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ABSTRACT

Motivation: Peptide detection is a crucial step in mass spectrometry
(MS) based proteomics. Most existing algorithms are based upon
greedy isotope template matching and thus may be prone to
error propagation and ineffective to detect overlapping peptides. In
addition, existing algorithms usually work at different charge states
separately, isolating useful information that can be drawn from other
charge states, which may lead to poor detection of low abundance
peptides.
Results: BPDA2d models spectra as a mixture of candidate peptide
signals and systematically evaluates all possible combinations of
possible peptide candidates to interpret the given spectra. For
each candidate, BPDA2d takes into account its elution profile,
charge state distribution and isotope pattern, and it combines all
evidence to infer the candidate’s signal and existence probability.
By piecing all evidence together—especially by deriving information
across charge states—low abundance peptides can be better
identified and peptide detection rates can be improved. Instead
of local template matching, BPDA2d performs global optimization
for all candidates and systematically optimizes their signals. Since
BPDA2d looks for the optimal among all possible interpretations
of the given spectra, it has the capability in handling complex
spectra where features overlap. BPDA2d estimates the posterior
existence probability of detected peptides, which can be directly
used for probability-based evaluation in subsequent processing
steps. Our experiments indicate that BPDA2d outperforms state-of-
the-art detection methods on both simulated data and real liquid
chromatography–mass spectrometry data, according to sensitivity
and detection accuracy.
Availability: The BPDA2d software package is available at
http://gsp.tamu.edu/Publications/supplementary/sun11a/
Contact: michelle.zhang@utsa.edu; edward@ece.tamu.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Liquid chromatography coupled to mass spectrometry (LC–MS) is
widely used for large-scale protein profiling of complex biological
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samples. In a typical LC–MS experiment, peptides from digested
protein mixture go through an LC column with different speeds
depending on their physicochemical properties. Eluent from the
chromatography is ionized and analyzed by mass spectrometer,
which measures ions according to their mass-to-charge (m/z)
ratios. The resulting LC–MS dataset usually contains hundreds to
thousands of mass spectra indexed by the LC retention time.

Analysis of LC–MS experiments by computational methods is
challenged by the huge data size and rich information contained,
and moreover complicated by several facts including: (i) proteins
contained in complex samples such as plasma and tissue extracts
have a wide dynamic concentration range (e.g. 10 orders of
magnitude), plus peptides differ in ionization efficiencies, which
means that the observed peptide signal from MS data may also have
a wide dynamic range. While high abundance peptides are relatively
easy to be identified, low abundance peptides/proteins, which are
often of more biological importance, are likely to be buried under
noise or interfering signals and thus hard to be detected (Li et al.,
2005). (ii) The shape of peptide chromatographic peaks is not well
predicted (Schulz-Trieglaff et al., 2008). Due to experiment settings
and the nature of the analytes, asymmetric shape or plateaus of
chromatographic peaks may be observed, which requires designed
detection algorithms to be robust in tracking signals from various
peptide species and be adaptable across experiments. (iii) One
peptide can be multiply charged and can register a group of isotopic
peaks at each charge state. Correctly identifying all the peaks and
assigning them to the right peptide is a non-trivial task. (iv) The
signal density can be very high even in high-resolution LC–MS
data and overlapping peptide peaks are commonly observed, the
detection of which is very challenging.

Accurate identification and quantification of proteins is
essential for biomarker discovery, drug development and disease
classification (Frank et al., 2003). Fragmentation spectra produced
by tandem mass spectrometry (MS2) are frequently used by popular
software such as SEQUEST and Mascot (Perkins et al., 1999) for
database searching to give peptide identifications. However only a
small percentage of peptides present in the sample get selected for
fragmentation analysis and of these selected peptides even fewer
can be correctly identified by database searching due to spectra
matching ambiguity or co-eluting precursor ions (Nesvizhskii et al.,
2006). Furthermore, quantitation of peptide abundance based on
MS2 spectra counting is very rough, and highly variable especially
for low abundance peptides (Bantscheff et al., 2007). [Though by
using well-established stable isotope labeling approaches such as
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tandem mass tags, the relative abundance of analytes in different
samples can be accurately determined (Domon et al., 2006).]
Therefore, many algorithms for peptide detection are developed
to use MS1 information directly, and thus have the potential to
identify more peptides. Such algorithms can be mainly divided
into two categories: 1D algorithms [e.g. NITPICK (Renard et al.,
2008), Decon2LS (Jaitly et al., 2009), Hardklör (Hoopmann et al.,
2007) and BPDA (Sun et al., 2010)] which perform peak picking,
deisotoping and charge state assignment on a scan-to-scan basis, and
2D algorithms [e.g. MZmine (Katajamaa et al., 2005), SpecArray
(Li et al., 2005), msInspect (Bellew et al., 2006), SuperHirn (Mueller
et al., 2007), VIPER (Monroe et al., 2007), MaxQuant (Cox et al.,
2008) and OpenMS (Sturm et al., 2008)] which capture the 2D
nature of LC–MS data and utilize information from both the mass-to-
charge and retention time (RT) dimensions for peptide detection. 2D
algorithms appear to be more promising in handling LC–MS data.
Regardless of category, most of the aforementioned algorithms are
grounded on the idea of greedy template matching. The templates
used are often based on theoretic isotope patterns calculated from
peptide masses (Rockwood et al., 1995). If an observed group of
peaks matches the proposed template well—the quality of the match
is usually assessed by a fitting score—it will be reported as a feature
and then subtracted from the spectra. The matching and subtraction
process goes on until no more matches can be found. The major
problem with greedy template matching is that it may be ineffective
to detect overlapping peptides. In the case of overlapping (e.g. one
doubly charged peptide can overlap with a singly charged peptide
of half the mass given that the two elute from chromatography
at a similar time), if the peak group of one peptide is incorrectly
matched and subtracted, the rest of the overlapping peptides cannot
be detected correctly using the remaining signal, which may result
in error propagation. Besides, each template is aimed at matching
isotopic peaks of one single peptide, and thus is likely to be different
from the observed overlapping peaks, which renders a poor match
and reduces the sensitivities of these algorithms. Alternatives to
greedy template matching-based approaches include 1D algorithms
such as NITPICK, which is based on LARS regression; Hardklör,
which approximates an isotope peak cluster by a set of averagine
models (Senko et al., 1995); and BPDA, which carries out global
optimization instead of sequential template matching. They also
include 2D algorithms such as MaxQuant, which mainly relies
on the distance among isotope peaks and the correlation between
isotope labeled (SILAC) pairs to detect and quantify peptides in
SILAC-proteome experiments.

We present BPDA2d, a 2D Bayesian peptide detection algorithm
and an extension of BPDA, to process high-resolution LC–MS
data more efficiently. BPDA2d shares the core idea with BPDA,
which is to systematically evaluate all possible combinations of
peptide candidates (originated from well-defined signal peaks)
for spectra interpretation, and to optimize all peptide signals
in order to minimize the mean squared error (MSE) between
inferred and observed spectra. The outputs include peptide
monoisotopic mass, RT, abundance, existence probability, etc.
BPDA2d essentially differs from BPDA by explicitly exploiting
information residing in the RT dimension to analyze spectra and
detect peptides. While BPDA only models peptide signals along the
m/z dimension, BPDA2d models the spectra from both m/z and RT
dimensions, thereby capturing and fitting the properties of LC–MS
data better.

BPDA2d offers following advantages over conventional
methods:

(i) BPDA2d carries out global optimization instead of local
template matching. It is ‘global’ in two senses: first, for
the detection of one peptide candidate, BPDA2d extracts
all relevant information and observations (including isotopic
peaks, charge state distributions and LC elution peaks) that
span all over the m/z-RT space, and pieces all evidence
together to infer the candidate’s existence probability. As
a result, low abundance peptides can be better identified.
In contrast, existing algorithms often perform peptide
deisotoping at a single charge state (Bellew et al., 2006;
Hoopmann et al., 2007; Jaitly et al., 2009; Katajamaa et al.,
2005; Li et al., 2005; Mueller et al., 2007; Sturm et al.,
2008), isolating useful information that can be drawn from
other charge states. While high abundance charge states may
be correctly detected, low abundance charge states might
be missed or wrongly assigned, rendering low sensitivity
results in peptide identification and inaccuracy in peptide
quantification. Additional benefits of collating all charge states
are discussed in Dijkstra et al. (2009). (Though their method
requires the peak clusters at various charge states to have
a moderate correlation, and thus may not work efficiently
if the shape of the peak cluster at any charge state differs
from other charge states due to the presence of interfering
peptides.) Second, BPDA2d performs global optimization
for all candidates and simultaneously finds their best fitting
signals. Since BPDA2d looks for the optimal among all
possible interpretations of the MS spectra, the procedure is
thus systematic. In contrast, greedy template matching-based
methods detect peptides one by one in a greedy manner, which
prevents them from evaluating all potential interpretations
of the given spectra and may lead to poor detection of
overlapping peptides (See Section 3). Therefore, the results
are often suboptimal.

(ii) BPDA2d provides existence probabilities for all the candidates
considered, as opposed to the fitting scores generally provided
by greedy template matching methods. The metrics used for
fitting score calculation may be heuristic [e.g. KL distance
(Bellew et al., 2006)]. In addition, the range of the fitting
score may vary from experiment to experiment, making it
hard for the end user to interpret and to select a proper
threshold to filter out low-quality features. On the contrary,
existence probabilities given by BPDA2d are derived based
on a solid statistical framework and can be directly used
for probability-based evaluation—similar to PeptideProphet
(Keller et al., 2002) which is a popular software used for
LC–MS/MS peptide identification.

(iii) BPDA2d makes little assumptions about the shape of elution
peaks. A non-parametric approach is used to model peptide
elution peaks and the model is derived from observations
as opposed to employing any pre-assumed peak shape as in
Leptos et al. (2006); Sturm et al. (2008). Therefore, BPDA2d
is more effective in tracking signals from various peptide
species and more adaptable across experiments.

(iv) Most parameters in the proposed method possess a clear
physical meaning as they come directly from observations
of the mass spectra. In contrast, many other approaches
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require selection of numerous non-intuitive parameters, such
as wavelet functions and coefficients (Morris et al., 2005).

2 METHODS
We first preprocess the spectra to remove baseline, filter noise, detect peaks
in the m/z-RT plane, and generate a list of peptide candidates annotated
by mass and RT. Then BPDA2d is applied based on the developed MS
model to infer the best fitting peptide signals of observed spectra, the results
being peptide monoisotopic mass, RT, abundance, existence probability, etc.
Details of preprocessing steps, proposed MS model and BPDA2d algorithm
are described in the following subsections.

2.1 Spectra preprocessing and obtaining peptide
candidates

Non-flat baselines are often observed in mass spectra. Their presence can
distort the true signal pattern. Thus, the baseline of each MS scan is first
identified as the running minima along the m/z axis using a window size of
4 Da (a tunable parameter), and subtracted from the scan. Then each scan
is smoothed by the LOWESS regression method (Matlab mslowess function
http://www.mathworks.com/help/toolbox/bioinfo/ref/mslowess.html) with
Gaussian kernel and a span of nine consecutive points.

The next step is 1D peak detection along the m/z axis. We
followed the approach implemented in the Matlab mspeaks function
http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/ref
/mspeaks.html. Specifically, in each smoothed MS scan, local maxima are
first identified as putative peak locations. Then peaks are filtered based on
their intensities and signal to noise ratios (defined as the local maximum
divided by the minimum of the two neighboring local minima), and peaks that
are too close to each other (might occur due to over-segmentation) are joined
into a single one. The thresholds used for intensity and over-segmentation
filters, τintn and τseg, respectively, are automatically determined depending
on the characteristic of each input MS scan as below:

τintn = mean(intn)+sd(intn),

τseg = min(
200

resolution
,7×lower 10% quantile of the space

between neighboring m/z values).

And the SNR threshold is a tunable parameter with default value 3.
Next, the detected 1D peaks in adjacent spectra are connected along the

RT dimension: 1D peaks are first sorted by their centroid m/z positions,
and then divided into disjoint subsets, in which the maximal m/z distance
between two 1D peaks is less than twice the smallest m/z in the subset
times �m (a user defined mass error in ppm). For each subset, the peaks
are then sorted/connected according to their RT positions (if multiple peaks
have the same RT, only the one with the largest intensity is retained). Next,
the connected 1D peaks are split at RT gaps (a tunable parameter), and the
resulting so-called elution peaks are smoothed by the LOWESS regression
method with a ±3 scan width. The elution peaks could be multimodal,
which may for instance be produced by two different peptides with partially
overlapping elution peaks, or by isomers with variant post-translational
modifications and thus different retention times. Multimodal elution peaks
are split at local minima. A point is identified as a local minima/maxima
if it is preceded by a local maxima/minima and is followed by a value
greater/lower by 15% (the threshold is a user tunable parameter which
should be comparable to the random intensity fluctuations of the instrument).
Consequently, all elution peaks are now unimodal, which will be used to
propose a list of peptide candidates in the next step. For each elution peak,
its centroid position in the m/z axis is estimated as the average of the m/z
values of the connected 1D peaks weighted by their intensities. This method
enables very accurate mass estimation, as reported by Cox et al. (2008).

Now, considering one elution peak with centroid at m/z value d, we want
to find out which peptide candidates can potentially produce this signal peak.

At least two conditions need to be satisfied. (i) The masses of such peptides
should be restricted to the following set:

{mass
∣∣mass= i(d−mpc)−jmnt,

i=1,2,...,cs, j=0,1,...,iso},
(1)

where mass is the mass of such a candidate, mpc is the mass of one positive
charge and mnt is the mass shift caused by addition of one neutron. Due to
mass defect, the mass shift varies for different elements. We approximate
mnt using the mass shift from 13C to 12C, which is 1.0034, since Carbon
contributes most to the isotope patterns. But mnt is a user accessible parameter
whose value can be changed as needed. The parameters cs and iso are
user-defined maximal numbers of considered charge states and isotopic
positions, respectively. (ii) The shapes of such candidates’ elution peaks
should resemble the aforementioned elution peak with centroid d (hereafter
referred to as the ‘source’ elution peak). But in the presence of scan
noise, missing values or overlapping peptide signals, the actual shapes of
candidates’ elution peaks can be quite different from the observed shape of
the source peak. Thus, in order to estimate candidates’ elution peaks more
accurately, other elution peaks which can be produced by such candidates
need to be taken into account. In more detail, assume the source elution
peak has given rise to a candidate with mass value massk taken from the set
defined in Equation (1). Then, theoretically, this candidate can generate a set
of elution peaks with centroids given by

αk,ij = massk +impc +jmnt

i
,

i=1,2,...,cs, j=0,1,...,iso,

(2)

where αk,ij is the theoretic centroid (m/z value) of the elution peak generated
by candidate massk at charge state i and isotopic number j. In theory, the
set of elution peaks generated by this very candidate should have the same
shape (up to a multiplicative constant). Therefore, we search in the previous
detected elution peaks for those whose centroids are coincident with the
values given by Equation (2) (within �m) and have correlation >0.6 with the
source elution peak, since these elution peaks can serve as extra evidence to
infer the candidate’s real elution peak. Finally the candidate’s elution peak
is estimated by taking the average of all identified elution peaks weighted
by the mean intensity of each elution peak involved in the calculation. The
candidate’s elution profile is then obtained by normalizing its elution peak
by the apex, and the corresponding RT of the apex is taken as the candidate’s
RT. It is worth to mention that we do not assume any particular shape
for candidates’ elution profiles, but instead estimate them from relevant
observations. Due to heterogeneity of peptides and fluctuations in liquid
chromatography, this approach is more robust in the presence of noise and
more adaptable across analysis platforms compared to using any pre-defined
model (Leptos et al., 2006; Sturm et al., 2008).

As can be seen from Equation (1), each detected elution peak gives rise to
cs×(iso+1) different peptide candidates whose elution profiles have been
estimated in the previous step, but it does not follow that all these candidates
really exist in the sample. Therefore, our primary goal in peptide detection
is to find the existence probability of each peptide candidate. Also note that
the total number of candidates should be less than or equal to cs×(iso+1)×
(number of detected elution peaks), as it is possible that multiple elution
peaks yield the same candidate. It is worth to mention that the way candidates
are generated in BPDA2d is fundamentally different from that in BPDA, as
additional information carried by elution peaks is utilized. Candidates are
now associated with elution profiles in addition to mass values.

2.2 Modeling the mass spectra
We propose a complete model to capture the specific properties of peptides
and mass spectra over the entire m/z-RT plane.

Suppose N peptide candidates are obtained from the observed spectra
using methods described in the previous section. Each candidate can generate
a series of elution peaks over different charge states, and at each charge state
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several isotopic peaks can be registered. Hence, the signal generated by the
k-th peptide candidate is modeled by Equation (3), in which i and j represent
the charge state and the isotopic position of the candidate, respectively. The
baseline removed and smoothed spectra (see the previous section for details)
are a mixture of signals generated by N peptide candidates plus Gaussian
random noise, which are modeled by Equation (4):

gk(xm,t) =
cs∑

i=1

iso∑

j=0

ck,ij lk(t)Ixm=αk,ij , (3)

y(xm,t) =
N∑

k=1

λkgk(xm,t)+ε(t)

=
N∑

k=1

λk

cs∑

i=1

iso∑

j=0

ck,ij lk(t)Ixm=αk,ij +ε(t), (4)

m = 1,2,...,M, t =1,2,...,T .

In the above two equations, xm is the m-th mass-to-charge ratio
in the signal region, i.e. xm ∈{m/z values of detected elution peaks}⋃
{m/z values of all candidates’ theoretic peaks }, t indexes spectra, M and
T are the total number of m/z values and spectra, respectively, y(xm,t)
represents the intensity at point (xm,t), I is an indicator function, IA =1
if A �=∅, IA =0 otherwise, and the noise term ε(t) follows a Gaussian
distribution with zero mean and SD σ(t), which is generally a good model for
thermal noise in electrical instruments. The value of σ(t) can be approximated
by the SD of the background region in the t-th scan. The parameters of the
k-th candidate, namely, αk,ij , lk(t), λk and ck,ij , are discussed in detail below:

• αk,ij is the theoretic centroid position (in the m/z axis) of the elution
peak generated by candidate k, at charge state i and isotopic number
j, the value of which is given by Equation (2).

• lk(t) is the normalized elution profile of the k-th peptide candidate,
which is already obtained in previous section.

• λk is an indicator random variable, which is 1 if the k-th peptide
candidate truly exists in the sample and 0 otherwise.

• ck,ij is the apex intensity of the elution peak generated by peptide k,
at charge state i and isotopic number j.

In summary, the model considers peptides’ elution peaks at different
isotopic positions and charge states simultaneously, incorporating candidates’
existence probabilities and spectra thermal noise.

2.3 Bayesian peptide detection
Let θ� {λk,ck,ij;k =1,...,N, i=1,...,cs, j=0,...,iso} be the set of all
unknown model parameters. The goal of our algorithm is to determine
the value of θ based on the observed spectra vector y=[y(xm,t);m=
1,2,...,M,t =1,2,...,T ]T . The λk values are of our prime interest in the
peptide detection problem. For this purpose, we can use a Bayesian approach
to first obtain the a posteriori probability (APP) of all the parameters, P(θ|y).
Then the APPs P(λk |y),k =1,...,N, can be obtained by integrating the joint
posterior distribution P(θ|y) over all parameters except λk . Clearly, the
calculation involves intricate high dimension integration. Besides, due to
the highly non-linear nature of the data model, none of these desired APPs
can be obtained analytically. To overcome the computational obstacle, we
resort to the Gibbs sampling method (Geman et al., 1984), which is a variant
of the Markov Chain Monte Carlo approach (Robert et al., 2004), to sample
the model parameters.

Gibbs sampling iteratively sample a subset of parameters while fixing the
rest at the sample values from the previous iteration. In other words, for the
l-th parameter group θl , we sample from the conditional posterior distribution
P(θl|θ−l,y), where θ−l �θ\θl . After this sampling process iterates among the
parameter groups for a sufficient number of cycles (which is referred to as the
‘burn-in’ period), convergence is reached. The samples collected afterwards
are shown to be from the marginal posterior distribution P(θl|y), which is

independent of θ−l , and thus these samples can be used to estimate the target
parameters.

The Gibbs sampling process for the k-th peptide candidate and the
derivations of the conditional posterior distributions of important model
parameters are briefly summarized below. Detailed derivations can be found
in Supplementary Material.

• Sample the apex vector ck � [ck,ij;i=1,...,cs, j=0,...,iso]T for the
k-th candidate
Apexes of all possible elution peaks (over different charge states
and isotopic positions) of the k-th peptide candidate are included
in ck and are sampled simultaneously from the conditional posterior
distribution of ck , which, by the Bayesian principle, is proportional
to the likelihood times the prior:

P(ck
∣∣y,θ−ck )∝P(y|θ)P(ck), (5)

where θ−ck �θ\ck .
Derivations of the likelihood, the prior distribution [which makes
use of the Averagine model (Senko et al., 1995)] and the conditional
posterior distribution of ck are given in the Supplementary Material.

• Sample the peptide existence indicator variable λk The conditional
posterior distribution of λk is given by

P(λk
∣∣y,θ−λk )∝ p(y|θ )p(λk) (6)

where θ−λk �θ\λk .
Absence of prior knowledge about which peptide candidates are more
likely to be present in the sample, a reasonable choice is a uniform
prior for λk . However, we wish to be conservative regarding the
existence of peptide candidates. The idea is that by including more
candidates, it is possible to reduce the MSE between the inferred and
the observed spectra, but at the same time the chances of overfitting
increase as model complexity grows. Thus, a prior based on Bayesian
information criterion (BIC) (Schwarz, 1978) is adopted to address
overfitting by introducing a penalty term for the number of parameters
of the model. The penalty only takes effect when inclusion of one
peptide does little to improve the goodness of fit.

For Gibbs sampling, it is well known that the correlation between
parameters can reduce sampling efficiency. Thus, we cluster peptide
candidates which have large overlaps in both m/z and RT dimensions
together. Candidates within one cluster have strong correlations among each
other, and their indicator variables are sampled from the joint conditional
posterior distribution. The iteration order also affects the performance.
Therefore, peptide clusters are first sorted by their importance, which is
defined as the maximal intensity of the peptides in the cluster. The iteration
starts from the most significant cluster and continues to the next significant
one. Our experimental results suggest that this scheme helps to reduce false
positives and speed up convergence. The pseudocode of the entire Gibbs
sampling process is given in Supplementary Material.

Samples taken after convergence can be used to estimate target parameters,
so the existence probability of peptide k is calculated as P(λk =1|y) =

1
R−r0+1

R∑
r=r0

λr
k , where r0 is the first iteration after convergence is reached, R

is the total number of iterations and λr
k is the sample value of λk in the r-th

iteration.
If the LC–MS data also contain MS2 fragmentation spectra, then MS1

detected peptides can be linked to MS2 identified features given by software
such as SEQUEST to obtain peptide sequence information.

3 RESULTS AND DISCUSSION
We report the observed performance of BPDA2d, side by side with
state-of-the-art methods, such as msInspect and BPDA in a number
of experiments using both synthetic and real data. The efficiency of
BPDA2d in detecting low abundance and overlapping peptides is
illustrated.
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3.1 Results for synthetic data
3.1.1 Synthetic 100-mix LC–MS datasets with different abundance
levels (SNRs) First, to test robustness of various algorithms, we
generated LC–MS datasets with different signal to noise ratios
(SNRs) using methods described by Schulz-Trieglaff et al. More
specifically, the mean signal strength (peptide abundance) was
varied while the noise level (mean and variance of noise) was
fixed. For each peptide abundance level a∈{100,500,5000}, the
simulation was repeated 30 times. In each repetition, 100 true
peptides (with abundance level a and masses randomly selected
from tryptic digested human proteins) served as inputs of the
model given by Equation (4). The charge state distribution of
one peptide was modeled by a binomial distribution, which was
reported to approximate the real data well (Schulz-Trieglaff et al.,
2008). The isotopic distribution was calculated theoretically based
on peptide sequence. The peptide elution profile was modeled by
an exponentially modified Gaussian distribution, which captures
different distortions of elution peaks by considering tailing and
fronting effects (Di Marco et al., 2001). Each output dataset consists
of 100 MS spectra with mass resolution 15 000.

BPDA2d, BPDA and msInspect (the latest Build 613) were
applied to the same datasets to give detection results. We mainly
focus on the performance comparison between BPDA2d and
its precursor BPDA, which was shown to outperform popular
algorithms such as OpenMS (Version 1.6.0), Decon2LS and VIPER
in Sun et al. (2010). We also include msInspect in the comparison
since it is widely used and has been reported to outperform other
algorithms (Zhang et al., 2009) such as MZmine. To apply BPDA,
we followed the procedure introduced in the original paper (Sun
et al., 2010): peptide elution peaks were first detected along the
RT dimension, and elution peaks with similar RT were grouped.
Each group contains a series of consecutive spectra, which were
then averaged to form a mean spectrum. Each mean spectrum was
analyzed by BPDA, and finally an overall feature list was produced.
To apply msInspect, we first wrote each simulated dataset into a text
file with three columns specified by RT, m/z and intensity. Next, the
text file was converted to mzXML and then msInspect was applied to
give detection results including detected features and their qualities.
The input parameters of msInspect were set to enable the inclusion
of as many reasonable features as possible (‘minpeaks’ and ‘maxkl’
were set to 2 and 10, respectively).

When comparing BPDA2d to its precursor BPDA, we found
that the former had several advantages over the latter as detailed
below. (i) For each experiment conducted, the total number of
candidates considered in BPDA2d was greatly reduced compared
with BPDA (reduced by 43% on average). This is expected since
BPDA2d imposes additional constraints on candidates’elution peaks
and can preclude non-reproducible noise peaks from the candidate
list. To clarify, BPDA2d searches for candidates which can be
repetitively observed across retention time—i.e. candidates whose
elution peaks can be clearly identified. Thus, a major fraction of
noise peaks (e.g. shot noise) which are not reproducible in time is
removed. In contrast, BPDA is a 1D algorithm which works along
the m/z dimension and processes one mean scan at a time. The
mean scan is produced by taking the average of a few consecutive
spectra. Thus, although noise in the form of random intensity
fluctuation can be canceled out to some degree, non-reproducible
noise peaks are still likely to be included in the resulting mean

scan and therefore in the candidate list. Also, BPDA is likely to
split long elution peaks into multiple mean scans and thus generate
multiple candidates for a single true peptide. In summary, BPDA2d
can compile a more reliable candidate list, which may help to
reduce the number of detected false positives (FPs), and can allocate
limited computational resources to candidates more likely to be true
positives (TPs).

(ii) BPDA2d reported significantly fewer FPs with existence
probability >0.9 than BPDA (reduced by 47% on average) and
detected more TPs than the latter (increased by 6% on average). This
improvement of BPDA2d is achieved by taking into account peptide
elution peaks in addition to isotopic distribution and charge station
distribution. BPDA2d tries to use all available observations from
possible positions on the m/z-RT plane to infer the overall signal
of each peptide candidate. By utilizing more information, detected
signals become more reliable and the evidence of candidates’
existence or non-existence becomes stronger, resulting in better
detection results in terms of more TPs and less FPs.

When comparing BPDA2d to msInspect, we found that on average
the TPs detected by BPDA2d increased by 16% with respect to the
latter while the FPs reduced by 40% (quality thresholds were set
to existence probability > 0.9 and KL <1, for the two algorithms,
respectively).

To give a complete picture of the detection results, the classic
precision–recall (PR) curve has been adopted to evaluate the
performance of various algorithms since the ground truth of the data
is known. To obtain the PR curve, first a series of detection levels
was selected, which range from the lower bound to the upper bound
of feature quality scores (i.e. existence probability for BPDA and
BPDA2d; KL score for msInspect). Features with quality score better
than a given detection level were said to be detected at this specific
detection level. A detected feature was claimed to be a true positive
if it had the correct monoisotopic mass (e.g. within 10 ppm of the
true mass), the correct RT (with a 6-scan tolerance), and the true RT
is within the boundaries of the feature’s elution peak; otherwise,
the detected feature was called a false positive. Then, the true
positive rate (TPR, i.e. recall) and precision (Prec) were calculated
at each detection level as follows: TPR = TruePositive

TruePositive+FalseNegative

and Prec= TruePositive
TruePositive+FalsePositive . The average PR curve for one

abundance level was then obtained (each point on the curve was
a pair of average precision and TPR at one detection level for all
repetitions). We found that the PR results were largely influenced
by the size of the mass window used for matching detected features
with the list of true peptides. PR curves for various mass windows
are shown in Figure 1.

In the PR space, the upper right corner (with coordinate [1,1])
represents 100% sensitivity (no false negatives) and 100% precision
(no false positives). The closer the PR curve is to the upper right
corner, the better the algorithm. In this sense, BPDA2d is generally
the best among all methods at all abundance levels. BPDA2d’s
performance is the least affected by the deterioration of SNRs
among the three algorithms. Thus, BPDA2d provides the most robust
performance for lower abundance peptides.

Another advantage of BPDA2d is that it has much higher
reported mass accuracy. In the Supplementary Material, we provide
comparison of mass accuracies of all three algorithms, and we
have shown that the mass accuracy reported by BPDA2d is
significantly higher than the other two algorithms. Given different
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Fig. 1. PR results for synthetic LC–MS datasets with different abundance
levels (SNRs). Each panel shows the results obtained at a different mass
window size as suggested by the title. Color codes for different abundance
levels. Each method is represented by a unique line type. BPDA2d renders
the best precision and sensitivity (i.e. recall) among all the methods compared
for all abundance level in the first two mass window cases. In the last case, the
performance between BPDA2D and msInspect has a very small difference.

mass accuracies, there is not a fair way for performance evaluation.
Thus, we provide performance evaluation in three cases when
different mass window sizes are used. It can be seen that the
mass window size does not affect the performance of BPDA2d
significantly after 10 ppm because of its high mass accuracy. On the
other hand, msInspect deteriorates quickly as we narrow the mass
window from 20 to 10 ppm due to its low mass accuracy. BPDA2d
outperforms msInspect at higher mass accuracies of 10 and 5 ppm.
In the case of 20 ppm, given the simple composition of the simulated
data, the performance between BPDA2d and msInspect is similar.
It shall be noted that with different mass accuracies by different
algorithms, sample composition will strongly affect the reported PR
curve—if the sample is more complex, with more peptides of similar
weights, then an algorithm with lower mass accuracy like msInspect
will further deteriorate in performance.

3.1.2 Synthetic LC–MS dataset with eight pairs of overlapping
peptides As noted, overlapping peptide peaks can complicate mass
spectra and make the detection problem much harder. Hence, it
is important to investigate algorithm performance in the presence
of overlapping peptides. A synthetic 16-peptide-mix was generated
by eight pairs of overlapping tryptic digested human peptides. The
dataset contains 1000 LC–MS spectra with mass resolution 15 000.
The intensity ratio of each pair (light/heavy) ranges from 0.25 to
3, and peptide charge states range from 1 to 4. More details on
these peptides and the detection results of different algorithms are
summarized in Table 1.

For the first 4 pairs, the challenges are mainly to detect and split
overlapping elution peaks of the two peptides in each pair with
similar weights and close RT. For instance, the elution profiles and
observed signals of the two peptides in the first pair are shown
in Figure 2. We observe that the two peptides have significant
overlapping signal regions, which makes the detection problem
tough. MsInspect experienced difficulty in identifying this pair. In
fact, it failed to split the overlapping elution peaks and treated
the two peptides as a single one. As a result, the intensity of the
reported peptide (the second one) equals the total intensity of the
two. For BPDA, although it could report both peptides correctly, the
intensity results were inaccurate (the intensity ratio turned out to be
>1 while the true ratio was 0.67). BPDA detected the second peptide
correctly from 106s to 128s (approximately from the beginning to
the maximum of the second peptide’s elution profile, see Fig. 2a),
while the rest of the signal peaks which appeared after 128s were
shadowed by the first peptide, whose signal was stronger. Therefore,

(a) (b)

Fig. 2. Overlapping signals of the first pair in 16-mix. (a) Overlapping LC
profiles of the two peptides. (b) Signal peaks of the two peptides at charge
state 1 in a 3D view. SNR at this region is quite low, and significant peak
overlapping can be observed.

in this region BPDA failed to include the second peptide in its
candidate list and tried to use the first peptide alone to explain the
observed signal. The second peptide’s corresponding intensity was
thus wrongly attributed to the first one, thereby leading to inaccurate
intensity results. In contrast to msInspect and BPDA, BPDA2d
correctly split the elution peaks of the two peptides by capturing
the tiny mass difference of the two and by detecting intensity dips
in the observed overlapping peaks.

For the last four pairs, the weights of two peptides in each pair
differ approximately by a multiple of the neutron weight. As a result,
their isotopic peaks overlap at different isotope numbers and the
overall isotope pattern deviates from each individual’s. Thus, it is
more challenging to utilize individual isotope pattern to discern the
overlapping pair. As a vivid example, the elution profiles and the
observed signals of peptides in the sixth pair are shown in Figure 3.
It is observed that the SNR at corresponding regions was quite high
and peaks of the second peptide in this pair almost got completely
shadowed under all but the first isotope peak of the first peptide
(Fig. 3a and b). Hence, the overall signal pattern (Fig. 3c) deviates
from each individual’s isotope pattern (Fig. 3d). MsInspect was not
able to detect this deviation: the calculated KL distance between the
overlapping peak cluster and the first peptide’s theoretical isotope
pattern was surprisingly small (∼0.027), suggesting a ‘good’ match
by its own criterion (a smaller KL score suggests a better match).
MsInspect thus stopped there and assigned all overlapping signals to
the first peptide, failing to consider the second peptide. This failure
was not caused by chance. In fact, for the last four pairs, msInspect
could correctly detect only one pair of peptides (the one with the
least overlap) and missed one peptide in each of the other three pairs.
This illustrates the inefficiency of template matching algorithms
such as msInspect in dealing with overlapping isotope patterns as
compared with BPDA2d and BPDA. Indeed, one should be wary of
taking KL distance, or other distance measures adopted by template
matching algorithms, as a reliable measurement of the isotope
pattern deviation. BPDA proposed a candidate corresponding to
the second peptide; however, the candidate’s existence probability
was inferred to be 0, thereby rendering it undetectable. This was
caused by the penalty term adopted in BPDA that penalizes model
complexity. More specifically, the additional inclusion of the second
peptide could reduce the MSE between the observed and inferred
peaks to a small extent, but this reduction in MSE could not beat
the increase of model complexity. Therefore, BPDA inferred the
second peptide to be non-existent. Although BPDA2d utilizes a
similar penalty strategy, the penalty term did not cause exclusion of
the second peptide because BPDA2d used more observations from
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Table 1. Results of the dataset with eight pairs of overlapping peptides

Pair no. Sequence True peptide info BPDA2d BPDA msInspect
Mass(Da) RT(s) CS Intn CS Intn CS Intn CS Intn

1
DYSYER 831.34 141 1–2 0.0004 1–2 0.0003 1–2 0.0008 NA

DENGELR 831.37 127 1–2 0.0006 1–2 0.0006 1–2 0.0005 1–2 0.001

2
VVFMSLCK 925.48 414 1–2 0.0046 1–2 0.0033 1–2 0.0043 1–2 0.0050

LLLPCLVR 925.58 456 1–2 0.0054 1–2 0.0044 1–2 0.0056 1–2 0.0068

3
MTPELMIK 961.50 323 1–3 0.0001 1–3 0.0001 1–3 0.0001 1–2 0.0001

IAVMLMER 961.51 340 1–3 0.0002 1–3 0.0002 1–3 0.0003 1–3 0.0003

4
ACCLLCGCPK 1009.42 302 1–3 0.0011 1–3 0.0008 1–3 0.0023 1–3 0.0024

MLCAGIMSGK 1009.48 314 1–3 0.0008 1–3 0.0009 1–3 0.0014 1–3 0.0020

5
AYDPDYER 1027.42 174 1–3 0.0077 1–3 0.0078 1–3 0.0081 NA

EEPSGDGELP 1028.43 194 1–3 0.0307 1–3 0.0344 1–3 0.0418 1–3 0.0382

6
NGNEEGEER 1032.41 75 1–3 0.4612 1–3 0.5110 1–3 0.7140 1–3 0.7284

TEGEEDAQR 1033.43 79 1–3 0.1537 1–3 0.1065 NA NA

7
MLANLVMHK 1055.56 312 1–3 0.0019 1–3 0.0018 1–3 0.0017 1–3 0.0023

LTLDLMKPK 1057.62 321 1–3 0.0009 1–3 0.0010 1–3 0.0008 NA

8
LLPPLLQIVCK 1235.77 561 1–4 0.1768 1–4 0.1755 1–4 0.1405 1–4 0.1193

LMLFMLAMNR 1238.63 577 1–4 0.1537 1–4 0.1516 1–4 0.0779 1–4 0.0943

CS and Intn denote detectable charge states and normalized intensity, respectively.

(a)

(b)

(c) (d)

Fig. 3. Overlapping signals of the sixth pair in 16-mix. (a) Overlapping LC
profiles. (b) Signal peaks of the two peptides at charge state 3 in a 3D view.
This region has a high SNR, where peaks of the second peptide almost get
completely shadowed by all but the first isotope peak of the first peptide.
(c) MS scan sampled at 78s showing signals of the same pair. The observed
overall signal pattern deviates from (d) theoretic isotope patterns of the two
peptides.

the m/z-RT plane than BPDA and the improvement in fitting the
observed signal by inclusion of the second peptide was significant,
thereby offsetting the penalty.

In summary, BPDA2d correctly detected all 46 charge states of
the 16 peptides (along with 16 FPs), while BPDA and msInspect
correctly detected 43 and 34 charge states, along with 57 and 4
FPs, respectively (See the Supplementary Material for more details).
All detected TPs of BPDA2d and BPDA had existence probability
equaling to 1. For msInspect, the KL scores of TPs were <0.76.
The box plots of mass and intensity deviation results given by the
three algorithms are shown in Figure 4. We observe that among
the three algorithms, on average BPDA2d gave the most accurate
abundance results and msInspect’s results were the least accurate.

(a) (b)

Fig. 4. Box plots of (a) absolute mass deviation and (b) normalized intensity
deviation of BPDA2d, BPDA and msInspect for the 16-mix dataset.

BPDA had the best mass accuracy evaluated by the median mass
deviation, but it rendered a few outliers and a larger variance
compared with BPDA2d. Overall, msInspect produced the least
accurate mass results. The synthetic test data are available upon
request.

3.2 Results for real data
3.2.1 Data preparation A QTOF LC–MS/MS dataset was
downloaded from the repository of the Seattle Proteome Center
that is provided as a standard for testing algorithms. The dataset
was collected on a Waters/Micromass (Milford, MA, USA) Q-TOF
Ultima with Agilent 1100 series autosampler, Agilent 1100 series
nanopump flowing at 200 nl/min and electrospray ionization.
Approximately 200 fmol of total protein was injected on-column.
The dataset contains over 3500 MS1 spectra (m/z ranges from 250
to 1400 with FWHH ∼0.15 Da) and 775 MS2 spectra generated by
peptides from 18 tryptic digested proteins (obtained from Bovine,
Rabbit, Horse, etc.). More details can be found in (Klimek et al.,
2008). MS1 level peptide detection was performed using BPDA2d,
BPDA, and msInspect (the latest Build 613). We tried to optimize
input parameters for msInspect: ‘minpeaks’ was set to 2 and ‘maxkl’
was set to 10, enabling the inclusion of as many reasonable
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features as possible. The ‘walksmooth’ option was selected as it
was recommended for QTOF data and improved the performance.
For BPDA, post-processing was applied to combine features that
were split over consecutive mean spectra.

3.2.2 Comparative results Direct comparison of results across
different methods is meaningless unless ground truth of the data is
known, but owing to contaminants and issue of peptide detectability,
the true data composition is hard to know. As a workaround,
SEQUEST and PeptideProphet were applied to analyze all the
acquired MS2 spectra, rendering 234 unique peptide identifications
associated with a high probability score (i.e. PeptideProphet score
>0.9) and could somehow reveal a portion of the truly existing
peptides in the sample. We thus compared the detection results given
by aforementioned MS1-based methods to the MS2 identifications.
We say a MS1 feature is matched to a MS2 feature if the RT of
the MS2 feature is within the retention peak of the MS1 feature
and the mass deviation is within 40 ppm. The size of the mass
window is chosen to include as many good matches as possible. It
is larger than that used for synthetic data since here the ground truth
peptide weights are unknown, and mass errors are associated with
MS2 identifications as well as MS1 features. MS1 identifications
were first filtered based on mass and RT. Only features with
mass 1000–3710 Da and RT in the range of 840–2030 scan were
considered since all MS2 identifications were from these ranges.
Remaining features were then selected based on the reported quality
score. Because schemes used for calculating feature quality score
vary across different algorithms, to ensure a fair and meaningful
comparison, quality cutoff thresholds for various algorithms were
carefully chosen as detailed below so that they corresponded to the
same significant level.

• For BPDA2d and BPDA, existence probabilities are employed
to measure feature quality. The cutoff thresholds of existence
probability were calculated based on its null distribution, i.e.
the distribution of existence probability of those candidates
that are non-existing in the sample. We identify these peptides
as those highly correlated (i.e. can be grouped into the
same cluster as described in Section 2) with one of the
candidates that can be matched to the MS2 identification list.
Although the ground truth is unknown, the latter candidates
are likely to be TPs as they are confirmed by the MS2
identifications with high reliability, while the former are
false identifications co-existing with the latter. These co-
existing candidates should be assigned with a low existence
probability. Given a significant level α, the corresponding
threshold γ of the existence probability P can be calculated
based on the right-tail probability of the null distribution:
{γ|Prob(P≥γ)=α}.

• MsInspect uses KL score to measure feature quality. Cutoff
KL thresholds were selected based on KL null distribution, i.e.
the distribution of KL scores calculated between random noise
and authentic isotopic distributions, as described by Haskins
et al. (2011). If KL score can faithfully reflect the deviation
between random noise and real isotopic patterns, then the KL
null distribution should skew to the right or have a small left-
tail probability. On the other hand, given a significant level α,
the corresponding KL threshold τ could be calculated based
on the left-tail probability: {τ|Prob(KL≤τ)=α}.

(a) (b)

(c) (d)

Fig. 5. Detection results of the QTOF LC–MS/MS dataset. BPDA2d, BPDA
and msInspect detected (a) total number of features and (b) number of
features that can be matched to MS2 identifications at various significant
levels. At significant level 0.05, the following two panels are obtained: (c)
Histogram of normalized intensity of features detected by BPDA2d but not
msInspect. Most of the features are from the low intensity region. (d) Box
plots of absolute mass deviation of different algorithms.

From Figure 5a, it can be seen that BPDA2d detected many
more features from the MS2 list than BPDA and msInspect at each
significant level compared. Improvements are from 32% to 18%,
and 64% to 19% compared to BPDA and msInspect, respectively,
when significance level increases from 0.01 to 0.1, indicating a
3- to 6-fold increase in peptide coverage and quantification. In
addition, all three MS1-based algorithms detected significantly more
features than that covered by the 234 MS2 identifications (Fig. 5b),
illustrating the under-sampling problem of MS2 and highlighting the
benefits of employing MS1-based peptide detection algorithms to
improve protein coverage rate. Performances of various algorithms
were further investigated at a 0.05 significance level. The histogram
of normalized intensity of MS2-level identifications detected by
BPDA2d but not by msInspect is plotted in Figure 5c. The majority
of identifications detected only by BPDA2d concentrate at the
low intensity region (i.e. the area with normalized intensity <0.1),
illustrating that BPDA2d can better identify low abundance peptides
than msInspect. In addition, extra identifications yielded by BPDA2d
did not cause degradation in mass accuracy (Fig. 5d). Moreover,
BPDA2d slightly beat the other two methods in terms that the mean
mass deviation is reduced by ∼2%. The average computational time
of BPDA2d, BPDA and msInspect for testing datasets are 3.5 h, 1 h
and 2.2 min, respectively (see the Supplementary Material for more
details). BPDA2d is expected to be more time-consuming since it
looks for the optimal solution iteratively through Gibbs sampling on
the whole spectra, while greedy template matching-based algorithms
work on one local region at a time and calculate the fitting score,
which typically does not require much computation. But we point out
that the BPDA2D algorithm is fully parallelizable, and the authors
are in fact working on a parallel version of the software that will be
much faster.

4 CONCLUSION
We have presented BPDA2d, a global optimization-based Bayesian
peptide detection algorithm for LC–MS data. Feature extraction
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from LC–MS data is complicated by several factors such as protein
wide dynamic range, high signal density and variability of liquid
chromatography. BPDA2d is designed to tackle these problems.
It extracts all pertinent observations (including isotope pattern,
charge state distribution and LC elution peaks) and pieces all
evidence together for the detection of each candidate, blending
information to better identify weak peptide signals. Based on a
rigorous statistical framework, BPDA2d optimizes all candidates’
signals globally, resulting in more effective detection of overlapping
peptides compared with local template matching-based methods that
detect peptides one by one in a greedy manner. Instead of employing
pre-assumed elution peak models, BPDA2d derives peptide elution
profiles directly from observations. Therefore, it is more robust in
dealing with LC fluctuations and more adaptable across analysis
platforms.

We have shown that BPDA2d performs well on both simulated
data and real data for various signal to noise ratios and in complex
cases where features overlap. Our experimental results indicate that
BPDA2d outperforms state-of-the-art software such as msInspect
and BPDAin terms of sensitivity and detection accuracy.As the mass
resolution and accuracy of MS instruments continue to improve, we
expect BPDA2d to achieve better qualification and quantification
results. We think the main application of BPDA2d will be on TOF
instruments, which suit our data model better. BPDA2d is publicly
available and we hope it will be useful to the wider community.
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