
The AMPK stress response pathway mediates anoikis
resistance through inhibition of mTOR and
suppression of protein synthesis
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Suppression of anoikis after detachment of cancer cells from the extracellular matrix is a key step during metastasis. Here we
show that, after detachment, mouse embryonic fibroblasts (MEFs) transformed by K-Ras(V12) or ETV6-NTRK3 (EN) activate a
transcriptional response overrepresented by genes related to bioenergetic stress and the AMP-activated protein kinase (AMPK)
energy-sensing pathway. Accordingly, AMPK is activated in both transformed and non-transformed cells after detachment, and
AMPK deficiency restores anoikis to transformed MEFs. However, AMPK activation represses the mTOR complex-1 (mTORC1)
pathway only in transformed cells, suggesting a key role for AMPK-mediated mTORC1 inhibition in the suppression of anoikis.
Consistent with this, AMPK�/� MEFs transformed by EN or K-Ras show sustained mTORC1 activation after detachment and
fail to suppress anoikis. Transformed TSC1�/� MEFs, which are incapable of suppressing mTORC1, also undergo anoikis
after detachment, which is reversed by mTORC1 inhibitors. Furthermore, transformed AMPK�/� and TSC1�/�MEFs both have
higher total protein synthesis rates than wild-type controls, and translation inhibition using cycloheximide partially restores their
anoikis resistance, indicating a mechanism whereby mTORC1 inhibition suppresses anoikis. Finally, breast carcinoma cell lines
show similar detachment-induced AMPK/mTORC1 activation and restoration of anoikis by AMPK inhibition. Our data implicate
AMPK-mediated mTORC1 inhibition and suppression of protein synthesis as a means for bioenergetic conservation during
detachment, thus promoting anoikis resistance.
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Anoikis refers to the cell death that normal non-hematopoietic
cells undergo when they become detached from their native
extracellular matrix.1 Cancer cells, by contrast, are able to
suppress anoikis, allowing them to survive under anchorage-
independent conditions such as in the circulation, lymphatics,
or bone marrow. This is thought to be a critical step prior to the
development of overt metastases.2 To model anoikis resis-
tance in vitro, cell lines can be cultured under suspension
conditions by preventing attachment to the cell culture
substratum. Under such conditions, non-transformed cells
undergo rapid apoptosis whereas transformed cells survive
indefinitely after detachment.3 Anoikis resistance in vitro
correlates robustly with in vivo metastasis after intravascular
injection into the tail veins of immunodeficient mice.4

Therefore, anoikis resistance represents a unique metasta-
sis-promoting mechanism, and a novel anti-metastasis
therapeutic target.

Most studies on anoikis resistance have focused on kinases
directly modulating the apoptosis machinery, such as FAK,
TrkB, and EGFR, after detachment.4–7 Moreover, oncogenic
kinases such as the ETV6-NTRK3 (EN) chimeric tyrosine

kinase confer anoikis resistance.8 EN fails to transform mouse
embryonic fibroblasts (MEFs) lacking IGF1R (R� cells),
which correlates with an inability of EN to suppress anoikis
or activate the PI3K–Akt pathway after detachment unless
IGF1R is re-expressed (Rþ cells).8 Interestingly, a myristoy-
lated, constitutively active form of EN (ENmyr) transforms
and suppresses anoikis in R� cells.8 These and other data
point to a role for IGF1R and PI3K–Akt in anoikis resistance.6

Kinase activation also induces pro-survival pathways, includ-
ing Ras-ERK,9 to downregulate pro-apoptotic Bim5 and
upregulate anti-apoptotic Bcl-2.3 However, mechanisms that
promote anoikis resistance other than by directly suppressing
apoptosis are unclear.

Recently, mechanisms affecting cellular bioenergetic status
have been implicated in anoikis suppression. Mammary epi-
thelial cells activate macroautophagy in response to detach-
ment to suppress anoikis.10 Detached non-transformed cells
have reduced ATP levels, and oncogenic transformation
reduces energy stress through modulation of glucose uptake
and reactive oxygen species.11 Detached cells also demon-
strate increased endoplasmic reticulum stress owing to
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activation of PERK and induction of HIF1a to promote anoikis
resistance.12,13 These studies suggest that detached cells
are bioenergetically compromised and activate stress res-
ponse pathways as a compensatory mechanism.

Here we investigated anoikis resistance in transformed
cells driven by oncoproteins known to suppress anoikis,
namely EN and oncogenic K-Ras. We show that detachment
results in a broad transcriptional response and modulation of
prototypical cellular stress pathways. One such cascade
identified is the AMP-activated protein kinase (AMPK) path-
way, which is activated under multiple stress conditions.14

We show that anoikis resistance in transformed cells strongly
correlates with and is dependent on AMPK activation. More-
over, AMPK-dependent mTOR complex-1 (mTORC1) block-
ade and inhibition of energy-demanding protein synthesis are
critical for anoikis suppression, through mitigation of the
metabolic defects induced by detachment. Overall, we show
that detachment is a bona fide form of cellular stress, and that
subsequent survival is dependent on stress response pro-
cesses typically considered tumor-suppressive, namely AMPK
activation and mTOR inhibition. We propose that this repre-
sents a further example of ‘non-oncogene addiction’, whereby
cancer cells require a robust stress response to survive
transient stresses such as cellular detachment.15

Results

Transformed fibroblasts activate multiple stress
responses during detachment-induced stress. To model
anoikis suppression we used NIH3T3 and MEF cell lines
stably expressing the oncogenes EN and K-Ras(V12),
each previously shown to suppress anoikis.3,8 We first
performed gene expression profiling to compare detached
(suspension) cultures of EN-transformed MEFs versus
corresponding monolayer cultures. Three cell line models
were used to avoid cell line-specific effects, including
R� cells expressing ENmyr and Rþ cells expressing either
EN or ENmyr. As mentioned, EN cannot transform R� cells
unless IGF1R is re-expressed, whereas ENmyr transforms
R� or Rþ cells, and suppresses anoikis in both.8 Principal-
component analysis of the resulting gene expression profiles
(GEPs) demonstrated detachment as a major source of
variation in gene expression (Figure 1a and Supplementary
Figure S1c). Contribution of either cell line type or specific EN
construct did not feature prominently in any of the first three
principal components (Supplementary Figures S1a and b).
A large number of genes were differentially expressed in
suspension versus monolayer cultures (Figure 1b). Overall,
we detected more differentially expressed genes with higher
fold change in suspension (‘upregulated’) than in monolayer
cultures (‘downregulated’). When the three different cell lines
were analyzed individually, there was considerable overlap
in upregulated genes for each cell line in suspension, with a
core of 212 probesets (corresponding to 170 genes) that
were significantly upregulated 42-fold in all three cell
lines (Figure 1c and Supplementary Table S1a; equivalently
42-fold downregulated genes in Supplementary Table S1b).

Gene ontology (GO) overrepresentation analysis of these
170 genes showed significant enrichment for functional

categories relating to cell death (Figure 1d). In addition, there
was enrichment for diverse categories relating to cellular
stress; for example, under the GO category of ‘response to
stress’, many upregulated genes were prototypical stress
response genes such as Gadd45a, Bnip3, Cdkn1, and Ddit3.
Importantly, several enriched categories were specifically
related to negative regulation of cellular processes such as
‘gene expression’ and ‘metabolic process’. We therefore
hypothesized that detachment of transformed cells triggers
a significant stress response associated with the attenuation
of bioenergetically rich processes. To better characterize
the observed stress responses, we used a publicly available
data set of annotated microarray experiments (‘Chemical and
Genetic Perturbations’ data set; Broad Institute) to analyze
the detachment-induced GEPs of EN-transformed cells
by Gene Set Enrichment Analysis (GSEA). Among the
most significantly enriched gene sets in detached cells
were signatures previously linked to stress conditions such
as hypoxia, nutrient and amino-acid deprivation, and epi-
thelial-to-mesenchymal transition (Supplementary Tables
S2a and b). Similar specific stress categories were observed
among downregulated genes (e.g., see ‘peng_leucine_up’
versus ‘peng_leucine_dn’, and ‘manalo_hypoxia_up’ versus
‘manalo_hypoxia_dn’). Overall, the transcriptional profiles
observed after detachment mimic diverse forms of cellular
stress, suggesting that detachment induces multiple stress
responses.

Given the above GEP results, we wondered whether a
specific signaling pathway might underlie this broad stress
response. One pathway known to negatively modulate diverse
cellular functions under stress conditions is the AMP-activated
protein kinase (AMPK) cascade, which suppresses multiple
energy-demanding functions such as proliferation and protein
translation in response to reduced ATP/AMP ratios.16 To
explore this possibility, we cross-compared detachment-
induced GEPs with published transcriptional responses
observed after modulation of the AMPK pathway (Supplemen-
tary Tables S3a–c).17–19 By GSEA, detachment-induced
GEPs showed marked enrichment for genes known to be
downregulated after AMPK inhibition and upregulated after
AMPK activation17–19 (Figure 2a). Prominent were genes
previously ascribed to AMPK activation, including downregula-
tion of FASN and G6Pase and upregulation of p21/Cip1 and
cyclin-G (Supplementary Tables S1a and b).14,16 These data
support the notion that the transcriptional response to detach-
ment mirrors that of AMPK activation.

AMPK is activated during detachment-induced stress
and promotes resistance to anoikis. We next investigated
whether the AMPK pathway is biochemically activated in
response to detachment. Using NIH3T3 fibroblasts trans-
formed with EN or K-Ras versus MSCV vector alone, the
known AMPK targets ACC1 and Raptor, as well as AMPK
itself, showed rapid and sustained phosphorylation after
detachment (Figure 2b). As this was observed in both trans-
formed and non-transformed cells, AMPK activation alone
is likely insufficient for the survival of detached cells. To
specifically test whether AMPK activation is critical for anoikis
resistance in transformed cells, we expressed EN, K-Ras,
or the vector alone in wild-type (wt) (AMPKþ /þ ) versus
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AMPKa1 and AMPKa2 double-knockout (DKO) (AMPK�/�)
MEFs, and subjected the cells to detachment. Cell death was
significantly increased in all AMPK�/� as compared with
AMPKþ /þ cells despite EN or K-Ras transformation, as
measured by caspase-3 cleavage (Figure 2c). This corres-
ponded closely to apoptosis as measured by annexin-V/
7-aminoactinomycin-D (7-AAD) fluorescence assisted cell-
sorting (FACS), with increased annexin-V positivity in
AMPK�/� versus AMPKþ /þ cells, in both EN-trans-
formed (24.81 versus 8.57%) and K-Ras-transformed
(27.41 versus 14.81%) MEFs (Figure 2d). Similar findings
were obtained by using the AlamarBlue cell survival assay
(Supplementary Figure S2a) and in two different cytotoxicity
assays, namely lactate dehydrogenase (LDH) release
(Supplementary Figure S2b) and Cytotox-Glo dead cell
protease release (Supplementary Figure S2c). The results
were validated in EN- or K-Ras-transformed NIH3T3 cells by

chemical inhibition of AMPK using compound-C (Figure 2e),
or by molecular inhibition using dominant-negative (DN)
AMPK (Supplementary Figure S2d), each of which partially
restored anoikis.

As AMPK is activated by reduced ATP/AMP ratios,16 we
next compared the ATP levels of the transformed cell lines
after detachment. EN- or K-Ras-transformed AMPKþ /þ and
AMPK�/� MEFs both showed reduced ATP levels after
detachment (Figure 2f). Therefore the decrease in ATP
appears proximal to AMPK activation in transformed cells
subjected to detachment.11 However, the ATP decrease
was significantly more pronounced in AMPK-deficient cells
as compared with corresponding wt cells, suggesting that
AMPK activation functions to maintain ATP levels after
detachment. Together, these data demonstrate that AMPK
activation promotes survival during detachment-induced
stress, possibly by mitigating ATP reduction after detachment.
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AMPK activation after detachment inhibits mTORC1 to
promote anoikis resistance in transformed cells. AMPK
modulates numerous downstream targets to maintain
survival during energy stress, including ACC1, eEF2K,
mTORC1, and p53.16 We next wished to determine which
pathways downstream from AMPK activation act to suppress
anoikis. Consistent with NIH3T3 cells, ACC1 and Raptor show
increased phosphorylation in suspension versus monolayer
cultures of AMPKþ /þ MEFs, whereas, as expected, no
phosphorylation was seen in AMPK�/� MEFs (Figure 3a).
Again, no significant difference was seen between trans-
formed and non-transformed cells. However, we found that
survival after detachment in transformed AMPKþ /þ /EN or
AMPKþ /þ /K-Ras MEFs strongly correlated with mTORC1
inhibition, as demonstrated by hypo-phosphorylation of
p70S6K and 4E-BP1 (Figure 3a). By contrast, all AMPK�/�
MEF lines showed sustained mTORC1 activity in suspension.
A causative role for AMPK activation was corroborated
by using either DN AMPK expression (Supplementary
Figure S3a) or compound-C treatment of NIH3T3 cells
(Supplementary Figure S3b), each of which prevented
mTORC1 suppression after detachment (Supplementary
Figure S3b). In addition, anoikis-sensitive AMPKþ /þ /MSCV
MEFs also maintained mTORC1 activation, suggesting that,

paradoxically, AMPK-mediated mTORC1 suppression is
dependent on oncogenic transformation by EN or K-Ras.
Hence, under detachment-induced stress, mTORC1 activity is
uncoupled from the hyper-activation of PI3K–Akt and Ras–
ERK normally driven by EN or K-Ras. Transformed NIH3T3
cells similarly suppressed mTORC1 activity, in contrast to
NIH3T3-MSCV cells, which maintained mTORC1 activity after
detachment, again demonstrating that anoikis resistance
correlates with mTORC1 suppression (Figure 3b). The latter
was again uncoupled from PI3K–Akt and Ras–ERK hyper-
activation in transformed cells, as high p-Akt and p-MEK levels
were sustained even after 48 h in suspension. This further
supports the notion that AMPK-mediated mTORC1 inhibition
is somehow dependent on oncogenic transformation.

We then wished to establish a direct role for mTORC1
inhibition in anoikis resistance. First, AMPK�/�/EN and
AMPK�/�/K-Ras MEFs, neither of which suppress mTORC1
activity under detachment, were treated with rapamycin
immediately after detachment. Rapamycin reduced cell death
in transformed AMPK�/� cells in a dose-dependent manner
(Figure 3c), validated in Cytotox-Glo cytotoxicity assays
(Supplementary Figure S3d). Rapamycin also restored ATP
levels (Figure 3d), which were otherwise significantly reduced
after detachment (Figure 2f). To support these findings, we
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used TSC1�/� MEFs, which show constitutive mTORC1
activation.20 Detached EN and K-Ras transformed TSC1�/�
MEFs indeed showed increased mTORC1 activity after
detachment compared with corresponding TSC1þ /þ MEFs
(Supplementary Figure S3c). Like AMPK�/� MEFs,
TSC1�/� MEFs showed dramatically increased cell death
relative to corresponding wt MEFs (Figure 3e), as well as
reduced cell survival (Supplementary Figure S3e) and
increased cytotoxicity (Supplementary Figures S3f and g).
Furthermore, rapamycin again partially suppressed anoikis in
TSC1�/�/EN and TSC1�/�/K-Ras MEFs (Figure 3f and
Supplementary Figure S3h). Similar experiments were then
performed using MEFs deficient in both 4E-BP1 and 4E-BP2
(downstream from mTORC1/p70S6K) transformed with E1A
and H-Ras (4E-BP DKO E1A/Ras MEFs), which lack the
inhibitory control of protein translation.21 Indeed, by 72 h in
suspension, 4E-BP DKO E1A/Ras MEFs were markedly more
susceptible to anoikis as compared with corresponding
wt MEFs (Figure 3g). Altogether, these data establish a
critical role for AMPK-mediated mTORC1 inhibition in the
anoikis resistance of transformed cells.

Loss of ATG5-dependent autophagy is insufficient to
restore anoikis susceptibility to transformed cells.
Inhibition of mTORC1 induces multiple other processes
that could contribute to anoikis resistance, including induc-
tion of macroautophagy. It was reported previously that
macroautophagy is induced after detachment and has a
pro-survival role in detached, non-transformed or Bcl-2-
transformed breast cells.10 Consistent with this, both trans-
formed and non-transformed AMPKþ /þ MEFs showed
increased macroautophagy in suspension cultures, with
increased LC3B-II levels after bafilomycin-A-mediated
lysosomal inhibition to monitor autophagic flux (Figure 4a).
Interestingly, whereas bafilomycin-A-treated AMPK�/�
MEFs also accumulate LC3B-II after detachment, trans-
formed AMPK�/� MEFs accumulated less LC3B-II
compared with the corresponding transformed AMPKþ /þ
MEFs (Figure 4b). Although mTORC1 is known to block the
proximal steps of macroautophagy,22 the inability of trans-
formed AMPK�/� MEFs to induce autophagic flux as
compared with non-transformed AMPK�/� control cells is
unlikely due to differences in mTORC1 activity, as mTORC1
is re-activated in both transformed and non-transformed
AMPK�/� MEFs in suspension (Figure 3a). Therefore our
results are inconsistent with macroautophagy alone as the
basis of anoikis resistance, as both transformed and non-
transformed AMPK�/� MEFs undergo anoikis in suspension
(Figure 4a). To more directly demonstrate this, we tested
whether defective autophagy restores anoikis to transformed
cells. Under detachment, we observed a significant increase
in cell death of autophagy-deficient, non-transformed
ATG5�/� versus ATG5þ /þ MEFs (Figure 4c), consistent
with previous reports.10 By contrast, EN or K-Ras expression
almost completely abrogated anoikis in both ATG5þ /þ and
ATG5�/� MEFs after 72 h in suspension (Figure 4c).
Similarly, there was no significant difference in cell death in
EN- or K-Ras-transformed ATG5þ /þ versus ATG5�/�
MEFs at 12 and 24 h of suspension, whereas at these time
points there were significant differences in cell death in

transformed AMPKþ /þ versus AMPK�/� MEFs (Supple-
mentary Figure S4). Therefore, defective macroautophagy is
insufficient to restore anoikis to transformed cells at either
early or prolonged time points, arguing against a major role
for this process in AMPK-mediated anoikis resistance.

Inhibition of protein synthesis reduces energy stress
after cellular detachment and promotes anoikis
resistance. We next investigated whether the mTORC1-
mediated inhibition of protein synthesis promotes anoikis
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resistance in transformed cells, as protein synthesis is highly
demanding bioenergetically.23 First, using transformed
AMPK�/� or TSC1�/� MEFs, we observed increased
global protein synthesis rates in comparison with their wt
counterparts (Figures 5a and b), suggesting that anoikis
susceptibility is linked to their inability to suppress protein
synthesis. To directly determine whether reduced protein
synthesis promotes survival, AMPK�/�/EN and AMPK�/�/
K-Ras MEFs were treated with cycloheximide (CHX)
immediately after detachment. For these experiments we
used considerably lower concentrations than for standard
translation inhibition assays (i.e., 50–200 ng/ml versus
10–20mg/ml) and in the range where its effects on

translation are linear and dose-dependent.24 Low-dose
CHX indeed partially restored survival in transformed
AMPK�/� cells under detachment (Figure 5c and
Supplementary Figure S3d). Interestingly, CHX had little
effect on survival in transformed AMPKþ /þ MEFs under
detachment, and in fact showed a trend toward reducing
survival. This is consistent with its pro-survival effects
being limited to cells that fail to suppress mTORC1 activity
and protein synthesis. Similar effects were observed in
transformed TSC1�/� MEFs (Figure 5d and Supplementary
Figure S3h). Finally, as seen with rapamycin, CHX restored
ATP levels in AMPK�/�/EN and AMPK�/�/K-Ras MEFs
under detachment (Figure 5e). The ability of rapamycin and
CHX to promote anoikis resistance was not through
suppression of p53 translation (Supplementary Figure S5),
as was reported previously in adherent cells under glucose
deprivation.25 Therefore anoikis resistance mediated by
translation inhibition may be due in part to the mitigation of
the metabolic defects occurring after loss of attachment.
Overall, these data point to a model whereby detachment
stress leads to AMPK-mediated mTORC1 inhibition, thus
suppressing anoikis by preserving bioenergetic levels
through a block in protein translation.

AMPK activation contributes to anoikis resistance in
breast carcinoma cell lines. It is reported that fibroblasts
are relatively more resistant to anoikis than epithelial cells.26

We have observed that mesenchymal cell lines such as
murine fibroblasts and human sarcoma cell lines demon-
strate robust anoikis under detachment conditions when
key anoikis suppressors such as IGF1R or ERBB4 are
inhibited.8,27 Nevertheless, we wished to extend our current
findings to an epithelial cancer model. Using two metastatic
breast carcinoma cell lines, MDA-MB231 and MDA-MB435,
both demonstrated previously to be anoikis-resistant,28 we
analyzed the activity of the AMPK and mTOR pathways after
detachment. Consistent with results in fibroblasts, both cell
lines activate AMPK and suppress mTORC1 after detach-
ment (Figure 6a). Furthermore, anoikis was restored after
compound-C inhibition of AMPK activation under detachment
conditions (Figure 6b). Therefore, our finding that AMPK
activation contributes to anoikis resistance is applicable to
transformed epithelial cells as well.

Discussion

Cancer cells face diverse forms of stress during the metastatic
process as they traverse harsh microenvironments and
energy-depleted conditions. Many such stresses, including
nutrient depletion and hypoxia, may be transient and cancer
cells must rapidly respond to these conditions in order to
survive. Various stress response pathways are critical for
such survival, and reliance of cancer cells on these pathways
has been termed ‘non-oncogene addiction’. Here we have
shown that cellular detachment elicits a broad stress
response in cancer cells, which is likely critical for anoikis
resistance. In particular, we show that AMPK activation
promotes survival in detached cells by mitigating reductions
in ATP levels, and that this is linked to a block in mTORC1
signaling and global protein synthesis. Paradoxically,
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Figure 5 Inhibition of protein synthesis partially restores ATP levels and
promotes anoikis resistance in cells with sustained mTORC1 activity after cellular
detachment. (a and b) Assay of global protein synthesis rates as measured by
levels of 35S-methionine/cysteine incorporation into newly synthesized proteins in
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suspension. All data are shown as mean±S.E.M. (n¼ 3). The asterisk indicates
statistical significance as determined by Student’s t-test (Po0.05)
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mTORC1 inhibition relies on the expression of oncogenes
such as activated K-Ras or EN to suppress mTORC1 activity
after detachment. These oncogenes typically hyper-activate
mTORC1 through sustained Akt activity during proliferative
conditions.3 Therefore, activation of this AMPK–mTORC1
cascade appears to be dominant over pro-growth and
metabolically demanding pathways such as those driven by
Akt, demonstrating the emphasis cancer cells place on stress
response pathways to maintain survival during episodes of
bioenergetic compromise.

Despite the functional diversity of AMPK- and mTOR-
regulated pathways, their relative roles in anoikis resistance
have not been well-studied. AMPK activation was previously
demonstrated after detachment in breast epithelial cells, and
was associated with induction of autophagy.10 However, the
relative contribution of AMPK activation to survival and/or
autophagy was not determined. Overexpression of mTOR
in non-transformed wt fibroblasts promoted anoikis resis-
tance, and mTOR knockdown in MEFs deficient in all
retinoblastoma-family members restored anoikis.29 However,
whether mTOR overexpression correlates with gain-of-
function of downstream pathways, particularly in relation to
mTORC1 versus mTORC2 complex function, was not
determined. Interestingly, in thyroid epithelial cells, inhibition
of protein synthesis using low-dose CHX also promoted
survival in suspension but showed no effect on the survival of
monolayer cells,30 supporting our finding that translation
inhibition promotes anoikis resistance.

Recently, a pro-survival role for macroautophagy in ancho-
rage-independent growth was reported.31 Consistent with
our data, these authors demonstrated that detachment of
H-Ras(V12)-transformed cells led to the activation of auto-
phagy in association with mTORC1 inhibition. However, ATG5
deficiency in H-Ras(V12)-transformed MEFs led to increased
apoptosis under anchorage-independent conditions, contrary to
our findings in which EN- and K-Ras(V12)-transformed MEFs,
whether deficient or wt for ATG5, were able to suppress anoikis.
Several recent studies demonstrated a key role for macro-
autophagy in proliferation and metabolism during Ras-mediated
transformation.32,33 In these studies, whereas macroautophagy
was critically important to maintain a metabolic phenotype
permissive for sustained proliferation during transformation,

a function for autophagy in suppressing anoikis after cellular
detachment was not required for Ras transformation. In fact,
direct suppression of apoptosis through Bcl-2 overexpression
was insufficient to restore prolonged anchorage-independent
growth in Ras-transformed, autophagy-deficient cells.31

Our data suggest that AMPK is important for both prolonged
anchorage-independent growth, as demonstrated pre-
viously,34 and for survival at early time periods following
detachment, as shown in Figures 2c and 4c, and Supplemen-
tary Figure S4. Therefore, whereas autophagy is required for
certain essential components of Ras-mediated transformation
such as proliferation and altered metabolism, anoikis resis-
tance appears to represent a divergent oncogenic property
potentially dependent on other processes such as activation
of the AMPK pathway.

Consistent with our results, a pro-survival role for AMPK
activation and mTORC1 inhibition has been documented
under other stress conditions. AMPK activation promotes
survival during nutrient deprivation, which appears to be
dependent on an AMPK-mediated cell-cycle checkpoint.35

Under starvation and DNA damage, constitutive mTORC1
activity in the context of tuberous sclerosis complex (TSC)
deficiency compromises survival through modulation of p53
levels.25 Inhibition of mTORC1 also promotes survival in
TSC-deficient cells during glucose starvation by maintaining
energy levels.36 Interestingly, TSC2 overexpression has been
associated with increased tumor invasion and metastasis,37

contrary to its well-studied tumor-suppressive role. 4E-BP
levels also correlate with metastatic potential, allowing cells to
better tolerate hypoxic stress, possibly through its ability
to promote a switch to the cap-independent translation of
pro-survival factors such as VEGF-A and Bcl-2.38,39

In summary, our data indicate that cellular detachment
generates significant energy stress, and that bioenergetic
homeostasis after detachment is necessary for survival. We
demonstrate a novel anoikis resistance pathway mediated by
an AMPK–mTORC1 axis that suppresses protein synthesis.
This axis appears to be specifically important for oncogene-
transformed cells. The AMPK pathway is broadly considered
to be tumor-suppressive in nature, and pharmacologic
activation of AMPK or inhibition of mTOR is currently under
investigation as components of cancer therapy. However,
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consideration of how these pathways may alter survival and
potentially metastatic potential through their ability to sup-
press anoikis will be important in the development of cancer
therapeutics and in our understanding of cancer progression.

Materials and Methods
Cell culture and DNA transfection. Early-passage NIH3T3 were obtained
from ATCC (Rockville, MD, USA). AMPKþ /þ and �/� MEFs were obtained as
described previously.34 TSC1þ /þ and �/� MEFs were provided by David
Kwiatkowski (Harvard Medical School, Boston, MA, USA). 4E-BP E1A/Ras wt and
DKO MEFs were provided by Nahum Sonenberg (McGill University, Montreal, QC,
Canada). ATG5þ /þ and �/� MEFs were provided by Noboru Mizushima
(National Institute for Basic Biology, Okazaki, Japan). IGF1R�/� MEFs (R�) and
IGF1R�/� MEFs re-expressing IGF1R (Rþ ) were provided by Renato Baserga
(Kimmel Cancer Centre, Philadelphia, PA, USA). The retroviral expression vectors
pMSCVpuro-ETV6-NTRK3 and pMSCVpuro-ETV6-NTRK3myr were used for
generation of stable cell lines as described previously.8 The pMSCVpuro-K-
Ras(V12) vector was constructed by subcloning the BamHI–SalI fragment from the
pBabe-puro-K-Ras(V12) vector obtained from Addgene (courtesy of William Hahn)
containing the K-Ras(V12) open reading frame into the BglII–XhoI sites of
pMSCVpuro. The pMSCVneo-DN-AMPK vector was constructed by subcloning the
EcoRI fragment from pBabe-GFP-DN AMPK (gift from Nissim Hay) into the
pMSCVneo vector. Infections of the NIH3T3 cells and MEFs were performed by
using retrovirus generated after introduction of the retroviral vectors into PhoenixA
cells. For suspension cultures, cells at sub-confluence were detached by
trypsinization and diluted to a concentration of 250 000 cells/ml, plated on
polyHEMA-coated 10-cm dishes or 6- to 12-well plates, or pre-coated 96-well
plates (Non-Binding Surface coated microplates; Corning, Lowell, MA, USA), and
incubated for the indicated time periods. Chemical inhibitors were added to
suspension cultures immediately after detachment and plating onto polyHEMA-
coated plates to determine their effects on the early stages of the anoikis response.

Antibodies and chemicals. The anti-p-ACC (S79), anti-ACC, anti-p-Raptor
(S792), anti-p-AMPKa (T172), anti-cleaved caspase-3, anti-p-p70 S6 kinase
(T389), anti-4E-BP1, anti-p-Akt (S473), anti-p-MEK1/2 (S217/221), anti-GAPDH,
and anti-LC3B antibodies were purchased from Cell Signaling (Danvers, MA, USA).
The anti-TrkC, to detect ETV6-NTRK3 expression, and anti-b-actin antibodies were
purchased from Santa Cruz Biotechnologies (Santa Cruz, CA, USA). The anti-K-
Ras antibody was purchased from Calbiochem/EMD Biosciences (Darmstadt,
Germany). Compound-C was obtained from Calbiochem/EMD Biosciences.
Rapamycin was obtained from Cayman Chemical Co. (Ann Arbor, MI, USA).
CHX was obtained from Sigma-Aldrich (Oakville, ON, Canada). Bafilomycin-A was
obtained from A.G. Scientific (San Diego, CA, USA).

Caspase-3 activity assay. Cells were lysed in caspase-3 lysis buffer (10 mM
HEPES (pH 7.5), 50 mM NaCl, 2 mM MgCl2, 5 mM EGTA, 0.2% CHAPS) and
assayed for protein concentration by the DC protein assay (Bio-Rad, Mississauga,
ON, Canada). Lysates were mixed at a 1 : 1 ratio with caspase-3 reaction buffer
(40 mM PIPES (pH 7.2), 200 mM NaCl, 20% sucrose, 0.2% CHAPS, 20 mM DTT);
caspase-3 substrate was added to a concentration of 0.5mM (Caspase-3 Substrate
IX fluorogenic; Calbiochem/EMD Biosciences), and incubated for 1 h at 371C.
Fluorescence intensity was measured and normalized to protein concentration.

Annexin-V/7-AAD FACS assay. Transformed and non-transformed AMPK
MEFs were cultured in suspension for 48 h, harvested by centrifugation, washed,
and trypsinized for 10 min. These dispersed cells were washed, centrifuged, and
filtered (0.45mm) to obtain a single-cell suspension. Annexin-V–FITC and 7-AAD
were added with the cells in binding buffer according to the manufacturer’s protocol
(BD Pharmingen, Mississauga, ON, Canada); incubated at room temperature for
15 min; and subjected to FACS analysis.

Cell survival and cytotoxicity assays. Cell survival was measured by
using the AlamarBlue assay (Invitrogen, Burlington, ON, Canada) according to the
manufacturer’s instructions. Briefly, cells were detached and cultured for 48 h in
suspension on a 96-well coated plate. The AlamarBlue reagent was added at a
1 : 10 ratio, incubated for 4 h at 371C, and absorbance was read and corrected for
background. The LDH release Cytotoxicity Detection Kit (Roche, Indianapolis, IN,
USA) was used according to the manufacturer’s instructions. Briefly, cells were

detached and cultured for 48 h in suspension on a six-well coated plate. Cleared
supernatant media was collected; combined with the LDH assay reaction mixture;
incubated for 0.5 h; and absorbance was read, corrected for background, and
normalized to the total cell count. The Cytotox-Glo cytotoxicity assay (Promega,
Madison, WI, USA) was performed according to the manufacturer’s protocol. Briefly,
cells were detached and cultured for 24 h in suspension on a 96-well coated plate.
The assay reagent was added at room temperature, incubated for 15 min, and total
luminescence was measured, corresponding to the protease levels released by
dead cells. This value was normalized to total cell protease activity after
re-incubation for 15 min with additional assay reagent combined with digitonin for
complete cell lysis, as provided in the assay kit.

ATP assay. Cells were lysed in ATP assay lysis buffer (10 mM Tris (pH 7.5),
40 mM NaCl, 1% Triton X-100, 20 mM EDTA) supplemented with a protease inhibitor
cocktail (Complete Mini tablets; Roche) and assayed for protein concentration. Lysates
were mixed at a 1 : 1 ratio with the ATP reaction buffer in the ATP Bioluminescent
Assay kit (Sigma-Aldrich) at room temperature and luminescence was measured
immediately. The luminescence values were normalized to protein concentration.

Total protein synthesis assay. Cells were cultured in suspension conditions
and pulsed with 10mCi [35S]-methionine/cysteine mix (EasyTag EXPRESS Protein
Labeling Mix; Perkin Elmer, Woodbridge, ON, Canada) for 30 min. Cells were washed
then lysed by using buffer containing 50 mM HEPES (pH 7.4), 150 mM NaCl, 2 mM
EDTA, 10% glycerol, 1% NP-40, and protease inhibitors (Roche). Using 10mg of
lysate, total protein was precipitated by using 10% trichloroacetic acid (TCA), vacuum-
filtered using glass microfiber filters (GF/C; Whatman, Piscataway, NJ, USA), washed
with TCA and ethanol, and total [35S] activity was measured to reflect methionine
incorporation and global protein synthesis.

Gene expression profiling. Biotin-labeled cRNA was prepared from total
RNA and hybridized to Affymetrix GeneChip Mouse 430A Expression Arrays
according to the manufacturer’s protocol (Affymetrix Inc., Santa Clara, CA, USA).
Array data were normalized by using the Robust Multi-Array Average module in the
Genetrix software package (Epicenter Software, Pasadena, CA, USA), which was
used for subsequent gene expression analysis. The normalized expression values
were log-transformed and genes were selected as differentially expressed based on
at least two-fold mean difference in expression between the monolayer (Rþ EN/R-
EN/R-ENmyr) and suspension (SPHRþ EN/SPHR-EN/SPHR-ENmyr) groups,
each cultured in their respective conditions for 24 h, and t-tests were used to
determine significance (Po0.05). Functional annotation was performed by using
the DAVID online tool for overrepresentation analysis of functional gene categories
and GO terms. GSEA between the monolayer and suspension phenotypes was
performed as described previously,40 using the Broad Institute software (v 2.07),
with the analysis performed by using permutations of gene sets (1000) and
Signal2Noise metric for ranking of genes.
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