
Adenosine and protection from acute kidney injury

Steven C. Yap and H. Thomas Lee
Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New
York, NY 10032

Abstract
Purpose of Review—Acute Kidney Injury (AKI) is a major clinical problem without effective
therapy. Development of AKI among hospitalized patients drastically increases mortality, and
morbidity. With increases in complex surgical procedures together with a growing elderly
population, the incidence of AKI is rising. Renal adenosine receptor (AR) manipulation may have
great therapeutic potential in mitigating AKI. In this review, we discuss renal AR biology and
potential clinical therapies for AKI.

Recent Findings—The 4 AR subtypes (A1AR, A2AAR, A2BAR and A3AR) have diverse
effects on the kidney. The pathophysiology of AKI may dictate the specific AR subtype activation
needed to produce renal protection. The A1AR activation in renal tubules and endothelial cells
produces beneficial effects against ischemia and reperfusion (IR) injury by modulating metabolic
demand, decreasing necrosis, apoptosis and inflammation. The A2AAR protects against AKI by
modulating leukocyte-mediated renal and systemic inflammation whereas the A2BAR activation
protects by direct activation of renal parenchymal ARs. In contrast, the A1AR antagonism may
play a protective role in nephrotoxic AKI and radiocontrast induced nephropathy by reversing
vascular constriction and inducing naturesis and diuresis. Furthermore, as the A3AR-activation
exacerbates apoptosis and tissue damage due to renal IR, selective A3AR antagonism may hold
promise to attenuate renal IR injury. Finally, renal A1AR activation also protects against renal
endothelial dysfunction caused by hepatic IR injury.

Summary—Despite the current lack of therapies for the treatment and prevention of AKI, recent
research suggests that modulation of renal ARs holds promise in treating AKI and extrarenal
injury.
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Introduction
Acute Kidney Injury (AKI) is a common problem in hospitalized patients and dramatically
increases in mortality [1]. AKI costs more than $10 billion per year in the United States and
no effective treatment exists [1]. Clinical outcomes of AKI are poor and have not improved
over the past 50 years [2]. The incidence of AKI in Intensive Care Units (ICU) ranges from
1 to 25% in the United States, with mortality rates ranging between 15 and 60% [3]. With
rapid increases in surgical and radiological procedures performed coupled with a growing
elderly population, the incidence of AKI has risen over the last 10–15 years [4–6]. AKI
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commonly progresses to chronic kidney disease and is frequently associated with other life-
threatening complications including sepsis and multiorgan failure [2,4,5]. Approximately
14% of surviving patients will go on to require renal replacement therapy, however the
prognosis remains poor: mortality in patients treated with dialysis is 50–60% [2–6].
Unfortunately, there are no drugs that are FDA-approved to treat or prevent AKI.

Consequently, novel therapeutic and preventative measures for AKI are under intense
investigation. Research on adenosine signaling in the kidney is one area with significant
clinical therapeutic potential. This brief review will focus on renal adenosine signaling, the
action of renal adenosine receptors (ARs) and their therapeutic potential in AKI and
extrarenal injury.

Definitions and Causes of Acute Kidney Injury
AKI is defined as a rapid loss of kidney function (hours to days), resulting in the retention of
metabolic waste products and oftentimes oliguria. Stages of kidney failure are defined
clinically according to either the RIFLE or AKIN criteria [3]. The RIFLE acronym describes
the increasing severity classes Risk, Injury, Failure, defined by rising serum creatinine and
decreased urine output, and the two outcome classes Loss and End stage kidney disease,
defined by the duration of loss of kidney function, 4 weeks and 3 months respectively [3].
However, the concern over conservative serum creatinine definitions in the RIFLE-
classification system, when increases as little as 0.3 mg/dL could be indicative of early
stages of AKI and with more than 50% increase in mortality [1], led to the AKI-Network
(AKIN) staging system [3].

Renal ischemia and reperfusion (IR) injury, along with sepsis and nephrotoxin injury, are the
leading causes of AKI for patients undergoing surgery involving the kidney, liver or aorta
with the incidence of renal dysfunction in high-risk patients approaching 70–80% [4,7]. Of
these, ischemic AKI is the best studied with highly reproducible experimental models. The
basic mechanisms of ischemic AKI involve renal tubular and endothelial cell necrosis,
apoptosis and inflammation [8]. Other leading causes of AKI include sepsis and
nephrotoxins [4,9]. Drugs in the kidney tubular lumen are concentrated by reabsorption and
have a direct toxic effect on the tubules. Radiocontrast dyes, antibiotics, non-steroidal anti-
inflammatory drugs, chemotherapeutics and heavy metals are among the more common
nephrotoxic agents. AKI occurs in 20% of patients with sepsis and in over 50% of patients
with septic shock [4]. AKI also frequently co-manifests with injuries of other organs
including the heart, liver, and lungs [9,10]. These extra-renal systemic complications
secondary to AKI are the leading causes of mortality in the ICU [11]. Indeed, clinical studies
show that patients with AKI complicated by extra-renal organ dysfunction have worsened
prognosis compared to patients with isolated AKI [12].

Adenosine Generation in the Kidney
Adenosine is produced by all mammalian cells and regulates a wide variety of physiological
activities [8,13]. In the kidney, adenosine regulates renin release, glomerular filtration rate
(GFR) and renal vascular tone [13]. Adenosine is also a critical regulator of tubular
glomerular feedback (TGF) [13,14]. Adenosine levels are enhanced during states of negative
energy balance when the rate of adenosine triphosphate (ATP) hydrolysis is increased with
respect to the rate of ATP synthesis. Hence, increased renal ATP consumption, impaired
renal perfusion and hypoxia rapidly enhance adenosine formation within the kidney.
Adenosine therefore accumulates during pathological insults to the kidney.

Extracellular adenosine is primarily derived from enzymatic phosphohydrolysis of ATP in
the extracellular space. High levels of intracellular ATP (>5mmol/L) may be released into
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the extracellular space during hypoxic conditions, inflammation or acute injury by
destabilizing apoptotic/necrotic cellular membranes [8,15]. Adenosine precursors may also
be transported into the extracellular space via nucleotide release mechanisms, such as the
release of ADP by granular release from activated platelets or inflammatory cells [8,16].
ATP and ADP are enzymatically phosphohydrolyzed by ectonucleoside-triphosphate-
diphosphohydrolase-1 (also known as ectopyrase, CD39), yielding AMP [17,18]. AMP is
then converted to adenosine by the surface enzyme ecto-5′-nucleotidase (CD73) (Figure 1)
[16,19]. In addition, degradation of AMP to adenosine by CD73 activation decreases the
availability of extracellular ATP, a recently recognized danger signal that promotes tissue
injury and cell death [15,20,21]. In the extracellular space, ATP acts to attract leukocytes to
the site of tissue injury and serve as a strong pro-inflammatory stimulus [22]. Therefore,
stimulation of CD73 may serve the dual protective role of utilizing/removing cytotoxic
extracellular ATP for the generation of cytoprotective adenosine.

Adenosine Receptors and AKI
The extracellular adenosine generated by CD39 and CD73 phosphohydrolysis mediates a
variety of cellular effects through G-protein coupled purinergic receptors (A1AR, A2AAR,
A2BAR and A3AR, Fig. 1) [8,13]. The high-affinity receptors, A1AR, A2AAR, and A3AR,
are activated by physiological levels of adenosine (10–100nM) whereas the A2BAR is a low
affinity receptor, activating at concentrations above 1μM [13,23]. Such high levels of
adenosine are seen only during pathological conditions [24]. While the expression levels of
AR subtypes vary in cell types and locations in the kidney (Table 1, Figure 3), expression
levels also have been known to change during ischemic, hypoxic or inflammatory conditions
[8]. Renal adenosine generation and manipulating ARs have the potential to mitigate AKI.

1) A1 Adenosine Receptors
The A1AR is widely expressed in the kidney, especially in the distal afferent arterioles,
mesangial cells, proximal convoluted tubules, medullary collecting ducts, and papillary
surface epithelia [8] (Figure 3). The A1AR regulates renal vascular tone, TGF and renin
secretion [13,14]. Endogenous or exogenous adenosine via A1AR causes renal arteriolar
vasoconstriction, thus lowering GFR and stimulates NaCl, HCO3

-, phosphate and fluid
reabsorption. The A1AR signaling is mediated by pertussis toxin-sensitive G-protein
transduced coupling to protein kinase C, extracellular signal-regulated protein kinase
mitogen-activated protein kinase (ERK MAPK) and Akt (Figure 2) [25].

In addition to its renal hemodynamic effects and critical role in TGF, manipulation of A1AR
has significant therapeutic potential in protection against AKI. Clinical benefit of activation
or blockade of the A1AR is dictated by the etiology and pathophysiology of the AKI.
Selective A1AR activation protects against renal IR injury and septic AKI in mice by
reducing inflammation, necrosis and apoptosis [26–30].

As activation of renal A1ARs reduces GFR and afferent cortical blood flow through
mediation of TGF, some investigators have implicated A1AR activation in the reduction of
renal function due to nephrotoxic AKI, and perhaps due to ischemic and septic AKI [13].
These experimental results and interpretations may be conditioned by whether the outcomes
tested are changes in GFR or indicators of tubular damage. However, decrease in GFR,
renin, sympathetic outflow and active solute transport associated with A1AR activation
would, in theory, reduce renal oxygen consumption in the setting of ischemic and
nephrotoxic renal injury. The metabolic effects may differ between different models of AKI
as a lower GFR might protect in certain models (e.g., ischemic AKI) and inhibition of
transport may provide more protection in other experimental models (e.g., nephroxin
induced AKI).
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Indeed, we demonstrated that A1AR agonist produced powerful renal protection against
ischemic AKI in mice [29,30]. Conversely, mice deficient in A1AR or wild type mice
treated with an A1AR antagonist had increased renal dysfunction after ischemic- or septic-
AKI [28,30]. We also demonstrated that transient activation of renal A1AR led to acute as
well as delayed protective effects against renal IR injury via distinct signaling pathways
[25]. In the acute phase, A1AR activation led to phosphorylation of ERK MAPK, Akt and
heat shock protein 27 (HSP27), whereas the delayed protective effects observed several
hours after A1AR activation may be the result of a dramatic induction of HSP27.

In contrast to the powerful renal protection against ischemic AKI with selective A1AR
agonists, selective A1AR antagonists may protect against nephrotoxin-induced AKI and
radiocontrast nephropathy [13,31]. A selective A1AR antagonist (DPCPX) or genetic
deletion of A1ARs protected against radiocontrast nephropathy in mice [31]. Selective
A1AR antagonists also promote natriuresis without kaliuresis and may also have a
therapeutic potential as a diuretic in patients with congestive heart failure [32,33]. However,
despite theoretical benefits for cardiorenal syndrome, recent clinical trials have shown that
A1AR antagonists increased renal dysfunction rather than improving it [34]. Selective and
non-selective A1AR antagonists prevented renal injury due to other nephrotoxins including
glycerol, uranyl nitrate, cisplatin and gentamicin [13,14,35]. Meta-analysis of clinical trial
data concluded that theophylline may reduce the incidence of radiocontrast media-induced
nephropathy [13,35,36]. In mitigating radiocontrast induced renal injury, saline hydration
and AR antagonists are effective, though the benefits are not additive. AR antagonists such
as theophylline may be advantageous in conditions of poor renal blood flow when additional
hydration may be deleterious (i.e. congestive heart failure, chronic renal insufficiency
[13,35].

2) A2A Adenosine Receptors
In the kidney, the A2AAR receptor is located predominantly in the glomerular epithelium
and adjacent vasculature [8] (Figure 3). In contrast to the A1AR-receptor, the A2AAR-
receptor activation vasodilates deep cortical glomerular vessels and increases blood flow in
the renal medulla [37,38]. A2AAR-activation has also been shown to increase renin release
(Table 1) [13]. A2AAR-coupled Gs-mediated stimulation of adenylate cyclase and protein
kinase A results in CREB-mediated cytoprotection against AKI (Figure 2) [37,39,40].

The A2AAR activation leads to increased medullary blood flow and oxygenation, and lowers
medullary transport activity [13]. Consistent with these effects, treatment with A2AAR
agonists has been shown to improve medullary hypoxia or hypoperfusion after renal IR
injury [38,41]. The A2AARs are also well known for their ability to regulate hyperactive
inflammatory cascade associated with AKI. A2AAR produces immuno-modulatory effects,
notably on macrophages and neutrophils, that limit tissue damage [37,41,42]. In IR injury,
renal protection by A2AAR-activation is independent of macrophage activation [42].
However in glomerulonephritis, A2AAR-agonists reduce inflammation by diminishing
macrophage-derived pro-inflammatory cytokine release including TNF-α, IL-6 and IL-8
[43]. The A2AAR-activation also reduces neutrophil adhesion, infiltration and
myeloperoxidasese activity and release of reactive oxygen metabolites likely through
increased cAMP and activation of PKA in neutrophils [37,42].

3) A2B Adenosine Receptors
The A2BAR receptors are found predominantly in the renal vasculature with scant
expression in renal epithelia under normal physiologic conditions [44,45] (Table 1, Figure
3). Similar to the A2AARs, the A2BARs cause vascular dilatation, increased renin secretion,
increased NO production and reduced tissue inflammation through Gs and cAMP signaling
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pathways (Figure 2) [13]. Grenz et al. demonstrated in a murine model of renal IR injury
that kidney ischemic preconditioning was absent in A2BAR deficient mice [46]. In contrast,
ischemic preconditioning was produced in mice with specific deletion of A1AR, A2aAR or
A3AR. Consistent with these findings, they also showed that wild type mice treated with a
selective A2BAR agonist (BAY 60–6583) were protected against ischemic AKI. In addition,
an A2BAR selective antagonist (PSB1115) blocked the renal protective effects of kidney
ischemic preconditioning. They also found that renal A2BARs rather than leukocyte A2BARs
conferred renal protection against IR injury using A2BAR bone-marrow chimera model.
Therefore, unlike the A2AARs that regulate infiltrating pro-inflammatory leukocytes, the
A2BARs target renal parenchymal (endothelial and/or tubular epithelia) cells to attenuate
ischemic AKI.

4) A3 Adenosine Receptors
The A3AR is the least characterized AR subtype in the kidney [47]. The specific location of
A3ARs in the kidney is still unclear, as are the mechanisms of A3AR signal transduction
[13]. Under normal physiological conditions, A3AR does not affect TGF, GFR or solute
excretion [48]. Both pro- and anti-inflammatory effects have been attributed to A3AR
activation [49–51]. We have determined that mice genetically deficient in A3ARs or
blocking A3ARs in wild-type mice resulted in significant renal protection from ischemic or
myoglobinuric renal failure [50]. Moreover, we demonstrated in rats that selective A3AR
activation or inhibition worsened or protected, respectively, against ischemic AKI [52]. In
contrast, A3AR-activation diminishes inflammation and attenuates mortality and renal and
hepatic injury in mice subjected to septic AKI [53]. Therefore, similar to A1AR, A3AR
differentially modulates renal function depending on the type of renal injury.

The mechanism(s) by which the A3AR activation or inhibition exacerbates or protects
against, respectively, ischemic AKI remains to be determined. The A3AR activation
degranulates resident mast cells, which results in the release of stored inflammatory
mediators including histamine and proteolytic enzymes [54,55]. We also demonstrated that
the A3AR agonist IB-MECA profoundly increases plasma histamine levels in C57 mice
(~45 fold increase) [50]. In addition, A3AR agonists cause apoptosis and calcium overload
in multiple cell lines including cardiomyocytes, human leukemia cell lines and human
proximal tubule (HK-2) cells [56–58]. Chronic A3AR activation or overexpression is
detrimental to cell survival [59]. Moreover, overexpression of A3AR is embryologically
lethal in mice with prominent fragmentation of DNA.

Remote Organ Injury Induced AKI, AKI-Induced Extrarenal Injury and
Modulation by Adenosine Receptors

A host of changes occur during AKI that may cause distant injury to the brain, lungs,
pancreas, liver, intestine, heart and vasculature. Leukocyte activation and trafficking,
inflammation, oxidative stress, and changes to expression levels of cytokines, chemokines,
sodium and water channels all lead to AKI-induced injury to distant organs, including the
brain, lungs, intestines, liver, heart and circulation [10,60]. Inflammatory cytokines
including TNF-α, IL-6 and IL-17A are released after ischemic AKI from small intestine and
liver leading to additional renal, intestinal and liver injury [61]. A1AR activation protects
against AKI and also reduces liver and intestinal injury after renal IR injury [62]. We
recently demonstrated that severe hepatic IR causes AKI with rapid renal endothelial
apoptosis and leukocyte infiltration [63,64]. Endogenous and exogenous activation of renal
A1ARs protect against liver and kidney injury after in vivo liver IR via pathways involving
Akt activation [62,63]. Therefore, protecting the kidney reduces liver IR injury and selective
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overexpression of cytoprotective A1ARs in the kidney leads to protection of both liver and
kidney after hepatic IR.

Allosteric Manipulation of Adenosine Receptors
The ubiquitous expression of ARs may limit selective activation of renal ARs. One
promising therapy has been the use of allosteric activators with endogenous adenosine
[65,66]. During AKI, adenosine levels dramatically increase in the kidney, and allosteric
drugs may locally protect the kidney from AKI by potentiating the activation of desired ARs
[65]. Potential side effects of selective AR agonists can be mitigated by application of AR
allosteric enhancers. An AR allosteric enhancer selectively increases the efficacy of
endogenous adenosine in tissues (e.g., ischemic kidney producing increased localized
adenosine) thereby avoiding potential systemic side effects of AR agonists. At present, AR
allosteric modulators (e.g., T-62 for chronic pain and migraine headache) are in various
stages of human clinical trials [65].

Conclusions
Manipulation of AR activation has therapeutic potential in mitigating AKI and AKI-induced
extrarenal injury. The pathophysiology of the AKI dictates whether activation or
inactivation of a particular receptor subtype is beneficial. Modulating AR activation in AKI
may also protect against AKI-induced extrarenal injury. While the AR agonists and
antagonists may have pharmacological benefit, allosteric-binding drugs may offer the most
targeted effects with limited side effects. Therapeutics involving ARs are increasing in scope
and value, and will certainly play a role in clinical innovations for treating AKI and other
conditions.
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Abbreviations

ADP Adenosine Diphosphate

AKI Acute Kidney Injury

AMP Adenosine Monophosphate

AR Adenosine Receptor

ATN Acute Tubular Necrosis

ATP Adenosine Triphosphate

CD39 Ectonucleoside Triphosphate Diphosphohydrolase 1

CD73 Ecto-5′-nucleotidase

ERK MAPK Extracellular Signal-Regulated Protein Kinase Mitogen Activated Protein
Kinase

GFR Glomerular Filtration Rate

ICU Intensive Care Unit

IR Ischemia and Reperfusion
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TGF Tubular Glomerular Feedback
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Key Points

• Each of the AR subtypes (A1AR, A2AAR, A2BAR or A3AR) produces different
effects on the kidney when activated. Modulating ARs in treatment of AKI
should be based on the pathophysiology of renal injury.

• Under hypoxic or ischemia conditions, activating the A1AR, A2AAR or A2BAR
receptors is beneficial: this reduces metabolic demand and inflammation, and
increases renal perfusion. Under nephrotoxin-induced AKI, A1AR-antagonism
appears to be therapeutic.

• A1AR and A2BAR protect against AKI by directly targeting kidney
parenchymal cells. A2AAR activation produces immunomodulatory effects on
circulating and infiltrating leukocytes. A3AR-activation may exacerbate
apoptosis and tissue damage during ischemic AKI.

• Mitigating AKI reduces the risk and severity of extrarenal injury, and may also
be accomplished through AR manipulation.
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Figure 1.
Cell death by apoptosis and necrosis releases ATP into the extracellular space. Adenosine is
then generated from cleavage of ATP and ADP into AMP by the surface enzyme ecto-
nucleoside-triphosphate-disphosphohydrolase1 (E-NTPDase1 or CD39) highly expressed in
the kidneys. AMP is then dephosphorylated to adenosine by ecto-5′-nucleotidase (CD73).
Phosphohydrolysis of AMP by CD73 is the rate-limiting step in this pathway.
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Figure 2.
Mechanisms of action of adenosine receptor (AR) subtype activation modulating renal
cytoprotection. A1AR-activation results in pertussis toxin-sensitive Gi-mediated activation
of mitogen-activated protein kinases (ERK, P-38) and phosphoinositide 3-kinases (PI3K)
resulting in Heat Shock Protein 27 (HSP27) phosphorylation and induction leading to
reduced apoptosis and inflammation. A2AAR and A2BAR couple with Gs and stimulates
adenylate cyclase, raising cAMP and activating Protein Kinase A (PKA). PKA then causes
nuclear translocation of cAMP Response-Element Binding (CREB) protein to produce
cytoprotection. Mechanism of A3AR activation is still unknown. A3AR activation appears to
stimulate apoptosis and calcium overload leading to enhanced renal injury after ischemia
and reperfusion.
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Figure 3.
Location of adenosine receptors (ARs) in the kidney mediating cytoprotection. Endothelial
and tubular A1AR activation produces cytoprotection. A2AARs are found in leukocytes
(e.g., neutrophils and lymphocytes) and protect against renal injury by reducing
inflammation. Renal tubular and endothelial A2BARs may also produce renal protection.
A3ARs appear to be expressed in many cell types (e.g., epithelial and endothelial cells) in
the kidney. Selective A3AR antagonist produces renal protection against ischemia and
reperfusion injury.
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