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Abstract
A brain-computer interface (BCI) can be used to accomplish a task without requiring motor
output. Two major control strategies used by BCIs during task completion are process control and
goal selection. In process control, the user exerts continuous control and independently executes
the given task. In goal selection, the user communicates their goal to the BCI and then receives
assistance executing the task. A previous study has shown that goal selection is more accurate and
faster in use. An unanswered question is, which control strategy is easier to learn? This study
directly compares goal selection and process control while learning to use a sensorimotor rhythm
based BCI. Twenty young healthy human subjects were randomly assigned either to a goal
selection or a process control based paradigm for 8 sessions. At the end of the study, the best user
from each paradigm completed 2 additional sessions using all paradigms randomly mixed. The
results of this study were that goal selection required a shorter training period for increased speed,
accuracy, and information transfer over process control. These results held for the best subjects as
well as in the general subject population. The demonstrated characteristics of goal selection make
it a promising option to increase the utility of BCIs intended for both disabled and able bodied
users.

1. Introduction
A brain-computer interface (BCI) strives to make a connection directly from a person's brain
to a computer without relying on any motor output (Wolpaw et al 2002, Vallabhaneni et al
2005). BCIs promise to help the nearly 6 million people who live with paralysis
(www.christopherreeve.org) by allowing them to interact with the world in ways they are no
longer able. Those individuals have lost normal motor control through diseases and
conditions such as amyotrophic lateral sclerosis (Lou Gehrig's disease), brainstem stroke,
spinal cord injury, muscular dystrophies, or cerebral palsy (Kunst 2004). For these patients,
a BCI could allow them to use a computer, a neuroprosthetic, or control a mobile robot
(Kennedy et al 2000, Karim et al 2006, Hochberg et al 2006, Bell et al 2008). BCIs can also
be used by able bodied individuals to extend their capabilities (Kotchetkov et al 2010).

In our daily lives, able bodied individuals receive much assistance from the systems we
interact with. Anti-lock braking systems stop cars faster and safer than the driver can do by
pumping the brakes himself. Spell-check and grammar-check have improved the quality of
the written word. Point-and-shoot cameras dominate the camera market. However,
photographers have a choice in what type of camera to use. These cameras differ in how
much is required of the photographer, and how much the camera does for the user. A casual
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photographer, like myself, may choose the point-and-shoot model, where all that is asked of
me is to frame the image and push the button. The camera then chooses the ISO speed,
adjusts the lens, focuses, sets the aperture, sets the shutter speed, sets the white balance, and
captures the image. On the other hand, professional photographers prefer to have more
control. They frame the image, choose the ISO speed, choose the lens, focus, set the
aperture, set the shutter speed, set the white balance, and then push the button. The camera
merely captures the image.

The professional photographer used a control strategy named process control, whereas the
casual photographer used a control strategy called goal selection. In process control, the user
controls every step of the process and receives minimal to no assistance from the system. In
goal selection, the user only needs to determine the goal and the system executes the process
to achieve that goal. In goal selection, the system performs the work that was asked of the
user in process control. Since in goal selection, less work is asked of the user, goal selection
is intrinsically easier than process control.

BCIs also utilize the two control strategies of process control and goal selection. Significant
advancements have been made by invasive BCIs using both control strategies. Information
transfer rates of up to 6.5 bits per second have been achieved using goal selection
(Santhanam et al 2006). Embodied control of a prosthetic arm was achieved using process
control (Velliste et al 2008). As well as invasive BCIs, non-invasive BCIs have met success
using both control strategies. The non-invasive P300 systems are intrinsically goal selection
based (Farwell and Donchin 1988, Donchin et al 2000). This methodology has enabled an
ALS patient who could no longer use conventional assistive devices to communicate and
resume professional and social activities (Sellers et al 2010). Process control was used by a
non-invasive system to move a computer cursor (Wolpaw and McFarland 2004).

Although advancements have been made using both control strategies of goal selection and
process control, goal selection requires less of the user than process control, making goal
selection intrinsically easier. In addition, many BCIs perform a task that otherwise would be
performed through motor output. Since the majority of BCIs record their input signal from
cortex alone, many other locations in the normal motor pathway are ignored, such as the
cerebellum and spinal motor neurons. Goal selection more closely resembles natural motor
control with the BCI system assisting the user akin to how the distributed motor network
assists the motor cortex (Wolpaw 2007). Since goal selection is easier and more natural, it
follows that it would be more accurate, faster in use, and easier to learn. A previous study
from our lab was the first to directly compare goal selection and process control (Royer and
He 2009). That study tested the first two points of accuracy and speed with the finding that
goal selection was superior to process control in both trained and naive subjects. However,
the study design had limited subjects and was unable to test if goal selection was easier to
learn than process control.

Those individuals who have lost normal motor control require a BCI that is both effective
and easy to learn. The previous study showed in a small sample of people the effectiveness
of goal selection over process control. However, the ease of learning has not been directly
compared between goal selection and process control. This study hypothesises that goal
selection is more accurate, faster to use, easier to learn, and requires less mental effort than
process control. This will test the results of the previous study in a larger sample size while
being the first study to address the issues of ease of learning and required mental effort of
goal selection vs. process control.
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2. Methods
2.1 Data collection

This study was conducted according to a human protocol approved by the Institutional
Review Board of the University of Minnesota. Twenty young, healthy human subjects
participated in a one-dimensional BCI study using similar methods as in Royer and He
(2009) which are described below. The subjects ranged in age from 18 to 28. Seven were
male and 13 were female. Eighteen were right handed and two were left handed. Subjects
were recruited from the university community. All subjects were included; none were
rejected or omitted from analysis. All subjects were naive to BCI usage prior to the study.

Subjects used motor imagination to modulate the sensorimotor rhythms of their primary
sensory and motor cortex. Subjects were instructed to imagine moving their right hand, arm,
or shoulder to move the cursor to the right, and to imagine moving their left hand, arm, or
shoulder to move the cursor to the left. Subjects were encouraged to imagine movements
familiar and comfortable to them, such as hitting a ball with a tennis racquet if they played
tennis or dribbling a basketball if they played basketball. Other motor imaginations that
were suggested included squeezing a tennis ball, punching, and lifting weights. Each subject
was free to use whatever motor imagination worked best for them. By merely imaging
moving their right or left hands, the subjects created event related (de)synchronization (ERD
or ERS) of their neurons that was measured via scalp recorded electroencephalography
(EEG) as a decrease (ERD) or increase (ERS) in spectral amplitude in the mu and beta
frequency bands (Pfurtscheller and Lopes da Silva 1999). As illustrated in figure 1A,
subjects wore a 64-channel EEG cap connected to a Neuroscan amplifier. The particular
EEG cap used was the Compumedics NeuroMedical Supplies Quik-Cap, with setup taking
approximately 20 minutes per subject. The signal from all 64 channels was fed into the
general purpose system BCI2000 (Schalk et al 2004).

2.2 Experimental paradigms
The subjects were split into 4 groups of 5 subjects. Each group was assigned one of the
paradigms from Royer and He (2009) that are described below. Each subject completed 8
sessions of their assigned paradigm. Sessions occurred approximately once per week and
consisted of 10 four minute runs. Between runs, subjects rested for a user-determined period
of time. Each run had as many trials as the subject could complete in 4 minutes with right
and left block randomized cues presented. Subjects had 3 s of rest after each trial.

In the four paradigms, the underlying signal processing, operation of the paradigms, and
movement of the cursor were identical. The paradigms differed only in control strategy. Two
of the paradigms were based on process control, and two were based on goal selection. The
two process control based paradigms were process control with aborts (PCA) and process
control with no aborts (PCNA). The two goal selection based paradigms were goal selection
with feedback limited by distance (GSFD) and goal selection with feedback limited by time
(GSFT). For purposes of analysis and presentation, the two paradigms based on process
control (PCA and PCNA) were grouped into the process control paradigms (PCP).
Similarly, the two paradigms based on goal selection (GSFD and GSFT) were grouped into
the goal selection paradigms (GSP). For all paradigms, the subject was instructed to move
the computer cursor to the yellow target located on either the right or left side of the screen
(figure 1). The targets were shown for 1 s before the cursor appeared, then at time 0, the
cursor appeared and moved under cortical control. In PCP, the subjects had to move the
cursor all the way to the target themselves in order to get a hit. In GSP, once the BCI
determined the subject's goal through either time or distance, the BCI moved the cursor the
rest of the way to the target to get a hit. The subject received the assistance of the BCI and
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did not have to do all the work themselves. In both PCP and GSP, one paradigm was time
constrained (PCA and GSFT) and the other paradigm had no time limit (PCNA and GSFD).

The details of how each paradigm progressed is shown in figure 1B. In PCA, the subjects
had 6 s to hit a target with the cursor (figure 1B, top). If no target was hit within 6 s, the trial
timed out and aborted. In this paradigm, the words “time out” and “abort” are used
interchangeably.

In PCNA, subjects also had to hit a target with the cursor (figure 1B, top). The only
difference between PCA and PCNA was that the subjects had no time limit in PCNA. In
order to move on to the next trial, the cursor had to hit one of the targets.

In GSFD, there was a grey circle with a radius of 20% of the screen centred between the two
targets (figure 1B, middle). Once a subject moved the cursor outside of the circle, it
automatically went to the closest target. GSFD had no time limit and the cursor had to exit
the circle before progressing to the next trial.

In GSFT, subjects did not have to move the cursor any particular distance, but instead a hit
target was determined by time. After 1 s of cortical control, the closest target to the cursor
was selected (figure 1B, bottom). This was indicated to the subject by the selected target
turning blue. After another 1s of cortical control, the closest target to the cursor was again
selected. If it was the same target as in the previous 1 s (the blue target), the target turned
purple and the cursor travelled automatically to it. If the closest target at the end of the 2nd 1
s interval was the opposite, non-blue target, the new target turned blue and a third 1 s
cortical control period selected the final target by whichever target was selected twice in the
three 1 s intervals.

Supplementary videos illustrating GSFD, GSFT, and PCA are available on the journal's
website. These videos are not videos of subjects performing the paradigms, but were created
using the BCI2000 signal generator controlled by the mouse. The objective of these videos
is to demonstrate the operation of the paradigm, and not to represent the capabilities of the
paradigm. However, all videos show trial times that are within typical subject performance.

In order to allow for a valid comparison, the four paradigms were designed to be as similar
as possible, with consistent inner workings and programming. All paradigms had a
consistent cursor speed with the position of the cursor updated every 40 ms. The time before
(1 s) and after (1 s) cortical control of the cursor was the same for all paradigms, as was the
time between trials (3 s).

2.3 Control of the cursor
The movement of the cursor was determined by a value that we called “the control signal”.
The method of calculation of the control signal was as follows. Once the EEG signal was fed
into BCI2000, the AR spectral amplitudes were calculated for 3Hz bins centred on a
multiple of three from 0 to 30 Hz. Then, in the classifier, the spectral amplitudes from the
set frequency bins of the set electrodes were given a weight and added together. The
frequency bins and electrodes were selected as described in the next section, 2.4 Control
signal selection. The signal from the classifier was then passed through a normalizer which
linearly transformed the signal into the control signal, as described in the next paragraph.
Positive values of the control signal moved the cursor to the right, and negative values of the
control signal moved the cursor to the left. The magnitude of the cursor movement was
determined by the amplitude of the control signal..
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The normalizer linearly transformed the signal by multiplying the classifier signal by a gain
and adding an overall offset. Adaptation was built into this process. After each trial, the gain
and offset of the normalizer were adjusted to create a control signal with zero mean and unit
variance. This was used to reduce the effect of session to session, and even within session,
recording differences. It also helped normalize the cursor movement speed between subjects.
The zero mean and unit variance were determined by a buffer that was updated with the
control signal data at the end of each trial. This buffer was a set length that was chosen to be
long enough for multiple trials of both left and right, keeping in mind the timed versus
untimed nature of each paradigm. The buffer was 60 s for PCNA and 30 s for PCA, GSFT,
and GSFD. This allowed the buffer to contain 12.7, 7.3, 15.0, and 17.3 median length trials
for each paradigm, respectively. Only the gain and the offset of the normalizer changed each
trial. The specific electrodes, frequency bins, and weights were fixed and only changed
manually. The exact combination of electrodes, frequency bins, and weights defined what
we are calling a user's control signal. This is the adaptation that is built into BCI2000
version 2.0 (Schalk et al 2004).

2.4 Control signal selection
For the first session, all subjects used the same control signal of the negatively weighted
auto-regressive (AR) spectral amplitudes from 7.5 to 13.5 Hz and 16.5 to 25.5 Hz of
electrode C3 in the 10–20 international system. Relating to the above description, the control
signal for the first session was electrode C3, using 9 Hz, 12 Hz, 18 Hz, 21 Hz, and 24 Hz, all
with a −1 weight. This was chosen based on previous research that showed that naive BCI
subjects could more easily produce similar levels of 8–12 Hz activity than they could
differential activity (Pineda et al 2003). By limiting the control signal to only one side of the
head, subjects had more flexibility in EEG signals that could adequately control the system.
Since we were not rejecting any subjects, it was important that every subject had the best
possibility of succeeding. We did not want our subjects losing motivation due to frustration.
Another reason that this control signal was chosen was that recent research showed that
increased speed of motor imagery produced a greater EEG signal on both C3 and C4 of
comparable amounts (Yuan et al 2010). If the signal of those two electrodes were
subtracted, all speed information was lost. In contrast to previous studies that set the control
signal as the difference between electrodes on opposite sides of the head (Royer and He
2009, Wolpaw and McFarland 2004), in this study, the subjects had finer control of the
magnitude of the cursor movement because we did not subtract the signal across both
hemispheres.

An example of the desired outcome of the initial chosen control signal is, if a subject was
imaging a right handed motion, that would cause an event related desynchronization visible
in the chosen frequencies of C3 (Pfurtscheller and Lopes da Silva 1999, Wolpaw and
McFarland 2004, Pfurtscheller et al 2006, Kamousi et al 2007, Yuan et al 2008, 2010).
Since the spectral amplitudes were negatively weighted, this reduction in spectral amplitude
was translated to an increase in the control signal, which moved the cursor to the right. The
greater the change in spectral amplitude, the greater the distance of cursor movement.

The data from the first session was used to customize each subject's control signal for the
second session according to the guidelines in the BCI2000 Offline Analysis online tutorial
(www.bci2000.org/wiki/index.php/
User_Tutorial:Performing_an_Offline_Analysis_of_EEG_Data, Schalk and Mellinger
2010). In brief, electrodes and frequencies were selected that had the highest r2 for the
conditions right target versus left target. Since the subjects were encouraged to use motor
imagination to generate SMRs, the electrodes were limited to FCz-6, Cz-6, and CPz-6 (box
in figure 2A). The frequencies were limited to the 3Hz bins centred on 6 to 30 Hz. Control
signals for all sessions were also generally limited to a single side of the head with a single
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positive or negative weighting for the reasons described above. The second session's data
was then used to update the control signal for the third session. This continued until session
7, when the control signal was locked and remained the same for sessions 7 and 8. An
additional constraint was that the control signal in session 7 could not be new to the subject,
but had to be one the subject had used previously. This was done to minimize the likelihood
that the subject would be locked for the final two sessions into a control signal that did not
work for them. In general, we did not see major changes in a subject's r2 values from session
to session. Rather, the typical case was that the control signal was customized for session 2,
and then tweaked with minor changes that might have added or subtracted neighbouring
electrodes or frequencies. In a few of the early sessions, multiple control signals were used
in a single session. Because of this, we tracked the control signal used for each individual
run.

In the early stages, when subjects were trying multiple imagination strategies in an effort to
find what worked, we encouraged subjects to use a particular imagination strategy for an
entire run. We often recorded which mental strategy was being used. We would then
customize the control signal for the most successful strategy. The next session, we would
inform the user of the strategy that they had successfully used the previous time. The same
control signal customization procedure was followed for each subject, regardless of assigned
paradigm. Therefore, all subjects are included in the results shown in figure 2.

2.5 All-stars
Since subjects were not excluded from the study based on ability, or inability, to use a BCI,
a group named “the all-stars” was formed to serve the purpose of a skill level control. At the
end of the 8 sessions, the best subject from each group, or the subject with the highest
average information transfer rate for session 7 and 8, was designated as an “all-star.” The
all-stars completed two additional sessions intended to better allow for a clear comparison
across paradigms, as well as to the previous study (Royer and He 2009). Each session
consisted of 3 runs of each paradigm in block-wise random order. The results are presented
as the grouped data. The conclusions were the same for each individual as presented for the
group.

2.6 Data analysis
As in the previous study, subject performance was measured via four factors: accuracy,
number of hits per run, time to hit, and information transfer rate. Accuracy was determined
as the number of hits divided by the number of trials. Time to hit was the time that the
cursor was under cortical control. Information transfer rate was calculated first as bits/trial
(Wolpaw et al 2002) according to the following equation where N is the number of targets
and P is the probability of a hit, or the accuracy:

(1)

Information transfer rate in bits/min was obtained by multiplying the results of equation (1)
by the number of trials per minute. Accuracy, number of hits per run, and information
transfer rate were calculated for each run for each subject. A fifth measure, effort of hit, was
also used. Since it is widely recognized (Ray and Cole 1985, Pfurtscheller and Lopes da
Silva 1999, Fink et al 2005, Neuper et al 2005, Keil et al 2006) that increased effort is
reflected in a greater alpha spectral power reduction, effort of hit was calculated as the
integral of the squared control signal during the time the cursor was under cortical control
before a hit. Given that the control signal consisted of the spectral amplitude, squaring the
control signal is the equivalent of the spectral power. As the integral increased, that
indicated that more modulation of the spectral power was necessary. More modulation
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indicates more effort. Effort of hit and time to hit were calculated for each hit for each
subject.

All measures were tested for normality using a 2-sided Lilliliefors test. All measures were
found to be non-normal. Therefore, we used medians and a 2-sided sign test to test for
statistical significance. Alpha = 0.05 for all statistical analysis. No p-value correction was
applied.

Measures are presented in figure 3 as the median of the grouped data for each session. The
shaded area in the figure indicates the 95% confidence interval of the median. The measures
are significantly different from each other if the confidence intervals do not overlap. In order
to look at learning over time, the percent change from session 1 was calculated for each
paradigm and each measure. Statements such as, “GSP showed significantly more
improvement than PCP” refer to the percent change from session 1 being significantly
different between GSP and PCP.

In figure 4, the box plots show the distribution of the all-star data. The lower whisker
extends from the minimum value to the 25th percentile. The box extends from the 25th
percentile to the 75th percentile with the median drawn across the box. The upper whisker
extends from the 75th percentile to the maximum value. Asterisks above the upper whisker
indicate significantly different medians between GSP and PCP.

The time frequency plots in figure 5 present the AR spectral amplitudes during single trials
with the baseline subtracted. Baseline was the median AR spectral amplitude for all 1 s
intervals after the targets were displayed but before the cursor appeared. Calculation of the
spectral amplitudes was performed in the same manner as done real time by the BCI with a
16th order AR model calculating 3Hz bins centred on a multiple of three from 0 to 30 Hz.
Window length was 160ms with 50% overlap.

3. Results
During the course of the study, we looked at three main categories of data: how the subject
specific control signals evolved over time, how the subjects performed on their single
assigned paradigm over the eight sessions, and how the all-stars performed using all
paradigms in the same session. Multiple measures for each of those categories are presented
below.

3.1 Control signal evolution
Figure 2B and C show the evolution of the control signal across the eight sessions, both in
terms of electrodes used (figure 2B) and frequencies used (figure 2C). The colour in figure
2B indicates the percent of control signals that used that channel. The circled electrodes
indicate the electrodes that were used in the most runs. The number of circled electrodes
indicates the average number of electrodes that were used in that session's control signals.
The frequencies used are indicated by figure 2C. The dark bars represent the percent of
control signals that used each frequency. The light bars extending to 100% represent the
frequencies that were used in the most runs. The number of light bars indicates the average
number of frequencies that were used in that session's control signals. Subjects typically
used two electrodes and two frequency bins. Over the course of the 8 sessions, the electrodes
shifted from the left side of the head to the right side of the head. Not surprisingly, C3, C4,
CP3 and CP4 were the most commonly used electrodes. The most commonly used
frequencies were 9, 12, and 15 Hz. The final control signal for all but one subject involved
at least one of the 9, 12, or 15 Hz bins.
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3.2 Eight session performance metrics
For both GSP and PCP, accuracy increased over the 8 sessions (figure 3A). GSP was
significantly more accurate than PCP in all sessions: 34% more on average, and 33% more
in session 8. GSP also showed significantly more improvement in accuracy than PCP. This
improvement occurred earlier and was more sustained for GSP than PCP. By session 2, GSP
was already significantly more accurate than it was in session 1. PCP did not significantly
improve on its session 1 accuracy until session 4. Both GSP and PCP continued to
significantly improve on their session 1 accuracy until both levelled off in sessions 7 and 8.
By session 8, GSP showed 52% more improvement in accuracy than PCP.

The number of hits per run increased for both paradigms over the 8 sessions (figure 3B).
GSP had significantly more hits than PCP in all sessions: 102% more on average, and 115%
more in session 8. GSP also showed a significantly greater increase in number of hits than
PCP. By session 2, GSP exhibited a significant increase in the number of hits per run. GSP
continued to demonstrate a significant steady increase in number of hits per run that did not
level off. PCP's number of hits fluctuated up and down across sessions and exhibited no
sustained significant change across sessions. By session 8, GSP showed 161% more learning
than PCP in terms of number of hits per run.

Even though both GSP and PCP consisted of one timed paradigm (GSFT and PCA) and one
untimed paradigm (GSFD and PCNA), GSP had significantly less time to a hit than PCP in
all sessions: 40% better on average, and 44% better in session 8 (figure 3D). GSP was also
much more consistent in time to a hit, resulting in a very narrow 95% confidence interval for
GSP. GSP had a slow but sustained decrease in time to hit that was significant in sessions 6
through 8, whereas PCP lost all significant gains and showed no significant change in time
to hit by session 8.

The information transfer rate is one metric that combines the speed and accuracy presented
by the previous figures into one measure. As expected, the information transfer rate
increased for both paradigms over the 8 sessions (figure 3C). GSP transferred significantly
more information than PCP: 324% more on average, and 411% more in session 8. GSP
showed a significantly greater increase in information transfer rate than PCP. GSP showed
consistent improvement. By session 2, GSP transferred significantly more information than
it had in session 1. Another significant improvement in the information transfer rate
occurred between sessions 5 and 7, then GSP levelled off. PCP was slow to improve its
information transfer rate, showing the first significant gain in session 6. However, sessions 7
and 8 were quite volatile and PCP lost almost all significant improvement. By session 8,
GSP showed 282% more improvement in information transfer rate than PCP.

The effort of hit decreased for both paradigms over the 8 sessions (figure 3E). GSP required
significantly less effort than PCP in all sessions: 52% less on average, and 57% less in
session 8. GSP showed a significantly greater decrease in effort of hit than PCP. PCP was
quite variable and lost almost all of the significant reductions in effort obtained, whereas
GSP showed steady significant improvement eventually outpacing PCP. By session 8, GSP
showed 63% more reduction in effort of hit than PCP.

For all 5 performance measures, GSP was significantly better with a median increase in
performance of 54% from PCP to GSP across all sessions and measures. GSP also showed
significantly more improvement than PCP for all 5 measures, showing on average twice the
learning of PCP.
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3.3 All-star performance metrics
In order to more directly compare the influence of control strategy on performance, the best
subject from each group performed two additional sessions of three runs of each of the four
different paradigms. Figure 4 shows the 5 performance measures for these sessions. For all 5
measures, GSP was significantly better than PCP. GSP transferred 155% more information
than PCP (figure 4A). GSP was 13% more accurate than PCP (figure 4B). GSP had 41%
more hits per run than PCP (figure 4C). GSP was 31% faster to a hit than PCP (figure 4D).
GSP required 44% less effort for a hit than PCP (figure 4E). Across all 5 measures, the
median increase in performance was 41% from PCP to GSP.

4. Discussion
This study focused on the effect of control strategy, goal selection or process control, on a
subject's ability to learn to use a BCI. The measures studied were accuracy, number of hits
per run, time to a hit, information transfer rate, and effort of hit. From the very first session,
goal selection outperformed process control. Goal selection was more accurate and faster to
use, which led to a higher information transfer rate. This was achieved with less effort than
process control required. As the sessions progressed, goal selection showed significantly
more improvement than process control across all measures. This indicates that the goal
selection subjects demonstrated more learning than their process control counterparts. These
conclusions held even when the paradigms were not grouped into GSP and PCP but
analyzed separately.

Did learning actually occur in this study? For GSP, all five performance measures were
significantly better by session 8 than they were in the first several sessions. GSP certainly
demonstrated learning. For PCP, four of the five measures were significantly better by
session 8 than they were in the first session. However, time to hit did not show sustained
significant improvement. The results do show significant improvement did occur, but were
not maintained. This could be due to the fact that the time to hit measure only included hits.
In the first session, there were not as many hits as in the later sessions. As subjects
progressed, targets that previously would have resulted in an abort or a miss now resulted in
a hit that required protracted lengths of time. That argument combined with the fact that the
other four measures showed significant improvement leads to the conclusion that PCP did
demonstrate learning.

The fact that learning occurred does not necessarily indicate that subjects were fully trained.
In terms of accuracy and information transfer rate, GSP levelled off for the last two sessions.
By session 8 GSP was still improving in terms of the number of hits per run and the effort of
hit, and the time to hit was still inconsistent. Given those results, GSP subjects could be
considered trained, but still refining their skills.

Were the PCP subjects fully trained? PCP was not nearly as consistent as GSP in
performance. In all measures, PCP was quite volatile, improving significantly in one session
and then losing those gains in the subsequent sessions. For all measures but accuracy, that
pattern of performance continued for all 8 sessions. PCP accuracy did somewhat level off in
sessions 7 and 8. Given those results, PCP subjects were not trained, but were still learning.

Although GSP transferred over five times the information as PCP did in session 8, the goal
selection paradigms were not optimized. The 1 s time interval in GSFT was somewhat
arbitrarily chosen, as was the radius of the circle in GSFD. Those times and distances could
be optimized for each user. The very design of the goal selection paradigms could be
radically changed and improved upon. For example, the goal of right or left could have been
decided by analyzing the motion of the cursor and choosing a goal when a certain
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confidence threshold had been crossed. What was used in this study were only two possible
ways to determine a goal. Much better ways exist, including methods that do not rely on the
motion of the cursor. We chose to keep cursor motion a part of the paradigms in order to
most effectively compare the goal selection paradigms to the process control paradigms.
Some might argue that, since cursor motion was part of the paradigms, we were not actually
using goal selection. However, in our goal selection paradigms, the final execution of the
task was performed by the BCI system and not the user. The goal selection subjects did not
have to do all the work themselves, whereas the process control subjects did. Although the
goal selection paradigms could have been improved upon, these methods were chosen to
facilitate comparison with previous studies (Royer and He 2009). Similarly, other
improvements could have been made to all paradigms to improve performance, such as
changing the methods of control signal selection, classification, or adaptation. Those
improvements were not implemented in order to allow a fair comparison between this and
previous studies (Royer and He 2009).

How did changes of the control signal affect the study? The control signal changed
throughout the study in two primary ways. First, the control signal was customized between
sessions to those electrodes and frequencies that the subject could best manipulate. Although
no formal blinding procedures were followed, we generally did not know which paradigm a
subject was assigned to while performing the customization. We followed the same control
signal customization procedure on all individuals, regardless of paradigm. Hence, the
customization did not influence the overall conclusions of the relative merits of goal
selection vs. process control. Second, the control signal experienced adaptation within
sessions. The result of the control signal adaptation was a signal with zero mean and unit
variance. This was used to reduce the effect of session to session, and even within session,
recording differences. It also helped normalize the cursor movement speed between subjects.
As mentioned in the methods, the programming parameters governing the adaptation were
adjusted to account for the longer trial lengths of the untimed vs. time based paradigms.
Therefore, neither the adaptation of the control signal within a session, nor customization of
the control signal between sessions should have influenced the overall purpose and
conclusions of this study.

A common question that arises when discussing motor imagery based systems is the
handedness of the subjects. Here, both GSP and PCP had nine right handed subjects and one
left handed subject. Because we customized the control signal to each individual, we argue
that handedness did not affect the study. Each subject was able to use electrodes from
whichever hemisphere they could best control, regardless of handedness. The predominance
of right handed subjects was the reason why the chosen initial control signal was from the
left hemisphere. However, as can be seen in figure 2, by session 8 the majority of control
signals were from the right hemisphere (55%), with an almost equal minority staying on the
left (45%).

A previous study compared goal selection to process control in two populations of users:
naive and trained (Royer and He 2009). Each subject used both goal selection based and
process control based paradigms each session. This study followed a naive population as
they learned to use one particular paradigm across 8 sessions. Afterwards, the best subject
from each group, or the all-stars, performed two additional sessions using all paradigms, like
in Royer and He (2009). Therefore, valid comparisons between the two studies include
comparing the naive subjects (Royer and He 2009) to sessions 1 and 2, the trained subjects
(Royer and He 2009) to sessions 7 and 8, and the trained subjects (Royer and He 2009) to
the all-stars. Adding to the validity of the comparison is that the trained subjects had 6 to 8
weeks experience with approximately one session per week.
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In general, the two studies have similar results. The current study confirmed the findings of
Royer and He (2009) that goal selection was more accurate and faster to use. That combined
to create a higher information transfer rate (ITR). The current study confirmed those results
in a larger sample size. However, there were a few interesting differences. The subjects in
Royer and He (2009) may have been intrinsically better since both the naive and trained
subjects displayed better accuracy and information transfer then shown here in the 8
sessions. This is further supported by the fact that the all-star data is comparable to the
trained data. Another factor influencing these results is the difference in overall study design
between the two studies. In the current study, all subjects began with the understanding that
they had committed themselves to 8 sessions worth of experiments. Even if they became
frustrated at their lack of progress, they had committed to complete the study. The subjects
in Royer and He (2009) did not have to commit to a certain number of experiments. This led
to a natural selection effect in subject ability. Those subjects that were not very good would
become frustrated with the experiment, and remove themselves from the subject pool.
Hence, the previous trained data is naturally composed of subjects that would have made the
current all-star group.

Other discrepancies in the data relate to the transfer of learning between control strategies in
Royer and He (2009) and not this study. Although the naive number of hits per run is
comparable to this study for both GSP and PCP, the trained number of hits per run is only
comparable for GSP. The PCP subjects never improved to the number of hits per run seen in
Royer and He (2009). Since the PCP subjects in the current study did not benefit from the
learning achieved with a goal selection based paradigm, the PCP subjects could not perform
at the same level. This fact made an important impact in the ITR of GSP versus the ITR of
PCP between the two studies. In the current study, GSP had an ITR four to five times that of
PCP, whereas in both the naive and trained subjects GSP only had an ITR approximately
twice that of PCP. This is more similar to the current all-star data where the subjects were
performing goal selection based paradigms in succession with process control based
paradigms. These results support the fact that goal selection is easier to learn than process
control. They also demonstrate that learning did transfer between the goal selection based
paradigms and the process control based paradigms in Royer and He (2009).

Neuper et al (2009) conducted a multiple session study similar to the current study in many
ways. They used motor imagery of left and right hand movements to control a one-
dimensional BCI. Their criteria for classification accuracy is most similar to the GSFT
paradigm in this study, but they only had one selection period that lasted 4 s. At the end of
the 4 s, the trial was classified as right or left if it had been classified that for at least 3 s out
of the 4 s. Their average feedback classification result was 68–70%. This is nearly identical
to the accuracy of the current study for comparable sessions (GSP sessions 2–4). Neuper et
al (2009) also had twenty subjects and customized the control signal to each subject. In both
their study and the current study, the chosen frequencies had a distribution that was biased
towards 10 to 12 Hz, with some subjects using higher frequencies up to 30 Hz. In both their
study and the current study, the control signal was not static but was updated throughout the
study.

A surprising result of the Neuper et al (2009) study was that there was no improvement of
right/left classification accuracy across the sessions. They hypothesized that the reason
could be that their three feedback sessions scheduled sometimes weeks apart were not
numerous or frequent enough to show learning. The current study supports their hypothesis
in three ways. First, our results did not show significant improvement over session 2's data
until session 6 for GSP, and longer for PCP. This shows that our subjects needed at least five
sessions of feedback, two more than in Neuper et al (2009), in order to show significant
improvement. The significant improvement that we often saw from session 1 to session 2
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could possibly be attributed to customizing the control signal for each user. Neuper et al
(2009) had a customized control signal in the first feedback session from data they had
gathered in a separate screening session. Second, each GSP session had about three times,
and each PCP session had about twice, the total number of trials as Neuper et al (2009).
Third, our sessions were regularly scheduled. The frequency and longer length of the current
study both in number of sessions and in total number of trials allowed our subjects to
demonstrate significant improvement in all measures.

Neuper et al (2009) was not the only BCI study that failed to show learning. Kubler et al
(2010) performed an exhaustive literature search investigating how much learning is
involved in BCI control of non-invasive and ECoG systems in human studies. The vast
majority of 137 studies consisted only of one to four BCI sessions. Their conclusion was
that most BCI studies do not involve learning. As shown in figure 3, we were able to show
significant learning.

The ERD/ERS literature presently consists of mainly ERD/ERS data from either trained or
naive subjects, but does not address the progression when learning is involved (Neuper et al
1999, Wolpaw and McFarland 2004, Pfurtscheller et al 2006, Yuan et al 2008, Neuper et al
2009, McFarland et al 2010, Yuan et al 2010). The current study is unique in its
combination of duration and large subject pool. Twenty subjects completed 160 sessions of
1,600 runs consisting of 46,036 trials. Sample time frequency plots of trials featuring both
right and left targets of GSP and PCP are shown in figure 5. Those four trials represent less
than 1/10,000 of the data and yet demonstrate the important point that there are many factors
in this study. The trials are dissimilar in many ways: patterns of ERD/ERS/rest amplitude
and duration, trial lengths, targets, sessions, control strategies, end results, overall subject
skill levels, control signals from different sides of the head, and different weights of the
control signal. Additionally, these plots only feature the electrodes used for control. What
was the EEG signal on the non-control electrodes? Future work will tease apart these factors
to determine the important aspects of EEG signal changes while learning to use a
sensorimotor rhythm based BCI, and the influence that control strategy has on those
changes. We hypothesize that the underlying EEG signal will be more conducive to goal
selection, and that the EEG signal controlling a typical goal selection trial will change more
over time compared to process control. The full analysis of the evolution and importance of
different features of the EEG signal in a study of this duration and subject pool will be a
useful addition to the ERD/ERS literature.

As shown in figures 3 and 4, goal selection requires less mental effort than process control.
An additional advantage of goal selection is that the user can “take a mental break” while
the BCI system is completing the execution. The combination of requiring less effort and
naturally introducing breaks leads to less overall mental fatigue from using a goal selection
based BCI when compared to a process control based BCI. This has been seen in our
personal experience with subjects. As discussed in Bai et al (2010), the minimization of
fatigue during BCI use will be important as BCIs move from laboratory to clinical settings.
The patient populations that many BCIs are designed to serve, such as those with ALS, have
reduced physical and mental endurance (Sykacek et al 2003, Birbaumer 2006). This
diminished endurance has decreased the accuracy of a BCI system with 90% accuracy in
healthy subjects to levels just over chance in the patient population (Sellers and Donchin
2006, Iversen et al 2008). Therefore, reduction of fatigue due to using goal selection as a
control strategy may aid the usefulness and adoption of BCIs by individuals who truly need
them to restore lost functionality.

Goal selection demonstrated advantages over process control in this study. However, goal
selection does have limitations. In order for the BCI system to assist the user, the system
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needs to be pre-programmed to provide the correct assistance. That requires that the
situation be an anticipated, known event. The major advantage of process control is that it
provides unlimited possibilities for action, making it indispensible when encountering a
novel situation or event. Ideally, a BCI would be able to assist the user as often as possible
using goal selection, while still allowing the freedom that process control provides.
Additionally, an ideal BCI would learn from the new encounter to possibly provide
assistance in the future. This main distinction between goal selection and process control
implies that, however much benefit a BCI derives from implementing goal selection, process
control will continue to be employed as BCI use increases in society.

5. Conclusion
This study confirmed the hypothesis that goal selection is more accurate, faster to use, easier
to learn, and requires less mental effort than process control. This study validated previous
findings concerning speed and accuracy in a larger sample size (Royer and He 2009).
Median improvement from process control to goal selection across all sessions was 71% for
accuracy, number of hits per run, time to hit, and information transfer rate. This study was
also the first to show that goal selection is easier to learn and requires less mental effort than
process control. Goal selection showed on average twice the learning and required 54% less
effort than process control. If we wish to use BCIs to help individuals that can no longer rely
on their own natural motor output, it will be important to make using the BCI as effective
and as simple as possible. Applying goal selection in the BCI's control strategy will make
the system easier to learn, decrease the training period, and provide improved speed,
accuracy, and information transfer. These improvements will also help make BCIs more
appealing to able-bodied users.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors are grateful to Alex Doud, Han Yuan, Dan Rinker, and Cristina Rios for assistance in data collection
and many useful discussions. This work was supported in part by NSF grant CBET-0933067, NIH Grants T32
EB008389, RO1 EB007920, and RO1 EB006433.

References
Bai O, Lin P, Huang D, Fei DY, Floeter MK. Towards a user-friendly brain-computer interface: Initial

tests in ALS and PLS patients. Clin Neurophysiol. 2010; 121(8):1293–1303. [PubMed: 20347612]
Bell CJ, Shenoy P, Chalodhorn R, Rao RPN. Control of a humanoid robot by a noninvasive brain-

computer interface in humans. J. Neural Eng. 2008; 5:214–220. [PubMed: 18483450]
Birbaumer N. Breaking the silence: brain–computer interfaces (BCI) for communication and motor

control. Psychophysiology. 2006; 43:517–32. [PubMed: 17076808]
Donchin E, Spencer KV, Wijesinghe R. The mental prosthesis: Assessing the speed of a P300-based

brain–computer interface. IEEE Trans. Rehab. Eng. 2000; 8:174–9.
Farwell LA, Donchin E. Talking off the top of your head: toward a mental prothesis utilizing event-

related brain potentials. Electroenceph. Clin. Neurophysiol. 1988; 70:510–23. [PubMed: 2461285]
Fink A, Grabner RH, Neuper C, Neubauer AC. EEG alpha band dissociation with increasing task

demands. Brain Res Cogn Brain Res. 2005; 24:252–9. [PubMed: 15993763]
Hochberg LR, Serruya MD, Friehs GM, Mukand J, Saleh M, Caplan AH, Branner A, Chen D, Penn

RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006; 442:164–71. [PubMed: 16838014]

Royer et al. Page 13

J Neural Eng. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Iversen I, Ghanayim N, Kubler A, Neumann N, Birbaumer N, Kaiser J. Conditional associative
learning examined in a paralyzed patient with amyotrophic lateral sclerosis using brain–computer
interface technology. Behav Brain Funct. 2008; 4:53. [PubMed: 19025641]

Kamousi B, Amini AN, He B. Classification of motor imagery by means of cortical current density
estimation and Von Neumann entropy for brain-computer interface applications. Journal of Neural
Engineering. 2007; 4:17–25. [PubMed: 17409476]

Karim AA, Hinterberger T, Richter J, Mellinger J, Neumann N, Flor H, Kübler A, Birbaumer N.
Neural internet: Web surfing with brain potentials for the completely paralyzed. Neurorehabil
Neural Repair. 2006; 20:508–515. [PubMed: 17082507]

Keil A, Mussweiler T, Epstude K. Alpha-band activity reflects reduction of mental effort in a
comparison task: a source space analysis. Brain Res. 2006; 1121:117–27. [PubMed: 17010944]

Kennedy PR, Bakay RA, Moore MM, Adams K, Goldwaithe J. Direct control of a computer from the
human central nervous system. IEEE Trans. Rehabil. Eng. 2000; 8:198–202. [PubMed: 10896186]

Kotchetkov IS, Hwang BY, Appelboom G, Kellner CP, Connolly ES Jr. Brain-computer interfaces:
military, neurosurgical, and ethical perspective. Neurosurgical FOCUS. 2010; 28:E25. [PubMed:
20568942]

Kubler, A.; Donatella, M.; Harry, G.; Benaya, D.; Neuper, C. How much learning is involved in BCI-
control?. 2010. http://www.bcimeeting.org/2010/poster_abstracts.shtml#A7

Kunst CB. Complex genetics of amyotrophic lateral sclerosis. Am. J. Hum. Genet. 2004; 75:933–47.
[PubMed: 15478096]

McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalographic (EEG) control of three-
dimensional movement. J Neural Eng. 2010; 7:036007. [PubMed: 20460690]

Neuper C, Grabner RH, Fink A, Neubauer AC. Long-term stability and consistency of EEG event-
related (de-)synchronization across different cognitive tasks. Clin Neurophysiol. 2005; 116:1681–
94. [PubMed: 15922658]

Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Motor imagery and action observation:
modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
Clin Neurophysiol. 2009; 120(2):239–47. [PubMed: 19121977]

Neuper C, Schlögl A, Pfurtscheller G. Enhancement of left-right sensorimotor EEG differences during
feedback-regulated motor imagery. J. Clin. Neurophysiol. 1999; 16:373–82. [PubMed: 10478710]

Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization:
basic principles. Clinical Neurophysiology. 1999; 110:1842–57. [PubMed: 10576479]

Pfurtscheller G, Brunner C, Schloegl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG
single-trial classification of different motor imagery tasks. NeuroImage. 2006; 33:153–9.
[PubMed: 16443377]

Pineda JA, Silverman DS, Vankov A, Hestenes J. Learning to control brain rhythms: making a brain-
computer interface possible. IEEE Trans Neural Syst Rehabil Eng. 2003; 11:181–4. [PubMed:
12899268]

Ray WJ, Cole HW. EEG alpha activity reflects attentional demands, and beta activity reflects
emotional and cognitive processes. Science. 1985; 228:750–2. [PubMed: 3992243]

Royer AS, He B. Goal selection versus process control in a brain-computer interface based on
sensorimotor rhythms. J. Neural Eng. 2009; 6:016005. [PubMed: 19155552]

Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV. A high-performance brain-computer interface.
Nature. 2006; 442:195–8. [PubMed: 16838020]

Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose
brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004; 51:1034–43. [PubMed:
15188875]

Schalk, G.; Mellinger, J. A Practical Guide to Brain-Computer Interfacing with BCI2000. Springer;
London: 2010.

Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. Clin
Neurophysiol. 2006; 117:538–48. [PubMed: 16461003]

Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home
use. Amyotroph Lateral Scler. 2010; 11:449–55. [PubMed: 20583947]

Royer et al. Page 14

J Neural Eng. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bcimeeting.org/2010/poster_abstracts.shtml#A7


Smith ME, McEvoy LK, Gevins A. The impact of moderate sleep loss on neurophysiologic signals
during working-memory task performance. Sleep. 2002; 25:784–94. [PubMed: 12405615]

Sykacek P, Roberts S, Stokes M, Curran E, Gibbs M, Pickup L. Probabilistic methods in BCI research.
IEEE Trans Neural Syst Rehabil Eng. 2003; 11:192–5. [PubMed: 12899272]

Vallabhaneni, A.; Wang, T.; He, B. Brain computer interface. In: He, B., editor. Neural Engineering.
Kluwer Academic/Plenum; New York: 2005. p. 85-122.

Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for
self-feeding. Nature. 2008; 453:1098–1101. [PubMed: 18509337]

Wolpaw JR. Brain–computer interfaces as new brain output pathways. J. Physiol. 2007; 579:613–9.
[PubMed: 17255164]

Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain–
computer interface in humans. Proc. Natl. Acad. Sci. U. S. A. 2004; 101:17849–54. [PubMed:
15585584]

Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain–computer interfaces
for communication and control. Clinical Neurophysiology. 2002; 113:767–91. [PubMed:
12048038]

Yuan H, Doud AJ, Gururajan A, He B. Cortical imaging of event-related (de)synchronization during
online control of brain-computer interface using minimum-norm estimates in the frequency
domain. IEEE Trans. Neural Sys. & Rehab. Eng. 2008; 16:425–31.

Yuan H, Perdoni C, He B. Relationship between Speed and EEG Activity during Imagined and
Executed Hand Movements. J. Neural Eng. 2010; 7:26001. [PubMed: 20168002]

Royer et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Experimental setup and paradigms. (A) Healthy human subjects sat motionless in a chair
facing a computer monitor and imagined moving their right or left hand, arm, or shoulder.
Their EEG signal was sent to a computer, which translated the raw EEG into a control signal
that moved a computer cursor right or left on the screen. (B) Experimental paradigms. At the
start of each trial, two targets appeared on the screen. The subject was instructed to hit the
yellow one (here: right). For all paradigms, a correctly hit target turned green and an
incorrectly hit target, or a miss, turned red. In the bottom row describing the GSFT
paradigm, the closest target after one second of mind control was selected and turned blue. If
the cursor was still closest to that target after an additional second, the target would be
confirmed and turn purple. However, if the cursor were closer to the other non-selected
(non-blue) target, both targets would turn blue and the final destination determined by a
third second of cursor control, with best two out of three winning. For analysis purposes,
process control with aborts (PCA) and process control with no aborts (PCNA) were grouped
into the process control paradigms (PCP). Similarly, goal selection with feedback limited by
distance (GSFD) and goal selection with feedback limited by time (GSFT) were grouped
into the goal selection paradigms (GSP). Supplementary videos demonstrating PCA (1.08
MB .avi), GSFD (1.97 MB .avi), and GSFT (1.37 MB .avi) are available online.
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Figure 2.
The evolution of the control signal across sessions for all subjects. For session 1, all subjects
used the same control signal. Then, each subject's control signal was customized based on
their previous session's data. For session 7, the control signal was restricted to a control
signal that the subject had previously used. The control signal used in session 7 had to be
used in session 8. (A) Possible electrodes were limited to the outlined box containing FCz-6,
Cz-6, and CPz-6. (B) Electrodes used in each session. Each box represents the same outlined
box from (A). Colour indicates the percent of control signals that used that channel (red =
most, blue = none). Circles indicate the electrodes that were used in the most number of
runs. The number of circles indicates the average number of electrodes that were used in that
session's control signals. (C) Centre frequencies of the 3Hz wide frequency bins used in each
session. Dark bars represent the percent of control signals that used each frequency bin.
Light bars extending to 100% represent the frequencies that were used in the most runs. The
number of light bars indicates the average number of frequencies that were used in that
session's control signals.
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Figure 3.
Goal selection was significantly better and showed significantly more learning than process
control over the eight sessions. Plotted lines are the medians of the grouped data for each
session. Blue (darker, solid line) represents GSP. Pink (lighter, broken line) represents PCP.
The legend in (E) applies to (A–E). Shaded areas indicate the 95% confidence interval of the
median. Significance is indicated by non-overlapping areas. a.u. = arbitrary units.
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Figure 4.
Goal selection was significantly better than process control when performed in the same
session. Asterisks on the data from the all-stars indicate significantly different medians
between GSP and PCP. a.u. = arbitrary units.
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Figure 5.
Time frequency plots of representative left and right trials of PCP (A) and GSP (B) illustrate
the numerous factors influencing the EEG signal and subject performance. The plotted
colour corresponds to the AR spectral amplitude minus baseline. Black squares on the plots
indicate the frequencies used for control. Words centred across the figure apply to both right
and left plots. Words below a figure apply to the individual plot. Colour scale bars on the
right apply to the entire row.
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