E.

When a block of trials contains G and O flavorants on dif-

ferent trials, or contains mixtures, the models assume that sub-

jects always attend fully to both channels. To be sure, the

assumption of full attention may be optimistic (e.g., Ashkenazi
and Marks 2004), but it usefully serves to set upper bounds on

predicted performance. Moreover, to incorporate parameters

of partial or shared attention would greatly complicate and

lengthen the presentation. For discussions of models of PS that

treat variations in selective attention, see Mulligan and Shaw

(1980) and Treisman (1998).

A second auxiliary assumption is that guessing mecha-

nisms are unbiased in forced-choice tasks. For example,
in 2AFC, the subject must decide whether the flavor stim-

ulus was presented in the first or the second observation

interval. If no flavorant is detected in either interval,

the subject must guess, and our models assume that the

subject will choose the first or the second interval with

equal probability. Note that in separate-decision models,

guessing may occur at either or both of 2 different stages in

information processing: early on, within either the gusta-
tory or the olfactory channel, or later, when the separate

decisions are combined into a final response. Thus, if either

the G or the O channel fails to detect a signal in either in-

terval, that channel must guess. And, under conditions in

which both channels are monitored, if the separate decisions

disagree—if one channel chooses the first interval and the
other the second interval—then the models assume that

the final response represents an unbiased guess. Note that

the models are easily adapted to incorporate biased guessing;

but to simplify the exposition, we ignore any possible bias

in guessing.

The third auxiliary assumption has to do with the locations

of response criteria. The models based in SDT assume that,

in yes/no tasks, subjects maintain constant response criteria
across experimental conditions, for example, across different

blocks of trials. Again, this is a matter of convenience of ex-

position as the models can be readily modified to accommo-

date shifts in criteria.

Appendix B High-threshold model: yes/no task
corrected for false-positive responses

In the high-threshold model of PS, false-positive yes re-

sponses are treated as random guesses. If an experiment in-

cludes trials containing just water, then the proportion of

false-positive responses to water provides a measure of the

guessing rate, F. The overall observed probability of yes re-

sponses to a flavorant therefore reflects the sum of true detec-
tions, p#, plus guesses made on the remaining trials, F * (1 – p#).
Measures of F can therefore be used to correct the observed

proportions of detection responses to G and O in order to cal-

culate putative measures of true detection, p#G and p#O, accord-

ing to the equations:

p#
G
= ðpG –FÞ=ð1 –FÞ; ðB1aÞ

p#
O
= ðpO –FÞ=ð1 –FÞ; ðB1bÞ

where pG > F and pO > F. Equations (B1a) and (B1b) give the

usual ‘‘correction for guessing’’ (Macmillan and Creelman
2005). Combining equations (B1a) and (B1b) with equation

(1) makes it possible to calculate the true detection of the

mixture, p#
M

:

p#
M
= ðpG –FÞ=ð1 –FÞ+ ðpO –FÞ=ð1 –FÞ
– ðpG –FÞ=ð1 –FÞ � ðpO –FÞ=ð1 –FÞ:

ðB2Þ

The predicted overall probability of responding yes to mix-
ture M when false positives are taken into account, pM–F,

equals the sum of the true probability of detection plus

the probability of false-positive responses (guesses) on trials

on which no stimulus is detected:

pM –F = p#
M
+F � ð1 – p#

M
Þ: ðB3Þ

From equations (1), (B2), and (B3), it follows that
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pM –F = ðpG + pO – pG � pO –FÞ=ð1 –FÞ= ðpM –FÞ=ð1 –FÞ:
ðB4Þ

Given that 0 < F < 1, the predicted probability of respond-

ing yes to the mixture when false positives are taken into con-

sideration, pM–F, is smaller than the predicted probability of

responding yes to the mixture when false positives are ig-

nored, pM. This is to say that the high-threshold model pre-
dicts less PS if false positives are taken into account than if

false positives are ignored.

Equations (B1)–(B4) assume a uniform rate of false-positive

responding, that is, a constant value of F. To test the pre-

dictions of a high-threshold model when correcting for F,

therefore, it may be helpful to interleave G, O, M, and

blank (water) trials within a block so as to ensure a uniform

value of F. Alternatively, if G, O, and M are presented in
separate blocks, then each block should also include blank

(water) trials in order to calculate the value of F associated

with each flavor stimulus.

Appendix C High-threshold model: 2AFC task

First, consider a 2AFC experiment in which the stimulus is

a single flavorant, G or O. The subject will detect it with

probability p#
G

or p#
O

and will therefore choose the correct

interval on the corresponding fraction of trials. On those tri-

als in which they fail to detect the flavorant, equal to (1 – p#
G

)

or (1 – p#
O

), subjects must guess and, assuming no bias in

guessing, will choose the correct interval half the time. Con-

sequently, the overall probability of responding correctly on
2AFC trials containing G or O, pcG or pcO, is given by

pcG = p#
G
+ 0:5 � ð1 – p#

G
Þ = 0:5 � ð1 + p#

G
Þ; ðC1aÞ

pcO = p#
O
+ 0:5 � ð1 – p#

O
Þ = 0:5 � ð1 + p#

O
Þ: ðC1bÞ

Using the high-threshold model, we may therefore calcu-
late the probabilities of true detection, p#

G
and p#

O
, from the

observed proportions of correct responses, pcG and pcO, by

the equations:

p#
G
= 2 � pcG – 1; ðC2aÞ

p#
O
= 2 � pcO – 1: ðC2bÞ

If a single flavorant is presented at its threshold concentra-

tion, p#
G

or p#
O
= 0.5, and if there is no bias in guessing, then

the observed proportion of correct responses will be 0.75, the

traditional level of performance taken to define detection

threshold in 2AFC tasks.

Equations (C2a) and (C2b) provide formulas to correct

forced-choice proportions for guessing, that is, to convert em-
pirical psychometric functions in 2AFC, where the probability

of correct response increases from 0.5 to 1.0, into theoretical

psychometric functions in which the probability of detection

increases from 0.0 to 1.0 (Macmillan and Creelman 2005; for

related examples in chemosensation, see Wise et al. 2007;

Cometto-Muñiz and Abraham 2009).

Equations (C1) and (C2) describe performance in 2AFC

tasks when flavorants are detected by a high-threshold mech-
anism. Given a high-threshold detection process, it does not

matter whether trials containing single flavorants are blocked

or interleaved with trials containing mixtures, as long as the

guessing parameter F can be established in each condition.

Next, consider what high-threshold PS predicts on trials

containing mixtures. Following the derivations used for the

components, the probability of correctly choosing the interval

containing the mixture, pcM, equals the sum of the probability
of detecting a flavorant on proportion pM# of the trials plus

the probability of guessing correctly on the remaining trials,

where the stimulus is not detected: 0.5 * (1 – p#
M

). Thus, pcM =

p#
M
+ 0.5 * (1 – p#

M
) = 0.5 * (1 + p#

M
). With mixtures, flavorants

are presented to both the gustatory and the olfactory chan-

nels, where p#
G

and p#
O

are the statistically independent prob-

abilities of detecting G and O, respectively. From equation (1),

p#
M
= p#

G
+ p#

O
– p#

G
� p#

O
. Thus, the PS model predicts that the

probability of choosing the correct interval in 2AFC is given

by

pcM = 0:5 � ð1 + p#
M
Þ= 0:5 � ð1 + p#

G
+ p#

O
– p#

G
� p#

O
Þ: ðC3Þ

This analysis is mathematically equivalent to one given by
Green and Swets (1966). Rewriting the right side of equation

(C3) in terms of proportions of correct detections of the com-

ponents in 2AFC,

pcM = 2 � ðpcG + pcO – pcG � pcOÞ – 1: ðC4Þ

Appendix D Signal-detection models

D-1. Yes/no tasks in blocked conditions

Analysis of both hits and false positives is straightforward:

With the mixture, M, channel G detects flavorant G with

probability HG/M and channel O detects flavorant O with

probability HO/M. Therefore, the probability that at least

one channel will respond yes, HM, equals HG/M + HO/M –

HG/M * HO/M. (The values of HG/M and HO/M will equal

the values of HG and HO when the response criterion is con-

stant across the G, O, and M blocks.) Similarly for false pos-

itives: In blocks of trials containing mixtures, channels G and

O have independent false-positive rates of FG/M and FO/M,

respectively. By equation (1), the overall rate of false-positive

responding, FM will equal FG/M + FO/M – FG/M * FO/M.

D-2. 2AFC tasks in blocked conditions

With mixtures, M, subjects monitor both channels, so we

need to consider the 4 possible pairs of decisions that may
arise in the 2 channels: 1) both the G and the O channels
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choose correctly; 2) G chooses correctly but O does not; 3) G

does not choose correctly but O does; and 4) both G and O

choose incorrectly. Because the probabilities pcG# and pcO#
are independent, both channels will make the correct deci-

sion (outcome 1) with probability pcG# * pcO#. On those tri-
als in which the G channel makes the correct decision but

the O channel does not (outcome 2), with probability pcG# *

(1 – pcO#) = pcG# – pcG# * pcO#, the 2 decisions conflict and the

subjects must guess. Guessing in turn leads the subjects to

choose correctly with probability equal to 0.5 * (pcG# – pcG
#

* pcO#). Analogously, when the O channel decides correctly

but the G channel does not (outcome 3), the subjects again

must guess, choosing correctly with probability equal to
0.5 * (pcO# – pcG# * pcO#). Incorrect decisions in both channels

(outcome 4) never lead to correct choices. Consequently, the

overall probability of correct responses to M, pcM, is given by

pcM = pc#
G
� pc#

O
+ 0:5 � ðpc#

G
– pc#

G
� pc#

O
Þ

+ 0:5 � ðpc#
O
– pc#

G
� pc#

O
Þ= 0:5 � ðpc#

G
+ pc#

O
Þ:

ðD1Þ

D-3. 2AFC tasks in interleaved conditions

Forced-choice detection of single-component flavorants is

lower when trials are interleaved rather than blocked. Consider

the detection of the flavorant G alone. With probability pcG#,
the G channel chooses the correct interval. But when trials are
interleaved, the subject also monitors the O channel, which re-

ceivesnoflavorstimulusandmustguess.Therefore,ononlyhalf

of the trials on which the G channel chooses correctly will the O

channelalsochoosecorrectly,0.5*pcG#.Ontheotherhalfofthe

trials in which G chooses correctly, the O channel chooses in-

correctly, creating a conflict and forcing the subject to guess the

interval—and choosing correctly on half of the conflicting tri-

als, 0.5 * 0.5 * pcG# = 0.25 * pcG#. Both channels choose cor-
rectly, therefore, on a total of (100–25)% = 75% of the trials

on which the G channel detects the correct interval. A similar

logic applies to the correct responses to the flavorant O pre-

sented alone. Consequently, the overall proportions of correct

responses to G alone and O alone are given, respectively, by

pcG = 0:75 � pc#
G
; ðD2aÞ

pcO = 0:75 � pc#
O
: ðD2bÞ

Appendix E Selective attention to gustatory and
olfactory channels

Veldhuizen et al. (2010) obtained RTs to single flavorants

and mixtures in both blocked and interleaved stimulus con-

ditions. Although Veldhuizen et al. were able to test only

high-threshold models of PS, for which the present models

predict identical degrees of summation under both condi-

tions, Veldhuizen et al. nevertheless compared the RTs mea-

sured in the 2 conditions. In general, RTs to single flavorants

were equivalent in blocked and interleaved conditions over

about the first 2 s but diverged as RTs grew longer. This out-

come suggests that over short durations, attention in the flavor

system may be unitary (nonselective), but that as time pro-

gresses, attention can become selective. By implication, atten-

tion could be selective in typical tasks of threshold detection,
where stimulus durations are relatively long (several seconds)

and subjects give their responses without time constraint.

The results of Veldhuizen et al. (2010) suggest that, for the

first 2 s or so after a flavorant enters the mouth, the stimulus

may be fully attended, regardless of its modality, whether gus-

tatory or olfactory. That is, during the first few seconds of

processing, full attention may be mandatory, perhaps because

attentional mechanisms in flavor perception give privilege
to spatial location. Over time, however, attention to single-

component flavorants may become selective—analogous to

the view of Lockhead (1972) that perceptual processing begins

as holistic but becomes increasingly analytic over time. Con-

sequently, and consistent with the findings of Marks et al.

(2007), the detection of long-duration flavorants should differ,

as the present models predict, when single stimuli and mix-

tures are blocked and when they are interleaved.

Appendix F Role of sensory noise in measures of
RTs

Several accounts of simple RT assume an underlying pro-

cess in which, on each trial, the subject’s perceptual system
cumulates information about the presence of a stimulus

(e.g., Grice 1968; Murray 1970). The cumulated information

increases over time, and the subject is assumed to respond

once the level of cumulated information reaches a criterion.

Information fluctuates from moment to moment, so the time

needed to reach criterion varies from trial to trial, producing

a distribution of RTs (which also include time for deciding

and initiating the response). Increasing stimulus concentra-
tion reduces average RT because greater concentrations pro-

duce greater rates of cumulation of information. Within this

framework, it is possible that, in the absence of an external

stimulus, intrinsic sensory noise cumulates and, when suffi-

ciently great, may trigger a response, just as noise may exceed

criterion and produce a positive response in yes/no tasks of

sensory detection.

In the signal-detection model of PS, we would again expect
different results when trials containing G, O, and M flavorants

are blocked and when they are intermixed. When the single G

and O flavorants are presented in separate blocks, false-positive

rates should be smaller than they are when flavorants are in-

termixed. False-positive rates for mixtures, however, should be

the same in blocked and intermixed trials—assuming, of

course, that criterion remains constant.
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Cometto-Muñiz JE, Abraham MH. 2009. Olfactory psychometric functions
for homologous 2-ketones. Behav Brain Res. 201:207–215.
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