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Abstract
The world is composed of features and objects and this structure may influence what is stored in
working memory. It is widely believed that the content of memory is object-based: Memory stores
integrated objects, not independent features. We asked participants to report the color and
orientation of an object and found that memory errors were largely independent: Even when one
of the object’s features was entirely forgotten, the other feature was often reported. This finding
contradicts object-based models and challenges fundamental assumptions about the organization
of information in working memory. We propose an alternative framework involving independent
self-sustaining representations that may fail probabilistically and independently for each feature.
This account predicts that the degree of independence in feature storage is determined by the
degree of overlap in neural coding during perception. Consistent with this prediction, we found
that errors for jointly encoded dimensions were less independent than errors for independently
encoded dimensions.
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Introduction
We process the visual world not as a collection of features but as a set of meaningful objects
composed of those features. The object-based structure of visual cognition is evident in
attention (Scholl, 2001)—e.g., featural information follows the spatiotemporal properties of
objects (Kahneman, Treisman, & Gibbs, 1992; Mitroff & Alvarez, 2007) and attention
spreads not in empty space but in space as defined by objects (Egly, Driver, & Rafal, 1994).
Visual working memory is also influenced by the organization of features into objects. For
example, working memory performance for multiple features depends on whether features
are grouped into objects (Luck & Vogel, 1997; Xu, 2002). These findings have led to the
view that we encode and maintain integrated object representations (Cowan, 2001; Luck &
Vogel, 1997; Rensink, 2000).

Here, we test such object-based models by determining how well performance for one
feature is correlated with memory for other features of the same object. A pure object-based
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model predicts that memory for different task-relevant features of the same object will be
highly correlated, and if one feature is unknown, the other features will also be unknown. In
contrast, a pure feature-based model predicts that memory for one feature will be completely
independent of memory for another feature of the same object. We found that the color and
orientation reports for the same object were largely independent. Participants often knew the
color of an object that they did not know the orientation of and vice versa. These results
suggest that the contents of working memory are not integrated object representations. We
propose that features that are coded independently during perception will fail
probabilistically and independently in visual working memory.

Experiment 1
Methods

Participants—Twelve volunteers (18–35 years old) participated for $10/h or course credit.

Stimuli—Each display showed five isosceles triangles spaced equally in a ring, 2.5° (visual
angle) in radius, around a central fixation (Figure 1A). Each triangle had angles of 30°, 75°,
and 75° and sides subtending 0.7° × 1.63° × 1.63°(visual angle). Each triangle had a
randomly chosen orientation (2°–360°, in 2° steps) and color (from 180 equiluminant colors
evenly distributed along a circle in the CIE L*a*b* color space centered at L = 54, a = 18, b
= −8, with a radius of 59).

Procedure—Trials began with the presentation of a central cross (1 s), followed by the
memory display (1200 ms). After a retention interval (900 ms), a filled white squares
appeared at the probed triangle’s location, and hollow squares appeared at non-probed
locations. Participants were asked to report the color and then the orientation of the probed
item or vice versa (randomly determined). For color reports, a response wheel of 180 color
segments appeared centered around the probe display. For orientation reports, a black
response wheel was centered on the probed item (Figure 1A). Participants selected one of
180 values for each report by clicking the mouse. An indicator line outside the response
wheels, with position determined by cursor position, indicated the selected value. Once the
participants moved the mouse, the probed location contained a colored square (color reports)
or black triangle (orientation reports) with the feature matching the selected value.
Responses were unspeeded and error feedback was given. Each participant completed 540
trials. Six participants were also monitored for articulatory suppression to minimize verbal
encoding and rehearsal by repeating the word the three times per second for each trial
duration.

Analysis—A modeling analysis was first performed with all trials to classify guess trials,
providing measures of color memory when observers guessed about orientation and vice
versa. Response error was calculated by subtracting each probed item’s correct value from
the response. The response error distributions were fit using maximum likelihood estimation
as a mixture of a circular normal distribution centered on the target value, a uniform
distribution, and a mixture of circular normal distributions for each of the four non-probed
items centered on that item’s value. The height parameters of these distributions represented
estimates of the percentage of target responses, random guesses, and swap errors,
respectively. In addition, the model had a standard deviation parameter for the width of the
normal distributions that provided an estimate of the precision of stored representations.

To examine whether memory failures were independent for orientation and color, mixture
modeling was also performed for the filtered response distributions by including the subset
of trials in which participants responded more than 3 standard deviations away from the
target value of the other feature (Figure 2A). This criterion was selected because target
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responses are unlikely to fall outside this range (0.26%), while this criterion still afforded a
sufficient number of trials to perform the mixture modeling analysis. Similar results were
observed when responses were filtered by 2 or 4 standard deviations.

Results and discussion
Contrary to the object-based prediction, the filtered response distributions were not uniform
but showed a large proportion of responses distributed around the correct value (Figure 2B),
suggesting independent failures of feature memory. A comparison of the parameter fits
(Figure 3) found that the subset of trials where participants guessed on the other feature
(filtered trials) had less target responses and more swap errors and random guesses (ps <
0.05; see Supplementary data for ANOVA results for each model parameter). Strikingly,
while performance was slightly worse for the subset of filtered trials, the difference was
much less than the all-or-none object storage predicted by pure object-based models of
memory. To quantify memory independence between features, we developed a measure
termed the separability index (SI) that takes a ratio of the proportion of target responses in
the filtered trials to the proportion of target responses in all trials (standard condition,
averaged across features). The higher the separability index, the greater the independence of
memory for the features. Pure object-based models of working memory predict an SI of 0,
whereas pure feature-based models predict an SI of 1, as the organization of features into
objects has no effect on memory. The SI value (0.73 ± 0.04) was much closer to the
prediction of the feature-based model than of the object-based model (Figure 4), showing
largely independent working memory for the two features. Similarly, a scatter plot of color
and orientation errors reveals largely independent performance across features (Figure 5). In
fact, the absolute magnitude of error for the two responses was only weakly correlated (the
average of r2 values was 0.03).

These results are incompatible with theories suggesting that we encode and maintain a
subset of integrated objects (Cowan, 2001; Luck & Vogel, 1997). Moreover, these results
cannot be explained by failures of feature binding in working memory (Brown &
Brockmole, 2010; Fougnie & Marois, 2009; Wheeler & Treisman, 2002), where features
from non-probed items may be mistakenly reported instead of the probed item. This is
revealed by an additional analysis that removed responses that were within 2 SDs of any
sample item’s value and still showed a high proportion of target responses (Supplementary
Figure 1; SI value of 0.67) contrary to the misbinding account.

Further control analyses showed that the independent failures were not due to verbal
rehearsal or response interference. The participants who performed an articulatory
suppression task had an SI of 0.74 ± 0.05, which did not differ from the SI of 0.70 ± 0.06 for
the other participants (p = 0.41). In addition, SI values did not differ if filtered for the first
(0.76 ± 0.03) versus the second (0.71 ± 0.04) response showing that feature independence is
not due to response order effects.1 The SI values were not significantly altered if the
canonical orientations (e.g., upright) and colors (e.g., green) are excluded (see
Supplementary data). We also replicated the results of independent failures in another
experiment (n = 8) using a task that was identical to Experiment 1, except that participants
adjusted both the color and orientation of an isosceles triangle to make a single response (SI
of 0.90 ± 0.07).

Here, participants often failed to remember color or orientation, as shown by the large
proportion of random guesses. Moreover, errors for these features were largely independent

1For color, non-guess rate was significantly higher for the first (61%) than the second (50%) response, p < 0.005. For orientation, non-
guess rate was higher for the first (51%) than the second (46%) response, but this difference was not significant, p = 0.14.
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for a single object. How do we reconcile this with the extensive literature showing that
working memory is sensitive to the object-based structure of a display? (Delvenne &
Bruyer, 2004, 2006; Luck & Vogel, 1997; Olson & Jiang, 2002; Xu, 2002). We suggest that
these random guesses may arise from probabilistic failures of self-sustaining neural
networks (Amit, Brunel, & Tsodyks, 1994; Hebb, 1949; Johnson, Spencer, Luck, &
Schoner, 2008; Johnson, Spencer, & Schöner, 2009; Rolls & Deco, 2010). In this
framework, working memory is the maintenance of perceptual representations in the
absence of bottom-up sensory input. We suggest that increased item or information load
may lead to detrimental effects on working memory due to an increased likelihood of
representational failure. However, the representational unit of memory failure is not at the
level of the object, at least for objects defined by color and orientation. Consider that
successful visual working memory is the sustained activation of representations in the
absence of bottom-up perceptual input. Since orientation and color are encoded by largely
independent neurons during perception (i.e., separable feature dimensions; Cant, Large,
McCall, & Goodale, 2008; Garner, 1974), these features may form largely independent self-
sustaining representations and these representations may fail independently.2 Critically, this
probabilistic feature-store account proposes that the degree of independence for features in
working memory is determined by the degree of overlap in neural coding of the features. If a
task requires maintenance of two features that are coded by overlapping populations of
neurons, then their representations will overlap in memory and will not fail independently.
This prediction was assessed in Experiment 2.

Experiment 2
Unlike color and orientation, height and width are considered integral feature dimensions
(Cant et al., 2008; Dykes & Cooper, 1978; Ganel & Goodale, 2003) and overlap in neural
coding. The probabilistic feature-store model proposed here predicts that memory for jointly
coded features (height/width, Experiment 2A) will be more correlated than memory for
independently coded features (color/orientation, Experiment 2B).

Unlike Experiment 1, which modeled precision and guess rate via a continuous report task,
Experiment 2 modeled these parameters using performance in a recognition task, which is
useful when the feature dimensions are not circular like color and orientation (Bays &
Husain, 2008). The slope of the function relating performance with the difference between
target and non-target probes reflects the precision of memory (more precision, steeper
slopes). The level of performance at the largest probe difference reflects the percentage of
guess and non-guess responses. Thus, while Experiments 1 and 2 differ in terms of task, the
underlying model (where participants either guess or respond with imprecise target
knowledge) is identical.

Methods
Participants—Sixteen volunteers (18–35 years old; 8 each in Experiments 2A and 2B)
participated for $10/h or course credit.

Stimuli—Each memory display in Experiment 2A showed five rectangles with heights and
widths selected randomly from 180 evenly spaced values between 0.5° and 10° presented in
equally spaced positions along an imaginary ring 7° from fixation. Experiment 2B had
identical stimulus parameters as in Experiment 1 except that the display radius was
increased to 7° as in Experiment 2A.

2Note that the term failure here is not meant to imply that memory representations are lost due to time-based forgetting in working
memory. Failure of representations could arise also if there was a failure to consolidate information before the perceptual trace
diminished.
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Procedure—Participants selected the item corresponding to the probed location from four
alternatives: the correct response, two foils that matched the probe in one feature, and a foil
matching neither feature (Figure 1B). The foil values were independent and differed from
the target by 0.4°/1.5°/3.5°/5° of visual angle in Experiment 2A and 180°/140°/30°/10° of
feature space in Experiment 2B. For example, if the color and orientation choices differed
by 180° and 30°, respectively, then the four response alternatives were the full cross of the
correct and incorrect color and orientation choices such that each feature judgment was
completely orthogonal. Participants selected among the four options using response keys
(“E”/“D”/“I”/“K”), which corresponded with the onscreen positions of the response options.
Each participant completed 512 trials. Error feedback was given separately for each feature.

Analysis—Percent correct for each feature judgment (proportion of trials that participants
selected the item with the correct value in that feature) was measured as a function of the
difference between the correct and incorrect feature values. Intuitively, if items are stored
with high precision, then it would be easy to select the correct choice even with a small
difference, and the function would be very steep. If items were stored with low precision,
then large changes would be necessary to correctly respond, and the function would be
shallow. Thus, the steepness of the curve reflects the precision of memory. On the other
hand, if the observer has no information and is guessing, then even the largest possible
change would not have perfect performance. For example, if observers remembered half of
the items performance would asymptote at 75% correct (getting it correct half the time, and
randomly guessing half the time). To quantify these parameters (precision and guessing),
performance function was fit to a mixture of a uniform distribution and a cumulative
Gaussian, with the mixture parameter providing an estimate of the proportion of target
responses (1 – the proportion of guesses) and the Gaussian standard deviation providing an
estimate of memory precision (Zhang & Luck, 2008). Monte Carlo simulations found that
this method provided better parameter estimates with low numbers of trials than other
modeling approaches for recognition data (e.g., Bays & Husain, 2008).

Since discrimination tasks produce less reliable parameter estimates than report tasks, we
used a more conservative criterion of guess trials in this experiment than Experiment 1. We
assumed that observers guessed whenever they incorrectly judged a feature when the target–
foil deviations were at least 3.5° in visual angle for Experiment 2A or were at least 140° in
feature space (70 color steps) for Experiment 2B. A potential concern for Experiment 2A is
that the large target–foil deviations may still not have been sufficiently large to be outside of
the precision of stored representations. Thus, some of the filtered trials may have been target
response trials. Note, however, that this works against our hypothesis and findings—if
observers were not guessing on height or width, there is no reason to suspect that they would
have no information about the other feature.

Results and discussion
Participants’ performance for height and width judgments (Figure 6A) for all trials and for
the subset of trials where participants guessed on the other feature (filtered trials) were
modeled as a mixture of a cumulative Gaussian distribution and a uniform distribution to
determine the proportion of target response trials (see Methods section). We found that
participants rarely had information about height or width without information about the
item’s other feature, as the proportion of target responses for the filtered trials (12%) was
significantly less than for all trials (37%; t(7) = 5.24, p < 0.005).

In contrast, we replicated the finding of largely independent color and orientation memory in
Experiment 2B using the same task as in Experiment 2A (Figure 6B). The proportion of
target responses after filtering (26%) did not significantly differ from the standard condition
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(33%; t(7) = 1.63, p = 0.15) but may have with a larger sample size. Importantly,
comparisons between Experiments 2A and 2B show that independent failures of memory
were more common for color and orientation working memory. The SI value for Experiment
2A (0.28 ± 0.07) was much smaller than that for Experiment 2B (0.80 ± 0.13; t(14) = 4.09, p
< 0.001). Comparisons of correct judgments between the standard and filtered trials also
support a difference between studies. For height and width judgments, overall performance
was 59.6% correct, but it dropped significantly (p < 0.05) after filtering (52.5%, no longer
above chance). For color and orientation, performance in the standard and filtered trials did
not differ significantly (59.6% vs. 58.4%; t(7) = 0.83, p = 0.43). Indeed, performance costs
after filtering were significantly greater for height and width, as confirmed by a between-
subjects ANOVA with factors of Condition (standard, filtered) and Feature pairing (color–
orientation, height–width; F(1, 14) = 9.25, p < 0.01). Thus, both model fits and model-
independent estimates of performance converge in showing that working memory for color
and orientation is largely independent, while working memory for integral features like
height and width is not.

General discussion
The theory that integrated objects are the primary representational unit in visual cognition
and working memory has been highly influential in psychology, neuroscience, and
computational modeling (Cowan, 1988, 2001; Hollingworth & Rasmussen, 2010; Johnson et
al., 2008; Kahneman et al., 1992; Luck & Vogel, 1997; Mitroff & Alvarez, 2007; Rensink,
2000; Scholl, 2001; Vogel, Woodman, & Luck, 2001; Wolters & Raffone, 2008; Zhang &
Luck, 2008). The present findings challenge the assumption that the representational unit of
working memory is always an integrated object (Lee & Chun, 2001; Luck & Vogel, 1997;
Rensink, 2000; Vogel et al., 2001; Wolters & Raffone, 2008; Zhang & Luck, 2008). When
the task was to remember the color and orientation of items, we found that participants were
quite accurate at indicating the orientation of an object even when they had guessed the
color of the same object and vice versa. In contrast, we found less independence between
responses for the height and width of remembered items. This pattern of results is consistent
with previous research on integral and separable perceptual dimensions. Specifically, color
and orientation are processed by separate neural populations (Hubel & Wiesel, 1968;
Livingstone & Hubel, 1988), and our perception of orientation is largely independent of our
perception of color (Garner, 1974). In contrast, height and width draw on overlapping neural
populations and cannot be processed independently (Drucker, Kerr, & Aguirre, 2009; Ganel
et al., 2006; Garner, 1974). It appears that objects in working memory are collections of
features—some integral and some separable—and that the separable feature dimensions are
more likely to fail independently than integral feature dimensions.

A probabilistic feature-store model of visual working memory
In this study, participants often responded with no information about the probed target.
Indeed, such random guesses have been a common observation in similar tasks (Bays,
Catalao, & Husain, 2009; Fougnie, Asplund, & Marois, 2010; Zhang & Luck, 2008). What
is the source of such memory failures? Object-based theories suggest that failures occur
because only a finite number of items can be stored at a given time—in other words, that
there is a structural limit on memory (Cowan, 2001; Luck & Vogel, 1997; Zhang & Luck,
2008). However, working memory errors may also arise from probabilistic failures.
Consider the working memory task in Figure 1A. During perception of the sample display,
the featural information of each object is kept stable by a continuous bottom-up signal.
However, once the sample is removed, these representations need to self-sustain in the
absence of perceptual input. We propose, consistent with computational implementations of
self-sustaining neural networks (Amit et al., 1994; Tegner, Compte, & Wang, 2002; Wang,
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2001), that these representations are volatile and may fail probabilistically. A key feature of
the probabilistic model is that the likelihood of a representation failing is independent of the
state of other representations. Furthermore, since orientation and color are processed by
distinct neural populations, we propose that the memory of these features may require the
self-sustained activation of distinct regions of sensory cortex and that these networks may
fail independently of each other.

An alternative account of independent feature memory is provided by the independent
feature-store model (Wheeler & Treisman, 2002) in which distinct feature stores each have
their own limited capacity. On this account, independent failures could arise due to
selectively encoding features from different objects. Although consistent with independent
feature storage, selective encoding of object features cannot explain object-based benefits
showing that it is easier to remember features grouped into objects (Olson & Jiang, 2002;
Xu, 2002). However, both independent feature failures and object-based benefits can be
explained by a probabilistic feature-store model in which the likelihood of probabilistic
failures increases as the number of objects stored increases. Indeed, the likelihood of feature
failures may be differentially affected by increased feature and object load (Fougnie et al.,
2010). This probabilistic feature-store model is biologically plausible. For instance, a feature
representation may consist of a self-sustaining population of neurons (Ma, Beck, Latham, &
Pouget, 2006) and increased feature load may reduce the number of neurons for each
population. Increased information load could lead to increased representational failure if the
likelihood of representational failure is inversely proportional to the number of neurons that
can be devoted to maintaining each unit of information (Tegner et al., 2002). An increased
number of distinct objects could also lead to increased representational volatility due to the
cost of keeping representations encapsulated such that information from multiple
representations will not mutually interfere. This account is admittedly speculative, and
future work on this issue is necessary. The important point for present purposes is that
object-based encoding benefits are consistent with a probabilistic feature-store model in
which maintaining additional objects comes at a cost. Our results suggest that, even though
the number of objects may affect the likelihood of failure, the level at which memory
representations fail is often the individual feature.

This probabilistic feature-store account not only predicts that failure to remember one
feature of an item may be a poor predictor for the memory of the item’s other features but
also predicts that failure to remember an item from a display will be a poor predictor of
performance for the other items. In contrast, if random guesses arose due to limits in the
number of representations or features, or because some representations were not given any
resources, then working memory performance for one item would be negatively correlated
with performance for the other items. For example, if an observer can only store three items,
then storage of one item implies that the remaining items are competing for only two spots.
Consistent with the probabilistic feature-store account, a recent study has shown that
working memory performance is independent across items in a trial (Huang, 2010). We have
also replicated this finding using a color and orientation working memory task where
participants report the color and orientation of two different items (SI value of 1.01). These
findings argue against structural limitations as sufficient for explaining failures of working
memory.

Capacity limitations versus forgetting
Here, we examine failures of memory for distinct features of the same object. We should be
clear that we cannot differentiate whether these failures arise during consolidation into
memory or during forgetting from memory. One possible interpretation of these findings is
to suggest that studies showing object-based benefits for working memory reflect limitations
in how much information can be encoded but that the current evidence of independence
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arises from additional feature-based forgetting. However, there are several points that argue
against this hypothesis. Working memory is much too stable over time to explain the
strength of the observed independence between feature reports (Laming & Laming, 1992;
Lee & Harris, 1996; Magnussen & Greenlee, 1999; Zhang & Luck, 2009). Indeed, only a
modest drop in memory performance was observed in a color report task using a retention
interval an order of magnitude larger than the current study (Zhang & Luck, 2009). In
addition, we should emphasize that the present methodology is similar to past studies that
have found object-based benefits in working memory (Fougnie et al., 2010; Luck & Vogel,
1997; Xu, 2002). Therefore, those findings likely also contained independent failures of
object features. If this were the case, the standard interpretation of object-based effects, that
performance reflects a number of stored integrated object representations, would be
incorrect. In our study, given the degree of independence and the rate of guessing,
participants were storing at least one feature from nearly all five items. Thus, even if there is
an upper structural limit in the total number of objects that can be stored (Anderson, Vogel,
& Awh, 2011; Awh, Barton, & Vogel, 2007; Luck & Vogel, 1997; Zhang & Luck, 2008; but
see Alvarez & Cavanagh, 2004; Wilken & Ma, 2004), this number may have been
underestimated in past studies due to the fact that those studies did not account for
probabilistic, independent representational failures.

Relationship to previous research on the units of working memory
Studies differ on whether an encoding duration of about 50 ms per item is sufficient (Vogel,
Woodman, & Luck, 2006) or whether longer durations (Bays et al., 2009; Eng, Chen, &
Jiang, 2005), like those used in Experiments 1 and 2, are necessary for full encoding of the
sample display. We replicated feature independence in memory using a 300-ms encoding
duration (SI of 0.68) showing that feature independence in memory is observed over the
range of expected encoding durations and is not simply an artifact of long encoding
durations. However, if participants are unable to encode all items, this will appear as object-
based representations (participants will guess for both features of non-encoded objects). This
principle might explain why a previous study reported integrated color–shape memory
representations (Gajewski & Brockmole, 2006). That study required participants to encode
six objects in 187 ms. Furthermore, the display radius was large and may have required
shifts of attention to resolve crowding (Bouma, 1970). Indeed, using similar display
parameters, we found that 187 ms was not a sufficient encoding duration (change detection
performance improved with increased encoding duration, p < 0.05). Furthermore, we
observed featural independence with this display for sequential (SI of 0.69) but not
simultaneous presentations (SI of 0.31), consistent with the presence of encoding limitations
during simultaneous presentation.

We found that failures of memory for color and orientation were largely but not completely
independent. The lack of complete independence has several potential explanations. One
possibility is that representations may sometimes be lost at the object level in addition to the
feature level. However, partial independence could be explained by partial overlap in neural
coding for color and orientation or by variation in the quality in which items are encoded.
For example, the last attended item may be encoded with greater fidelity (Hollingworth &
Henderson, 2002). The features of this item would still fail independently, but since they
would be less likely to fail than features of other objects, failures would not be completely
independent.

Independence between the orientation and color of memory representations has also been
reported in a recent study (Bays, Wu, & Husain, 2011). The authors suggested that this
independence occurred because participants often reported the color and location of the non-
probed item. Against this account, we show that independence occurred even for the subset
of trials where participants responded far away from any item in the sample array (in such
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cases, misreporting the wrong item is not a plausible explanation for an inaccurate
response). Furthermore, we show that this independence depends on the degree to which
features are coded independently during perception.

Conclusion
A fundamental assumption of object-based accounts of working memory is that
representations are all-or-none and that the failure to remember one feature of an object is
necessarily accompanied by the failure to remember other task-relevant features of the
object. Here, we have shown that this assumption is incorrect: Representations can
independently fail at the feature level. To account for this, we propose that object
representations in working memory are composed of a collection of integral and separable
feature dimensions and that feature representations fail probabilistically. We also propose
that the proximate cause of working memory failures arises from probabilistic failures of
self-sustaining representations in the cortical regions that were involved in the initial
perception of the objects. This explanation is biologically plausible and draws inspiration
from recent neuroimaging findings in perceptual memory (Harrison & Tong, 2009;
Serences, Ester, Vogel, & Awh, 2009) and from computational models of self-sustaining
networks (Amit et al., 1994; Hebb, 1949).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank Christian Fohrby and Sarah Cormiea for help with data collection. We are grateful to Jordan Suchow,
Justin Junge, Ed Awh, and Liqiang Huang for comments on an earlier draft of the manuscript. This work was
supported by NIH Grant 1F32EY020706 to D.F. and NIH Grant R03-086743 to G.A.A.

References
Alvarez GA, Cavanagh P. The capacity of visual short-term memory is set both by visual information

load and by number of objects. Psychological Science. 2004; 15:106–111. [PubMed: 14738517]
Amit DJ, Brunel N, Tsodyks MV. Correlations of cortical Hebbian reverberations: Theory versus

experiment. Journal of Neuroscience. 1994; 14:6435–6445. [PubMed: 7965048]
Anderson DE, Vogel EK, Awh E. Precision in visual working memory reaches a stable plateau when

individual item limits are exceeded. Journal of Neuroscience. 2011; 31:1128–1138. [PubMed:
21248137]

Awh E, Barton B, Vogel EK. Visual working memory represents a fixed number of items regardless of
complexity. Psychological Science. 2007; 18:622–628. [PubMed: 17614871]

Bays, PM.; Catalao, RFG.; Husain, M. The precision of visual working memory is set by allocation of
a shared resource; Journal of Vision. 2009. p. 7p.
1-11.http://www.journalofvision.org/content/9/10/7

Bays PM, Husain M. Dynamic shifts of limited working memory resources in human vision. Science.
2008; 321:851–854. [PubMed: 18687968]

Bays PM, Wu EY, Husain M. Storage and binding of object features in visual working memory.
Neuropsychologia. 2011; 49:1622–1631. [PubMed: 21172364]

Bouma H. Interaction effects in parafoveal letter recognition. Nature. 1970; 226:177–178. [PubMed:
5437004]

Brown LA, Brockmole JR. The role of attention in binding visual features in working memory:
Evidence from cognitive ageing. Quarterly Journal of Experimental Psychology. 2010; 63:2067–
2079.

Fougnie and Alvarez Page 9

J Vis. Author manuscript; available in PMC 2012 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.journalofvision.org/content/9/10/7


Cant JS, Large ME, McCall L, Goodale MA. Independent processing of form, colour, and texture in
object perception. Perception. 2008; 37:57–78. [PubMed: 18399248]

Cowan N. Evolving conceptions of memory storage, selective attention, and their mutual constraints
within the human information-processing system. Psychological Bulletin. 1988; 104:163–191.
[PubMed: 3054993]

Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity.
Behavioral and Brain Sciences. 2001; 24:87–114. discussion 114–185. [PubMed]. [PubMed:
11515286]

Delvenne JF, Bruyer R. Does visual short-term memory store bound features? Visual Cognition. 2004;
11:1–27.

Delvenne JF, Bruyer R. A configural effect in visual short-term memory for features from different
parts of an object. Quarterly Journal of Experimental Psychology. 2006; 59:1567–1580.

Drucker DM, Kerr WT, Aguirre GK. Distinguishing conjoint and independent neural tuning for
stimulus features with fMRI adaptation. Journal of Neurophysiology. 2009; 101:3310–3324.
[PubMed: 19357342]

Dykes JR, Cooper RG. An investigation of the perceptual basis of redundance gain and orthogonal
interference for integral dimensions. Perception & Psychophysics. 1978; 23:36–42. [PubMed:
652487]

Eng HY, Chen D, Jiang Y. Visual working memory for simple and complex visual stimuli.
Psychonomic Bulletin & Review. 2005; 12:1127–1133. [PubMed: 16615339]

Egly R, Driver J, Rafal RD. Shifting visual attention between objects and locations: Evidence from
normal and parietal lesion subjects. Journal of Experimental Psychology: General. 1994; 123:161–
177. [PubMed: 8014611]

Fougnie D, Marois R. Attentive tracking disrupts feature binding in visual working memory. Visual
Cognition. 2009; 17:48–66. [PubMed: 19609460]

Fougnie, D.; Asplund, CL.; Marois, R. What are the units of storage in visual working memory?;
Journal of Vision. 2010. p. 27http://www.journalofvision.org/content/10/12/27

Gajewski DA, Brockmole JR. Feature bindings endure without attention: Evidence from an explicit
recall task. Psychonomic Bulletin & Review. 2006; 13:581–587. [PubMed: 17201355]

Ganel T, Gonzalez CL, Valyear KF, Culham JC, Goodale MA, Kohler S. The relationship between
fMRI adaptation and repetition priming. Neuroimage. 2006; 32:1432–1440. [PubMed: 16854597]

Ganel T, Goodale MA. Visual control of action but not perception requires analytical processing of
object shape. Nature. 2003; 426:664–667. [PubMed: 14668865]

Garner, WR. The processing of information and structure. Potomac, MD: Lawrence Erlbaum; 1974.
Harrison SA, Tong F. Decoding reveals the contents of visual working memory in early visual areas.

Nature. 2009; 458:632–635. [PubMed: 19225460]
Hebb, DO. The organization of behavior. New York: Wiley; 1949.
Hollingworth A, Henderson JM. Accurate visual memory for previously attended objects in natural

scenes. Journal of Experimental Psychology: Human Perception and Performance. 2002; 28:113–
136.

Hollingworth A, Rasmussen IP. Binding objects to locations: The relationship between object files and
visual working memory. Journal of Experimental Psychology: Human Perception & Performance.
2010; 36:543–564. [PubMed: 20515188]

Huang, L. Visual working memory is better characterized as a distributed resource rather than discrete
slots; Journal of Vision. 2010. p. 8p. 1-8.http://www.journalofvision.org/content/10/14/8

Hubel D, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. The
Journal of Physiology. 1968; 195:215–243. [PubMed: 4966457]

Johnson JS, Spencer JP, Luck SJ, Schoner G. A dynamic neural field model of visual working memory
and change detection. Psychological Science. 2008; 20:568–577. [PubMed: 19368698]

Johnson JS, Spencer JP, Schöner G. A layered neural architecture for the consolidation, maintenance,
and updating of representations in visual working memory. Brain Research. 2009; 1299:17–32.
[PubMed: 19607817]

Fougnie and Alvarez Page 10

J Vis. Author manuscript; available in PMC 2012 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.journalofvision.org/content/10/12/27
http://www.journalofvision.org/content/10/14/8


Kahneman D, Treisman A, Gibbs BJ. The reviewing of object files: Object-specific integration of
information. Cognitive Psychology. 1992; 24:175–219. [PubMed: 1582172]

Laming D, Laming J. F. Hegelmaier: On memory for the length of a line. Psychological Research.
1992; 54:233–239. [PubMed: 1494608]

Lee B, Harris J. Contrast transfer characteristics of visual short-term memory. Vision Research. 1996;
36:2159–2166. [PubMed: 8776482]

Lee D, Chun MM. What are the units of visual short-term memory, objects or spatial locations?
Perception & Psychophysics. 2001; 63:253–257. [PubMed: 11281100]

Livingstone M, Hubel D. Segregation of form, color, movement, and depth: Anatomy, physiology, and
perception. Science. 1988; 240:740–749. [PubMed: 3283936]

Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature.
1997; 390:279–281. [PubMed: 9384378]

Ma WJ, Beck JM, Latham PE, Pouget. A Bayesian inference with probabilistic population codes.
Nature Neuroscience. 2006; 9:1432.

Magnussen S, Greenlee MW. The pyscho-physics of perceptual memory. Psychological Research.
1999; 62:81–92. [PubMed: 10472196]

Mitroff SR, Alvarez GA. Space and time, not surface features, underlie object persistence.
Psychonomic Bulletin & Review. 2007; 14:1199–1204. [PubMed: 18229497]

Olson IR, Jiang Y. Is visual short-term memory object based? Rejection of the “strong-object”
hypothesis. Perception & Psychophysics. 2002; 64:1055–1067. [PubMed: 12489661]

Rensink RA. The dynamic representation of scenes. Visual Cognition. 2000; 7:17–42.
Rolls, ET.; Deco, G. The noisy brain: Stochastic dynamics as a principle of brain function. Oxford,

UK: Oxford University Press; 2010.
Scholl BJ. Objects and attention: The state of the art. Cognition. 2001; 80:1–46. [PubMed: 11245838]
Serences JT, Ester EF, Vogel EK, Awh E. Stimulus-specific delay activity in human primary visual

cortex. Psychological Science. 2009; 20:207–214. [PubMed: 19170936]
Tegner J, Compte A, Wang XJ. The dynamical stability of reverberatory neural circuits. Biological

Cybernetics. 2002; 87:471–481. [PubMed: 12461636]
Vogel EK, Woodman GF, Luck SJ. Storage of features, conjunctions and objects in visual working

memory. Journal of Experimental Psychology: Human Perception & Performance. 2001; 27:92–
114. [PubMed: 11248943]

Vogel EK, Woodman GF, Luck SJ. The time course of consolidation in visual working memory.
Journal of Experimental Psychology: Human Perception & Performance. 2006; 32:1436–1451.
[PubMed: 17154783]

Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends in Neuroscience.
2001; 24:455–463.

Wheeler ME, Treisman AM. Binding in short-term visual memory. Journal of Experimental
Psychology: General. 2002; 131:48–64. [PubMed: 11900102]

Wilken, P.; Ma, WJ. A detection theory account of change detection; Journal of Vision. 2004. p. 11p.
1120-1135.http://www.journalofvision.org/content/4/12/11

Wolters G, Raffone A. Coherence and recurrency: Maintenance, control and integration in working
memory. Cognitive Processing. 2008; 9:1–17. [PubMed: 17901994]

Xu Y. Encoding color and shape from different parts of an object in visual short-term memory.
Perception & Psychophysics. 2002; 64:1260–1280. [PubMed: 12519024]

Zhang W, Luck S. Discrete fixed-resolution representations in visual working memory. Nature. 2008;
453:233–235. [PubMed: 18385672]

Zhang W, Luck SJ. Sudden death and gradual decay in visual working memory. Psychological
Science. 2009; 20:423–428. [PubMed: 19320861]

Fougnie and Alvarez Page 11

J Vis. Author manuscript; available in PMC 2012 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.journalofvision.org/content/4/12/11


Figure 1.
(A) Trial timeline for Experiment 1. (B) Trial timeline for Experiment 2A.
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Figure 2.
(A) Response error histograms for color (left) and orientation (right) reports for a single
observer. The blue shaded portion of the histogram indicates responses at least three
standard deviations away from the target (guess trials). (B) Guess trials were used to
generate response error histograms, for the other feature, for color (left) and orientation
(right) responses (filter condition). The red line indicates the best fitting mixture model of
each condition.
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Figure 3.
Model estimates of the proportion of target responses (orange), swap errors (blue), and
random guesses (light blue) for the standard and filtered conditions for both color (left) and
orientation (right) responses.
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Figure 4.
Ratio of proportion of target responses in the filtered condition to the standard condition
(separability index) for Experiments 1 and 2.
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Figure 5.
(A) Scatter plot of all color and orientation responses in Experiment 1. (B) Simulated scatter
plot data from object-based model responses are either correlated with the target value for
both features or randomly distributed for both features. (C) Simulated scatter plot data from
a feature-based model—the likelihood of each response being correlated with the target or
randomly distributed is independent for each feature.
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Figure 6.
Model estimates of task performance as a function of the difference between target and foil
values for (A) height and width (Experiment 2A) or (B) color and orientation (Experiment
2B; parameters were averaged from the best fit for each participant). The y-axis represents
the percentage of trials in which participants chose a probe item matching in the relevant
feature. Increasing deviations between target and foil are plotted from left to right on the x-
axis.

Fougnie and Alvarez Page 17

J Vis. Author manuscript; available in PMC 2012 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


