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Abstract
The random transitions of ion channels between conducting and nonconducting states generate a
source of internal fluctuations in a neuron, known as channel noise. The standard method for
modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a
differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev.
E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic
differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov
chain models. Recent numerical investigations, however, have raised doubts that SDE models can
capture the stochastic dynamics of Markov chain models.

We analyze three SDE models that have been proposed as approximations to the Markov chain
model: one that describes the states of the ion channels and two that describe the states of the ion
channel subunits. We show that the former channel-based approach can capture the distribution of
channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not
previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis
provides intuitive and mathematical explanations for why this is the case. The temporal correlation
in the channel noise is determined by the combinatorics of bundling subunits into channels, but the
subunit-based approaches do not correctly account for this structure. Our study confirms and
elucidates the findings of previous numerical investigations of subunit-based SDE models.
Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of
neural membranes can be accurately approximated by SDEs. This finding opens a door to future
modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations
on electrically active cells.

I. INTRODUCTION
Hodgkin and Huxley’s mathematical model of action potential dynamics [1] is a cornerstone
of computational neuroscience. This system of equations provides a conductance-based
framework for describing the dynamics of the membrane potential of a neuron. The essential
features of the Hodgkin-Huxley (HH) model are quantitative descriptions of the
permeability of a neuronal membrane to ion-specific currents (conductances) coupled to a
current-balance equation that characterizes the voltage across a neural membrane. The
physical basis for this empirical model is that conductances are determined by the proportion
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of ion channels in a conducting (i.e., an open) state, and that the states of the ion channels
are determined by the configuration of components of the ion channels, referred to as
subunits, particles, or gates (see [[2], e.g.]). The HH equations produce a deterministic
description of neuronal dynamics and can be interpreted as a model of the mean behavior of
the ion channels and their subunits.

Advances in single-channel recording techniques [3] demonstrated that individual ion
channels can transition between open and closed states in an apparently random manner.
This can generate an internal source of noise, known as channel noise, which adds
fluctuations to ionic conductances [4]. Channel noise, which is distinguished from external
sources such as synaptic events [[5], e.g.] and stimulus noise, can have important effects on
neuronal dynamics and coding. It can alter the firing threshold [6–8], spike timing [9,10],
interspike interval statistics [11], the amount of stochastic resonance [12,13], and influence
synaptic integration [14]. Channel noise can also contribute to the overall variability in the
nervous system, which in turn may pose constraints on the fidelity of the motor and sensory
systems of an animal [7,15–18] and limit neuron miniaturization [19].

The classical HH formalism is deterministic, so alternative models have been proposed to
account for channel noise. These models assume that the activity of ion channels is governed
by random transitions among a number of possible channel conformations, which leads to
intrinsically stochastic models of neuronal dynamics. Although a variety of models of this
type have been proposed, including those that capture fractal properties of patch-clamp data
[20] and history dependence in the activity of ion channels [21], the most widely used
channel noise model is the Markov chain (MC) model. MC models assume that the state of
an ion channel is described by a discrete-state, continuous-time Markov chain, where each
state in the chain represents a particular configuration of the ion channel. The Markov
property requires that a channel’s transition from one state to the next depends on its current
state alone, thus the transition rates are determined solely by the state of the channel and the
voltage potential of the membrane. As a consequence, all channels are coupled due to their
common dependence on the membrane potential. For a recent review of MC models in
computational neuroscience, see [22].

MC models are valuable tools for investigating the effects of channel noise on neural
dynamics and coding, but these models are computationally expensive to simulate and are
difficult to analyze mathematically. As a result, there has been widespread interest in
formulating stochastic differential equation (SDE) models of channel noise. This line of
research was initiated by Fox and Lu [23,24] and has been applied extensively to HH-type
neuron models as well as models of calcium release from IP3 receptors [25] (see [26] for a
review of past applications of this approach). The SDE model that is most commonly used
extends the original HH equations by including noise terms in the differential equations that
describe the gating variables. Computationally, this model can be orders of magnitude faster
than the MC model [24,27], so it has often been used in place of, or as an approximation to,
the MC model. Simulation studies have shown, however, that the SDE approach does not
accurately replicate the stochastic response properties of the MC models [26–30] and it has
been suggested that SDE models are inadequate for simulations of channel noise [31] or
must be modified to correctly reflect the stochastic properties of the MC models [26].

Despite recent numerical indications that the commonly used SDE model does not
approximate the behavior of the MC model, there has been no definitive study detailing the
root cause of discrepancies between the MC and SDE approaches. Moreover, other SDE
models that have been proposed [23,25] have never been tested to gauge whether there may
be alternative, and more accurate, reduced models of channel noise. There are several
possible reasons as to why an SDE model may not closely approximate a MC model. The
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system size expansion that produces an SDE model is an asymptotic method that is formally
valid in the limit of a large number of channels; it is possible that there are too few ion
channels in a realistic model neuron for these approximate methods to be accurate. Another
possible discrepancy between the two approaches could be numerical error in the simulation
algorithms [29]. Finally, it could be that the widely used SDE models are formulated in a
manner that neglects, or distorts, important dynamical and stochastic structure in the MC
model.

In this paper, we will demonstrate that the formulation of the SDE is critical for preserving
the stochastic characteristics of MC models. In Sec. II, we describe three SDE models that
have been proposed in the literature. Among these, we distinguish between channel-based
and subunit-based SDE models and provide an intuitive explanation for why the channel-
based approach is the more appropriate framework. We use a combination of mathematical
analysis (Sec. III) and simulation results (Sec. IV) to show that the MC model can be well
approximated by a channel-based SDE model that was first introduced by Fox and Lu [23].
To our knowledge, ours is the first numerical implementation of the channel-based Fox and
Lu model [32]. Prior studies have provided numerical evidence that a widely used subunit-
based model does not accurately approximate the MC model [26–30], and our analysis
confirms and elucidates these findings. We conclude that properly defining the structure and
dynamics of ion channels is critical to formulating SDE models in a way that is consistent
with MC models. We provide additional evidence for this conclusion by formulating
reduced, quasistationary models based on our analytical results. Simulations of these models
show that temporal correlation in the noise, which is shaped by the structure of ion channels,
is critical for accurately approximating responses of the MC model.

II. CONDUCTANCE MODELS BASED ON ION CHANNELS AND THEIR
SUBUNITS

We consider the HH model throughout this study. Our analysis, however, is applicable to
any conductance-based model with ion channels governed by linear, voltage-dependent
kinetics. The membrane potential of an HH neuron is modeled as

(1)

where C is the membrane capacitance, ENa, EK, and EL are reversal potentials for Na+, K+,
and leakage currents, respectively, and I is the applied current. Our central question is how
to appropriately define the ion channel conductances (gNa for sodium and gK for potassium)
when one wants to include channel noise. Generally, one defines the conductance based on
the fraction of open channels. For instance, the K+ conductance is gK = ḡKf, where f is the
fraction of K+ channels that are open, and ḡK is the maximal conductance per ion channel.
The problem of appropriately reproducing K+ channel behavior reduces to computing the
evolution of f. In the following, we will describe a number of methods for computing f. We
outline the standard MC model of ion channel kinetics [6,33] and highlight how this
approach relates to the classical (deterministic) HH model. We will then consider three
distinct approaches for defining SDE models: two that were proposed by Fox and Lu [23]
and a variant suggested by Shuai and Jung [25].

Capturing the kinetics of a single subunit is the starting point for all of the models
considered here. In the standard HH model, the K+ channel has four independent identical
subunits, traditionally given the symbol n, that must all be in an open state for the channel to

Goldwyn et al. Page 3

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2012 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



be in the conducting state [2,23]. The kinetics of an individual subunit is described by a two-
state process:

(2)

where the voltage-dependent transition rates are [1]

To simplify the notation, we will often omit the explicit dependence on V and write only αn
and βn.

The Na+ channels are modeled using two different subunit types, traditionally labeled m and
h, where each is described by an open-closed kinetic scheme. The analysis of the two
channel types is fundamentally the same, but entails significantly more notational
complexity for the Na+ channel. For conciseness, we will present a detailed analysis of the
K+ channel, and display analytical and simulation results for both channel types in the
relevant figures. In the remainder of this section, we review how the two-state subunit has
been used as a building block to construct models of the K+ conductance.

A. Markov chain ion channel model
The kinetic scheme in Eq. (2) can be used to define a Markov chain that describes the
behavior of a single subunit that randomly transitions between two states [[2], e.g.]. If we let
psub be the probability that the subunit is in the open state, then the evolution of this
probability satisfies

(3)

This equation follows from Eq. (2) and the fact that the probability of a subunit being closed
is 1 − psub. Since the K+ channel is assumed to consist of four statistically identical and
independent subunits, its configuration can be modeled as a five-state Markov chain, where
each state indicates the number of open subunits at a given instant in time:

(4)

The channel is said to be in the open or conducting state if all four subunits are open
simultaneously. Let p be a column vector where the ith element represents the probability at
time t that a channel has i open subunits, then this probability distribution evolves in time
according to the master equation

(5)

where the matrix A is
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The conductance for a population of K+ channels is determined by the proportion of the
channels in the open state, gK = ḡKf, where ḡK is the conductance per K+ channel and f is
the fraction of open K+ channels.

B. Deterministic conductance models
If we consider an idealized neuron with an infinite number of statistically identical and
independent channels, we can obtain a deterministic description of the fraction of open
channels f. In this limit, the fraction of open channels is equivalent to the probability that
any one channel will be open. In other words, Eq. (5) also defines a deterministic model of
conductance where gK = ḡKp4 and p4 is given by the solution of the system of ordinary
differential equations in Eq. (5).

At first glance, the deterministic definition of gK appears to differ from that in the classical
HH model, in which gK = ḡKn4. As discussed in [2], however, these two models are
equivalent: first, note that psub in our notation can be identified with the gating variable n in
the HH model because both satisfy the differential equation (3) and both represent the
proportion of subunits that are open. Next, observe that the entire system of differential
equations in Eq. (5) can be derived from the single HH gating variable by making the
following substitutions:

For instance, setting p4 = n4, we find

This equation is identical to the final row of Eq. (5). The remaining equations in that system,
as well as those for Na+, can be derived in a similar manner.

C. SDE conductance models
1. Channel SDE model—In the previous section we arrived at a deterministic model for
K+ conductance because we considered the case of infinitely many channels. If we define
the number of K+ channels to be finite, however, we can derive stochastic models using a
system-size expansion [34]. Fox and Lu first applied this method to the HH model by [23].
Following their notation, we define xi to be the proportion of K+ channels that have i open
subunits. Since we are dealing with a finite population, the proportion of channels in a
particular state xi is no longer a measure of probability pi. Rather, the number of open
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subunits fluctuates from one realization to the next, which inevitably leads to a stochastic
description of the channel. The system-size expansion provides a formal method for deriving
a SDE model based on the master equation (5). Fox and Lu showed that the SDE for the K+

channel is

(6)

where x is a vector of the xi, A is the matrix in Eq. (5), ξ is a vector of five independent
Gaussian white noise processes with zero mean and unit variance, and S is the matrix square
root of the diffusion matrix D,

(7)

in which N is the number of channels. To our knowledge, neither Fox and Lu nor other
researchers have implemented this channel-based SDE model [32]. We will mathematically
analyze it under voltage clamp conditions and perform numerical simulations to show that it
accurately replicates the stochastic properties of the MC model. We refer to this model as
the channel SDE model because the variable x is defined based on the states of the ion
channels.

2. Subunit SDE models—Unfortunately, the channel SDE model above does not
preserve the dynamical structure of the classical HH equations: closed states are
distinguishable and are modeled with distinct random processes. This expands the
dimensionality of the system beyond the four dimensions of the deterministic HH model. In
an attempt to avoid this increase in complexity, one can apply the system-size expansion
procedure to the subunits rather than to the states of the channels. This leads to stochastic
models that resemble the classical HH model, but includes noise in the equations governing
the subunit variables m, n, and h. We refer to such approaches as subunit SDE models. The
subunit approach leads to the following SDE for the proportion of open subunits n [23,25]:

(8)

where the stochastic term ξ(t) is a Gaussian white noise process with zero mean and unit
variance that is scaled in a voltage-dependent manner by σn(V):

(9)

The model for the channel population is then built from the subunit populations. Since each
K+ channel is composed of four statistically identical and independent subunits, Shuai and
Jung proposed a model in which the proportion of open K+ channels is defined as the
product of four independent realizations (denoted ni) of solutions to the SDE in Eq. (8) [25].
This defines the K+ conductance to be gK = ḡKn1n2n3n4. We refer to this as the independent
subunit model, InS. Shuai and Jung did not implement this method. Instead, they followed a
method introduced by Fox and Lu [23] in which only one realization of a solution to Eq. (8)
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is computed (denoted n), and this realization is raised to the fourth power. This defines the
K+ conductance to be gK = ḡKn4, built out of four identical subunit populations. We refer to
this as the identical subunit model, IdS. In the limit of an infinite number of K+ channels,
both of the subunit models converge to the deterministic HH model.

D. Distinction between subunit and channel models
The fundamental difference between the channel SDE model in Sec. II C 1 and the subunit
SDE models in Sec. II C 2 is that in the former, one first groups subunits together to
construct a channel and then defines the dynamics of the proportion of channels in each
state. In the latter, one defines the dynamics of subunits first, before grouping the subunits
together to compute the conductance of the channel. We note that the deterministic model in
Sec. II B derived from the master equation is a channel-based approach while the classical
HH model is a subunit-based approach. Nonetheless, as discussed above, the two models are
equivalent. It is tempting therefore to conclude that both the channel and subunit SDEs will
also produce identical stochastic models. As we will show in the remainder of this study,
these two approaches generate distinct stochastic processes: the channel-based SDE model
can approximate the channel noise and spiking statistics of the MC model, but the subunit-
based SDEs cannot.

To gain some intuition for how the subunit and channel SDE approaches differ, consider the
following example of a neuron with N channels, where each channel consists of two
statistically identical and independent subunits. This configuration is illustrated in Fig. 1(a).
The analysis can be extended to the four subunit K+ channel, but for illustrative purposes we
consider the simpler case of two subunits. At a given instant in time, define the state of the
ith subunit in each class by the binary random variables zi1 and zi2. These variables take the
value of 1 with probability psub and are 0 otherwise. The probability that the ith channel is
open is determined by the probability that both subunits are open, . A channel-based
approach defines the conductance from the proportion of open channels, so we average over
all channels to obtain the proportion of open channels:

(10)

The products zi,1zi,2 define identical and independent binary random variables that take the
value 1 with probability , thus their sum is binomially distributed with the following
mean and variance:

Instead of grouping subunits into predefined channels, the subunit approach first computes
the fraction of open subunits by averaging over each class of subunits, as shown in Fig. 1(b).
The proportions of open subunits in the two subunit classes are
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If we assume that each subunit class is independent and define the proportion of open
channels f̃chan to be the product of the fsub,1 and fsub,2, then we can write the proportion of
open channels as

The proportion of open channels under the subunit approach is an average of N2 binary
random variables, as opposed to N random variables as in Eq. (10) for the channel approach.
The probability that the product zi,1zj,2 is equal to 1 is , so the expected value of

, identical to E[fchan]. The variance in the two models, however, is different.
To see this, write the variance of f̃chan as the sum of covariances:

This sum is over all of the N4 possible pairings of zi,1,zj,2,zk,1, and zl,2. To leading order in N,
the dominant contribution to this sum is among pairings that have one index in common.
There are N2 possible pairs of zi,1 and zj,2, and for any given pair there are 2(N − 1) ways to
choose the indices of zk,1 and zl,2 such that i = k or j = l. To leading order in N therefore there
are 2N3 of these terms, and the variance of f̃chan can thus be written as

where ρ is the correlation coefficient between random variables of the form zi,1zj,2 and
zk,1zl,2 for either i = k or j = l. The product of two independent z variables is a Bernoulli
random variable. It follows that  and the above equation can be
rewritten as

(11)

In Appendix A, we show that . Since psub takes values in [0,1], ρ is bounded between
0 and 1/2. Equation (11) implies therefore that the variance of the fraction of open channels
using the subunit-based averaging is not larger than the variance in the channel-based
approach. Moreover, the variance decreases as psub decreases. This implies that the subunit
method underestimates the variance when psub is small.

An assumption in the above analysis is that there are two independent classes of subunits.
This can be thought of as the analog of the InS SDE model. Another variation of the subunit
approach, used in the IdS SDE, is to assume that the two subunit classes are identical. This
approach is illustrated in Fig. 1(c). Since both subunit classes are identical, we drop the
second subscript and define a random variable zi that represents the state of the ith subunit in
both classes. The proportion of open channels, after averaging across all subunits, is
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The expected value of f̃chan in this case is composed of N (N − 1) terms of the form E[zi zj ]
for i ≠ j and N terms of the form . To leading order, , but there is an
O(N−1) difference between the expected value of open channels for this approach and the
channel-based averaging method.

The variance is

To leading order in N it suffices to consider the covariance of pairings that share one index
in common. There is no distinction between the two subunit classes, so Cov(zi zj,zi zk) =
Cov(zi zj,zk zi). There are therefore twice as many such terms as in the previous subunit
approach, and we find

(12)

with the same correlation coefficient .

This analysis illustrates how averaging across channels and averaging across subunits leads
to fundamentally different probabilistic descriptions of the proportion of open channels. In
particular, since , Eq. (11) guarantees that the variance of the proportion of open
channels given by the subunit model with two independent classes of subunits will never
exceed the variance given by the MC model. Equation (12) shows that the variance in the
subunit model with identical subunit classes will always be twice as large as the variance in
the independent subunit model. Depending on whether  is smaller or larger than 1/4
therefore the variance in the subunit model with identical subunit classes can be either
smaller or larger than the variance of the MC model. These differences are a direct
consequence of how each approach aggregates the channels’ subunits. Importantly, we
observe that the differences between these approaches will persist for any finite number of
channels. In the limit of infinitely many channels, the variance goes to zero, so all of the
modeling approaches discussed here become equivalent. It is a straightforward exercise to
extend this analysis to the case of four subunits (i.e., the K+ channel), and a similar
discrepancy between the channel and subunit approaches holds in that case.

The three methods for grouping subunits that we have considered represent the three
different approaches to performing a system-size expansion that have been proposed by Fox
and Lu [23,24] and Shuai and Jung [25]. These combinatorial arguments provide an intuitive
understanding for why the three SDE approaches that we are studying will lead to channel
noise models with different statistical properties. We now confirm this by directly analyzing
the SDE and MC models.
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III. VOLTAGE CLAMP ANALYSIS OF STOCHASTIC MODELS
A. Stationary distribution

We seek to characterize the probability distribution of the fraction of open channels f. To
simplify the analysis, we will mimic the experimental technique of voltage clamp and
perform our analysis while holding the membrane potential constant.

1. Markov chain model—In the MC model, each K+ channel consists of four subunits
that transition between open and closed states. Under voltage clamp, the stationary
distribution for the number of open channels can be completely determined because this
process is homogeneous in time [34]. We are primarily interested in the stationary
probability that all four subunits are open because this is equivalent to the probability that
the channel itself is open. From Eq. (3), the equilibrium value of psub is . The probability
that the K+ channel is open is therefore

All K+ channels are assumed to be statistically identical and independent, so the distribution
of the total number of open K+ channels at a given time is a binomial distribution with
population parameter N (the total number of K+ channels) and bias parameter pchan. To
define the distribution of the fraction of open channels f, we rescale the binomial distribution
by 1/N. The mean and the variance of this stationary distribution are

(13)

(14)

which we define as μchan and , respectively, as a shorthand. Note that these quantities
are functions of V, even though we do not explicitly include this dependence in our notation.
Equation (13) shows that the mean does not depend on the number of channels and Eq. (14)
shows that the variance scales with 1/N. The mean and standard deviation of the fraction of
open channels are shown by the solid black lines in Fig. 2. The mean and variance for the
Na+ channel can be computed in a similar fashion and Fig. 2 includes those results. The
results shown are for a membrane area of 10 μm2, which corresponds to 180 K+and 600 Na+

channels.

2. Channel SDE model—To analyze the channel SDE model for the K+ channels [Eq.
(6)], we apply the simplification suggested by Fox and Lu: we set values of the state
variables in the diffusion matrix [Eq. (7)] to their mean equilibrium values. We refer to this
approximation as the equilibrium noise approximation and show in Appendix C that, for the
voltage clamp case, it holds to O(N−2). In principle, the values of each xi should be confined
to [0,1] since they represent proportions of open channels, but to simplify the mathematical
analysis we do not impose this condition. Under these simplifications, the SDE model is a
multivariate Ornstein-Uhlenbeck (OU) process that, by definition, has a Gaussian stationary
distribution. The fraction of open channels f is defined as the fraction of channels that have
all subunits open. In the notation of Eq. (6), f is given by x4 for K+. The mean and variance
of f, which can be calculated directly using standard methods [34], are identical to the values
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found for the MC model in Eqs. (13) and (14). The stationary distribution of the fraction of
open K+ channels therefore is given by

(15)

This is the expected result for a system-size expansion since, in the limit of a large number
of channels, the binomial distribution for the MC model can be approximated by a Gaussian
distribution with mean μchan and variance . Any description of channel noise that aims
to reproduce the behavior of the Markov state model should have this as its limiting
distribution, so this result is our first confirmation that the channel SDE model provides an
accurate approximation to the MC model.

3. Subunit SDE models—To analyze the subunit-based SDE models for the K+

channels, we apply similar approximations as before: we replace n in the equation for 
[Eq. (9)] with its mean value at equilibrium and do not restrict the values of n to the interval
[0,1]. As was the case for the channel SDE, this allows us to rewrite the SDE for n [Eq. (8)]
as an OU process:

(16)

where , and . The stationary distribution of the fraction of open

subunits n is therefore Gaussian with mean μsub and variance . Note that  is
scaled by 1/N; for simplicity we report analytical results to O(N−1).

In Sec. II C 2 we discussed two methods for defining the proportion of open K+ channels
based on the stochastic dynamics of the subunits. If we follow the approach of Shuai and
Jung and combine four statistically identical and independent solutions to Eq. (16), the
stationary distribution for the proportion of open channels is defined by the product of four
independent and identically distributed Gaussian random variables:

Unlike the channel SDE distribution in Eq. (15), in the limit of a large number of channels,
this distribution does not approach a Gaussian. The InS model therefore is fundamentally
incompatible with the MC model. Furthermore, it is straightforward to compute the mean
and variance of this distribution directly from the first two moments of the subunit
distribution. We find

(17)

(18)
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This leading order result for the moments can also be obtained following the combinatorial
approach outlined in Sec. II D.

If we go further and assume that all four populations of subunits are identical and perfectly
correlated (i.e., following the approximation proposed by Fox and Lu), then the stationary
distribution for the fraction of open K+ channels is the distribution of a Gaussian random
variable raised to the fourth power, which has the closed form

This distribution also does not limit to a Gaussian and is fundamentally incompatible with
the MC model. As above, we can compute the mean and variance of n4:

(19)

(20)

Equations (17) and (19) show that the mean fraction of open channels computed with the
subunit approaches agrees with the MC model in the limit of a large number of channels.
The variance, however, is poorly described. For instance, the ratio of the open channel
variance of the MC model [Eq. (14)] to that of the IdS model [Eq. (20)] is

where we have used the facts that  and . For subthreshold values
of V, μsub is small and therefore the IdS model drastically underestimates the magnitude of
the channel noise.

These analytical results for the two subunit SDE models are plotted in Fig. 2 with dotted
(independent subunit populations; InS) and dashed (identical subunit populations; IdS) lines.
We observe that standard deviations in the open channel distributions are underestimated by
both subunit models for V near the resting potential of 0 mV.

B. Autocorrelation in voltage clamp
We now analyze temporal correlations in the proportion of open K+ channels for a given
voltage clamp level. As in prior sections, equations presented here depend on voltage
potential V, but to simplify notation we do not explicitly indicate this. If we denote the time
series of the proportion of open channels as f(t), then the autocorrelation function for f(t) is
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We assume that R(t) does not depend on the initial time since our analysis is restricted to the
stationary distribution of open channels in voltage clamp.

1. Markov chain model—Let ci(t) denote the state of the ith channel at time t, where ci(t)
= 1 indicates an open channel and ci(t) = 0 indicates that the channel is closed. The
autocorrelation for the fraction of open channels then becomes

(21)

This simplification is possible because the MC model assumes that all channels are
statistically identical and independent. The only unknown term in Eq. (21) is E [ci (t)ci (0)].
Since ci is a binary random variable, the expected value of ci (t)ci (0) is equal to the
probability that the channel is open at the initial time and is also open at the later time t. This
probability can be determined by solving the master equation (5), which is possible in
voltage clamp because this system of ordinary differential equations is a linear equation with
constant coefficients. The probability that the channel is open is given by p4 in Eq. (5), so E
[ci (t)ci (0)] is equal to the entry in the last row and the last column of the matrix exponential
of the matrix in Eq. (5). We find

(22)

where . The solid black line in Fig. 3(b) shows this function for a voltage clamp
value of V = 0 mV. The same analysis was applied to the Na+ channel, the result of which is
also shown in Fig. 3(a). Temporal correlations in the fraction of open Na+ channels decay
rapidly within the first millisecond, whereas the temporal correlation in the fraction of open
K+ channels persists for nearly 10 ms.

Equation (22) reveals an important feature of the MC models—the structure of the channel
defines the temporal profile of the channel noise statistics. In the case of the K+ channel, the
transitions between the five possible channel configurations induce correlations on four time
scales, the first four multiples of 1/τn. The Na+ channel has eight possible channel
configurations because it has three m subunits and one h subunit, so the autocorrelation
function for the fraction of open Na+ channels has seven time scales.

2. Channel SDE model—Using the same approximations that allow the channel models
to be described as a multivariable OU process, we can compute the autocorrelation function
for the proportion of open channels using known analytical results for OU processes [34].
We find that the autocorrelation function is identical to Eq. (22) and thus do not include it in
Fig. 3.
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3. Subunit SDE models—We compute the autocorrelation for the InS and IdS models
using the OU approximation of n in voltage clamp. Using the Ito calculus, the known
solution for long time behavior of the OU process in Eq. (16) is [34]

(23)

To calculate the autocorrelation in the InS model, we take the expectation of the product of
four independent solutions of the form of Eq. (23) and normalize by the voltage clamp mean
and variance shown in Eqs. (17) and (18):

(24)

For the IdS model, we instead take a single solution of the form of Eq. (23) and raise it to
the fourth power and normalize it by the voltage clamp mean and variance from Eqs. (19)
and (20). The autocorrelation is

(25)

Calculation of the higher-order terms shows that the same exponential time scales (the first
four multiples of 1/τn) are present in R(t) for all of the models, but the coefficients are
different. In particular, Eqs. (24) and (25) show that, to leading order in 1/N, the subunit
models lack the faster time scales of the K+ channel. As a result, temporal correlations in the
subunit-based channel noise models persist longer than in either the MC model or the
channel-based SDE model. Figure 3 displays these differences in the autocorrelation
functions of the subunit models for voltage clamped at V = 0 mV. The dotted line shows the
result for the InS model (independent subunit populations) and the dashed line shows the
result for the IdS model (identical subunit populations), with autocorrelation in the Na+

channel displayed in panel in (a) and the K+ channel in panel (b).

IV. NUMERICAL SIMULATIONS
In this section we report results from numerical simulations of the MC model as well as the
three SDE models analyzed above. We first verify the results of our analysis of voltage
clamp statistics and then measure the statistics of interspike intervals in order to test how
well the SDE models replicate the stochastic features of the MC model when voltage is
allowed to evolve freely according to Eq. (1). In all simulations we use the parameter values
listed in Table I. We perform simulations for three different membrane areas: 1, 10, and 100
μm2. The corresponding channel counts are shown in Table II.

A. Methods
Sample FORTRAN code used to simulate the four stochastic models is available online in
the ModelDB repository (accession number 128502) [35]. All simulations used a time step
of size 0.01 ms. We define a spike using two conditions: the membrane potential must
exceed 60 mV and it must have remained below 60 mV for the previous 2 ms
(approximately the width of a spike). To generate Gaussian random numbers, we first
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produced uniform random numbers using the Mersenne Twister algorithm [36] and then
transformed these to Gaussian random numbers using the Box-Muller method [37].

In Sec. IV C, we characterize the spiking response of the different models in response to
stimuli of the form

(26)

where ξ(t) is a Gaussian white noise process with zero mean and unit variance. This type of
input is commonly used to characterize the response of stochastic Hodgkin-Huxley models
[ [11,30], e.g.]. The additive white noise term can be interpreted as a simplified method for
representing the combined effect of numerous synaptic inputs that neurons in cortex and
other networks receive in vivo; see, for instance, [38]. We simulate spike trains for varying
membrane area, DC input IDC, and input noise Inoise. We report the mean and coefficient of
variation (CV) for the first 2000 interspike intervals (ISI) for each spike train, where the CV
is defined as the standard deviation of the ISIs divided by the mean value.

1. Markov chain model—The Markov chain describing each K+ channel is shown in Eq.
(4). The Markov chain that governs the state of each Na+channel includes three m subunits
and one h subunit and is therefore described by an eight-state Markov chain:

(27)

The channel is in the conducting state when all three m subunits and the h subunit are open.
The voltage-dependent transition rates for the m and h subunits are [1]

The Markov chains in Eqs. (4) and (27) define the possible states of each individual channel.
Rather than simulating individual channels in the membrane patch, however, it is more
efficient to track the number of channels in each state using the Gillespie algorithm [39,40].
At each time step, the fraction of open Na+channels fNa and K+channels fK is computed and
the voltage is updated using the forward Euler algorithm applied to Eq. (1).

2. Channel SDE model (IdS)—The channel SDE model is a system of 12 differential
equations derived by Fox and Lu [23]. In matrix form, it can be written as
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(28)

The vector x is made up of entries xi (i = 1,2,3,4) that represent the proportion of K+channels
with i open n subunits. The entries of y are denoted yij (i = 0,1,2,3 and j = 0,1) and represent
the proportion of Na+channels with i open m subunits and j open h subunits. The vectors ei
are column vectors with a 1 in the ith entry and 0 elsewhere. Following Fox and Lu, we use

the fact that  and  to define x0 and y00. This allows us to reduce
the dimension of the system of SDEs from 14 to 12. We note that this reduction of
dimension is exact, following from properties of the A and S matrices. The matrices ANa, AK,
SNa, and SK are defined in Appendix B.

The elements of x and y represent proportions of channels in a particular configuration so
they should lie within five-dimensional and eight-dimensional hypercubes bounded by the
intervals [0,1]. Moreover, since the xi and yij each sum to 1, the values of these variables
should in fact lie on hyperplanes within these hypercubes. If, in the course of numerical
simulations, there are excursions of x and y off of these high-dimensional bounded surfaces,
then the solution will lack biological meaning because a value that represents the
proportions of channels should not be negative or exceed 1. Another numerical difficulty
arises if these variables do not lie on the proper bounded hyperplanes. To define SK and SNa,
one needs to take matrix square roots of diffusion matrices in every time step. If the x and y
do not lie on the bounded surfaces, then the diffusion matrices, which depend on the values
of x and y, will no longer be guaranteed to be positive semidefinite, which may make it
impossible to compute real valued matrix square roots.

In principle, it may be possible to incorporate a projection or a reflection into the numerical
method to ensure that x and y remain on these bounded, high-dimensional surfaces of
admissible values. We demonstrate that a simpler approach in which the individual values of
the xi and yij are not confined within [0,1], but rather are free to evolve without boundary
conditions, gives an adequate numerical approximation to the interspike interval statistics of
the MC model. With this simplification, there is no longer a guarantee that real matrix
square roots of the diffusion matrices will exist, so we replace the values of xi and yij in the
diffusion matrices with their equilibrium values. The validity of this approximation is
discussed in Appendix C. After implementing the above simplifications, we solved the
resulting system of SDEs using the Euler-Maruyama method [41]. Comparing our results
with implementations that bound the SDE solutions would be an interesting subject for
future work, but is beyond the aims of this paper.

3. Subunit SDE models—The two subunit SDE models that we study are the
independent subunit (InS) model:

(29)

and the identical subunit (IdS) model
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The difference between these two models is that, in the former, we compute multiple
independent realizations of the n and m type subunits and the product of these terms enter
into the equation for V whereas in the latter, all subunit classes are assumed to be perfectly
correlated so only one SDE is solved for each subunit type and the solution is raised to the
appropriate power (4 for n and 3 for m). The gating variables represent proportions of open
subunits so we enforce boundary conditions that prevent the values of the gating variables
from exceeding 1 or becoming negative.

We note that the form of  that we use is given in Eq. (9). In particular, the
noise terms depend on voltage as well as the subunit variables themselves. We do not apply
the equilibrium noise approximation in our simulations of the subunit SDEs, although this
approximation has been used in past simulation studies [23,26,30]. We solve these systems
of SDEs using the Euler-Maruyama method [41].

B. Simulation results: Voltage clamp
In Figs. 2 and 3, we compare results from numerical simulations for a membrane patch size
of 10 μm2 against the analytical calculations presented in Sec. III. To simulate the voltage
clamp condition, we fix V at a particular value and keep it constant throughout the
simulation. Figure 2 shows the mean and standard deviation of the proportion of open Na+

and K+ channels as a function of the voltage clamp value. In most cases, the values
computed from numerical simulations (symbols) match the analytical results (lines). Of
particular note is the fact that the computed values for the MC model (circle) and the
channel model (x) are virtually indistinguishable.

The only deviation between the numerical results and the analytical solutions occurs in the
subunit models for the mean values of the Na+ channels at high voltage values. The cause of
this discrepancy is that the analytical treatment assumes that the proportions of subunits are
Gaussian-distributed whereas in the numerical methods the values of m and h are bounded
between 0 and 1. For high voltage values of V, the proportion of open m-type subunits is
very small and the variance is nonzero, so approximating the distributions of m as a
Gaussian will allow m to take negative values. This cannot occur in the numerical
simulations, thus the theoretical value for the mean fraction of open Na+ channels will be
less than the simulated value. As the number of channels increase, the variance of the
fraction of open m subunits decreases, which decreases the probability that a Gaussian-
distributed m will take negative values. The discrepancy between the analytically and
numerically calculated values for the mean fraction of open Na+ channels decreases
therefore as the number of Na+ channels increases.

C. Simulation results: Interspike intervals
Figure 4 shows mean and CV (left and right columns, respectively) of ISIs for three
membrane areas that increase from top to bottom in each column. The input to the model is
a constant DC input [Inoise = 0 in Eq. (26)]. The value of IDC is shown on the x axis. In
general, these simulations show that the rate and regularity of spiking activity produced by
the MC (black line) and channel (gray line) models are in close quantitative agreement
whereas the IdS (dashed line) and InS (dotted line) models produce, on average,
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dramatically longer ISIs. The behaviors of the models are most disparate for low stimulus
levels and larger membrane areas. In these cases, the stimulus is not sufficiently strong to
drive regular firing, so spike events are predominantly determined by stochastic fluctuations
in the conductances due to channel noise. As the DC level is increased, the models respond
to the external stimulus and there is a smaller effect of channel noise on spike timing. This
leads all models to exhibit similar mean ISI and CV values at high current levels. As the
membrane area increases, spiking events become increasingly rare at low current levels.
This is consistent with the fact that, for large channel numbers, the behavior of all models
will approach that of the deterministic Hodgkin-Huxley equations, which are known to
transition from quiescence to repetitive firing when DC input is increased beyond
approximately 6.2 μA/cm2 [42].

The mean ISIs for the subunit SDE models exceed those of the MC model for all stimulus
conditions and membrane areas. This has been previously observed for the IdS model [30].
In the voltage clamp analysis we found that the variance in the proportion of open K+ and
Na+ channels for V near the resting potential of 0 mV is smaller for both of these models
than for the MC model. This lack of conductance fluctuations leads to reduced spike rates at
low stimulus levels, relative to the MC model.

Overall, the results for the channel model show that it is possible to approximate the MC
model with SDE and still obtain quantitatively accurate results, even for small numbers of
channels. This is an important and a nontrivial result—the system-size expansion is formally
valid only in the limit of infinitely many channels, but we show here that it can be applied to
a small number of channels, where membrane fluctuations have a major impact on spiking
statistics. Moreover, the equilibrium noise approximation and treatment of boundary
conditions do not appear to substantially degrade solution accuracy over a wide range of
stimuli.

Nevertheless, there are some discrepancies between the channel and MC models. At the
smaller membrane areas (1 μm2 and 10 μm2), the mean ISIs for the channel model tend to be
longer than the MC model ISIs. This point is highlighted in the inset of Fig. 4(a). At the
largest membrane area tested, for the case of weak or no input current, this trend is reversed
and the channel model has shorter mean ISIs than the MC model. A possible source for
these differences between the channel and MC models is our treatment of the boundary
conditions in the channel model and the equilibrium noise approximation. Further
investigation of this approximation is needed, but the similar ISI statistics obtained with the
channel and MC models suggest that this approximation may be suitable in many cases.

Figure 5 shows results obtained for two different levels of input noise added to the DC
stimulus with current level shown on the x axis. We only present ISI statistics for the
membrane size of 100 μm2 because the smaller membrane areas produce the same
qualitative differences among the models. Overall, the effect of the stimulus noise is to
reduce the mean ISIs. Importantly, the ISI statistics of the responses of the MC and channel
SDE models to these noisy stimuli remain quantitatively similar. In fact, the stimulus
fluctuations elicit spikes even at low or no DC levels, so the differences in the mean ISIs
between the MC and channel SDE models become less apparent. This result indicates that
the equilibrium noise approximation does not break down in the presence of a rapidly
fluctuating external stimulus. Finally, the results for the subunit SDEs show, once again, that
the stochastic dynamics and spiking activity of these approximate models do not accurately
replicate the statistics of the MC model.
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V. DISCUSSION
Beginning with the work of Fox and Lu [23,24], the question of whether SDE models of
channel noise can accurately approximate MC models has been explored. SDE models of
membrane voltage fluctuations in HH models have several attractive features, including
possible improvements in the speed of numerical simulations and the opportunity to analyze
these models using nonlinear SDE theory [[43], e.g.]. In recent years, however, the SDE
approach has come under increasing scrutiny. Numerical simulations of the most commonly
used SDE model, which we have called the identical subunit model, have shown that this
approach produces weaker conductance and voltage fluctuations than the corresponding MC
model [26,31]. As a consequence, the firing rates of this SDE model are substantially lower
[30] (and, equivalently, the mean ISIs are longer [28]), there is less variability in the
occurrences and timing of spikes in response to a brief pulse of current [27], and information
is transmitted at a higher rate [30]. Furthermore, these discrepancies persist even as the
number of channels increases [26,28,30]. In short, there is an emerging consensus in the
literature that the MC model cannot be approximated accurately using a subunit system of
SDEs.

We have demonstrated in this paper that an alternative SDE approach that is based on the
multistate structure of each ion channel can approximate the channel noise effects that are
present in the MC model, even for relatively small numbers of channels, as long as the
system-size expansion that is used to derive the SDE model is carried out properly. If one
first defines the structure of a channel and then defines the dynamics of the proportions of
channels in each configuration, one arrives at the channel-based SDE model (see discussion
in Sec. II D and equations in Sec. IV A 2). If, instead, one approximates the proportion of
subunits in the open or closed states with an SDE, then one obtains a subunit-based SDE
model (see discussion in Sec. II D and equations in Sec. IV A 3). Through our analysis of
the stationary statistics of the proportion of open channels in voltage clamp, we have shown
that the former approach, which we call channel based, can provide a quantitatively accurate
approximation to the MC model. We have also confirmed that the latter, subunit based,
approach should not be considered an approximation of the MC model because its stochastic
properties are fundamentally different from those of the MC model. We conclude that the
SDE approach is a valid approximation of the MC channel noise model, but that it is
necessary to properly define the system of SDEs based on the structure of each channel. In
particular, one cannot include noise in the subunit equations in the manner suggested by Fox
and Lu and expect results that are consistent with the MC ion channel model.

We present numerical results for the channel SDE model at three membrane areas (1, 10,
and 100 μm2, as in [30]), where the number of Na+ channels range from 60 to 6000 and the
number of K+ channels range from 18 to 1800. Our simulation results show that, in most
cases, the ISI statistics for this model in response to constant and noisy current inputs are in
close quantitative agreement with the MC model (see Figs. 4 and 5). This finding is
encouraging because the channel SDE model was derived by Fox and Lu using a system-
size expansion [23,24] that is formally valid only in the limit of a large number of channels.
Although we found some evidence that the approximation is imperfect for the smallest
populations of ion channels tested, we note that in many applications, the channel counts are
in fact much higher. For instance, Rowat suggested that typical channel numbers in spike
initiation zones may be on the order of 104–106 [11]. The channel counts used in the present
study may be relevant to applications in which small patches of neural membrane can drive
spiking activity. For example, a node of Ranvier of the auditory nerve fiber can produce a
spike in response to cochlear implant stimulation. Typically, the nodes have surface areas of
a few square micrometers [44] and are usually modeled with 1000 or fewer Na+ channels
[44–46].
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As first pointed out by Fox and Lu [23] and as discussed in Sec. IV A 2, numerical
simulations of the channel SDE model can be computationally expensive. One particularly
computationally intensive part of the algorithm is calculating matrix square roots to
determine stochastic terms in the SDE at every time step of the simulation. We have
performed this operation using the optimized CBLAS library, yet the channel SDE model
still required approximately 25 times as much computational time as the IdS model.
Fortunately, as is the case with all three SDE approaches, the channel model has one
considerable advantage over MC—its computation time does not depend on the number of
channels. For example, in our implementation of the Gillespie method, the computational
time increased 12-fold as we increased the number of channels from 600 Na+ and 180 K+ to
6000 Na+ and 1800 K+. We found that even the channel model, the slowest of the SDE
approaches discussed in this paper, is faster than the MC model once the number of channels
is greater than approximately 1200 Na+ and 360 K+. Furthermore, the computational burden
of solving the channel SDE model may be reduced by considering other methods for
computing matrix square roots [[47], e.g.]. Higher-order SDE solvers than the Euler-
Maruyama method could also speed up SDE simulations [[48], e.g.].

Even with increasingly efficient numerical methods for the channel SDE, a stochastic model
that more closely resembles the classical HH equations, as opposed to the 12-dimensional
system of SDEs that defines the channel model, is still desirable, as it would connect more
directly with a wealth of studies of the original four-dimensional HH equations. In a
simulation study of the Fox and Lu model, Bruce [26] sought to derive noise terms
numerically for the subunit equations that would “correct” the Fox and Lu model so that the
fluctuations in the proportions of open channels would match the MC model. We have
performed a similar analysis using the analytical voltage clamp results (see Appendix D for
details). We can redefine the magnitude of the noise in the subunit equations [i.e., σn in Eq.
(8)] to produce a modified subunit SDE model with the same means and variances for the
proportion of open channels in voltage clamp, to O(N−1). This model is constructed based
on our analytical results for the stationary distributions of the proportions of open channels,
so we call it a quasistationary model. The ISI statistics for this modified subunit SDE model
are shown by the dashed line in Fig. 6. This demonstrates that adjusting the noise terms in a
subunit SDE model in order to fit the variances of the open channels in voltage clamp is not
sufficient to provide an improved fit to the spiking dynamics of the MC model.

The reason for this can be seen in the multiple time scales of the autocorrelation functions
for the MC model [Eq. (22)] and subunit models [Eqs. (24) and (25)]. We can alter the noise
terms in the subunit model so that it produces the correct stationary variances of the
fractions of open channels, but we cannot modify the autocorrelation functions in a way that
makes them consistent with the MC model. We therefore formulated a second
quasistationary model by adding colored Gaussian noise to the conductances in the HH
equations (details of this model are in Appendix D). This second quasistationary model
reproduces the Gaussian stationary distribution of the channel SDE in voltage clamp, so the
proportion of open channels in voltage clamp has the same mean, variance, and
autocorrelation as the MC and channel SDE models.

ISI statistics for this model are shown by the gray line in Fig. 6. We found that this model
reproduced the statistics of the MC model much better than any of the subunit SDE models,
so we conclude that temporal correlations in the channel noise play a critical role in
influencing spike timing. Moreover, since the structure of the ion channel determines the
history dependence of the channel noise, a valid channel noise model must properly describe
the dynamics of the entire channel and not only the kinetics of individual subunits. Using
numerical simulations, Bruce has pointed out that the subunit model does accurately
approximate the MC model for the case of channels with a single subunit [26]. Our analysis
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explains this observation because, for channels with one subunit, the channel-based and
subunit-based SDE models are mathematically identical.

We close by emphasizing that the models described in this paper do not represent complete
descriptions of channel noise. As is always the case, when one attempts to formulate a
mathematical description of complex biological processes, numerous assumptions and
simplifications are at play. As our understanding of the structure and dynamics of these
membranes improves, it may be necessary to update and improve our mathematical models
of channel noise. Nonetheless, the central theme of this work will remain relevant: the
statistics of channel noise are shaped by the activity of individual ion channels, and therefore
the approximation methods must also include information about the states of the channels in
order to correctly describe the effects of channel noise.

Note added in proof
Findings similar to those in our work have recently appeared in [50].
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APPENDIX A: DERIVATION OF CORRELATION COEFFICIENT IN EQ. (11)
Here we detail the derivation of ρ in Eq. (11). We seek the correlation coefficient for random
variables of the form zi,1zj,2 and zk,1zl,2 where either i = k or j = l. Without loss of generality,
assume i = k, then

The variables zi,1,zj,2,zk,1, and zl,2 are identical, independently distributed Bernoulli random
variables that have the value 1 with probability psub. The expected values of zx and

 therefore are psub. Thus the covariance and variance can be expressed as
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and

After some algebraic manipulations, we obtain a simple expression for ρ in terms of the
probability that a subunit is open:

APPENDIX B: MATRICES USED IN NUMERICAL SIMULATIONS OF THE
CHANNEL SDE MODEL

The state vectors are defined as x = [x1,x2,x3,x4]T and y = [y10,y20,y30,y01,y11,y21,y31]T. The
number of K+ and Na+ channels are denoted by NK and NNa, respectively. The matrices AK
and ANa in Eq. (28) are

The matrix SK and SNa are the square root matrices of the following diffusion matrices:
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where the elements on the diagonal are

As discussed, we use the equilibrium mean values of x and y in the diffusion matrices. They
are

and

APPENDIX C: EQUILIBRIUM NOISE APPROXIMATION

1. Voltage clamp
The equilibrium noise approximation in voltage clamp can be justified using a small noise
expansion [34]. Let us define the small parameter ε = 1/N and fix the membrane potential at
a voltage clamp value so that αn and βn can be treated as constants. Assume that n can be
written as a series in the small noise parameter ε:

If we plug the small noise expansion into the subunit SDE for n in Eq. (8) and collect terms
of O(1), we find

(C1)

and for terms of O(ε):

(C2)

Equation (C1) shows that n0 satisfies a deterministic equation that does not depend on
stochastic fluctuations in n. In the context of analyzing the stationary distribution of n
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therefore we are justified in replacing n0 with its equilibrium value . If we make this
substitution for n0 in the equation for n1 [Eq. (C2)] and then form the sum n0 + εn1, it is
straightforward to arrive at the OU process in Eq. (16). The equilibrium noise approximation
is therefore the O(N−1) approximation of the long-time behavior of n(t) in voltage clamp.
The same argument applies for the m and h subunits as well as for the multivariate SDE that
defines the channel SDE model.

2. Time-dependent voltage
Fox and Lu suggested applying this approximation in all cases, not just voltage clamp
[23,24], and we have used the approximation to simplify the numerical methods for solving
the channel SDE model. When V is not in voltage clamp, it evolves naturally and
complicates the small noise expansion because it can introduce additional stochastic
fluctuations into the gating variables and the voltage-dependent functions transition rate
functions. Fox argued that the approximation would be accurate if the relaxation of V to its
equilibrium value occurred on a much slower time scale than the relaxation of the gating
variables (for the case of the subunit SDE model) [24]. Unfortunately, this separation of
time scales does not appear to be a generic feature of HH models. Nevertheless, as shown in
Figs. 4 and 5, the equilibrium noise approximation appears to be sufficiently accurate to
reproduce spiking statistics to a high degree of accuracy.

APPENDIX D: QUASISTATIONARY MODELS
In the Discussion (Sec. V), we introduced two models that we discuss in greater detail here.
We refer to both models as quasistationary approximations because they rely on results
from our analysis of the stationary statistics of open channels in Sec. III. In the first model,
we were motivated by [26] to attempt to improve the accuracy of the subunit SDE model by
modifying the noise terms in the gating equations. We have shown that the stationary
variances for the proportion of open channels in the subunit SDE models does not match
those of the MC model. To correct for this discrepancy, we can redefine  in Eq. (8) to
guarantee that the stationary variance of n4 matches the stationary variance of the proportion
of open K+channels under the MC models. The problem is simplified if we invoke the
equilibrium noise approximation and use the facts that Var[n4] = E[n8] − E[n4]2 and that
these higher moments of the stationary distribution of n are known since in voltage clamp n
is an OU (Gaussian) process with mean  and variance . The final step
is to set Var[n4] = Var[fchan] and solve for σn(V). The exact solution would require inverting
a nonlinear equation, but if we neglect terms that are of higher order than O(N−2), we find
σn(V) by finding the roots of , which is quadratic in .
The same approach was also used to derive a new expression for σm so that this model also
had the same stationary variance for the Na+channel. The formula for σh was left unchanged.

As explained in the Discussion, this first approach did not provide a satisfactory
approximation to the MC model, so we formulated a second quasistationary approximation.
We constructed this second model so that it and the MC model would have the same
autocorrelation functions for the proportion of open channels and the same means and
variances in voltage clamp. The mathematical structure of this model is somewhat unusual
in that the conductance is defined as the sum of a deterministic part (given by the HH
equations for m, h, and n) and a colored Gaussian processes that is defined by the
autocovariance function for the proportion of open channels in the MC model. As usual, we
illustrate our approach with the K+ channel. The conductance is defined to be
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(D1)

where n is the classical (deterministic) gating variable satisfying an ordinary differential
equation of the form of Eq. (3) and η(t) is a stochastic process. To define η(t), first note that
the channel SDE model provided a quantitatively accurate approximation of the MC model,
so it is reasonable to describe the stationary conductance as a Gaussian process. Second,
recall from Eq. (22) that the autocorrelation function for the proportion of open K+ channels
has four distinct time scales (the first four multiples of 1/τn). Taken together, these facts lead
us to model the K+ conductance as a non-Markovian Gaussian process. The representation
theory of Gaussian processes furnishes a systematic method for constructing the stochastic
process η(t) based on the autocorrelation function for the K+ channel [49]. In particular, this
theory guarantees that η(t) can be written in terms of a stochastic (Wiener) integral of the
form

The coefficients ai are voltage dependent and are computed by solving the system of
nonlinear equations:

where . In practice, the system of non-linear equations defining ai (V) must
be solved numerically. We used the Minimize command in Maple (Waterloo Maple Inc.,
Version 13) to generate a data table of values of ai (V) that solved these equations for
voltage values ranging from −20 to 120 mV in increments of 0.01 mV. The procedure for
constructing the non-Markovian Gaussian process for the Na+ conductance is similar but
slightly more complicated because there are seven time scales in the autocorrelation
function. We omit these details here and direct the interested reader to computer code
available in the ModelDB repository [35].

To numerically integrate this quasistationary model, we used a forward Euler method to
update the value of V and n in each time step, where the stochastic integral for ηt is
integrated as follows:

1. Compute the voltage dependent terms τn, σn, αn, βn, and ai using the value of V
from the previous time step.

2. Update the terms associated with each time scale: ,
where i = 1,2,3,4, Δt is the time step, and r is a mean zero, unit variance Gaussian
random generated on each time step.
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3.
Update the stochastic process: .
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FIG. 1.
Illustration of conceptual differences between channel-based and subunit-based models. In
this example, each channel consists of two subunits, “△” and “○.” (a) In the channel-based
model, subunits are first grouped together to form channels (vertical rectangles) and the
ionic conductance is determined by the fraction of channels in the conducting state. (b) In
the independent subunits (IdS) approach, the subunits are divided into two classes
(horizontal rectangles) and the fraction of open subunits is computed by averaging over all
subunits in each class. The proportions of open subunits in each class are then used to
approximate the fraction of channels in the conducting state. (c) Identical subunit (InS)
models also average across all subunits in a class, but assume that both subunit classes are
identical.
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FIG. 2.
Analytical (lines) and numerical (symbols) results for means and standard deviations of the
fractions of open channels in voltage clamp. The membrane area is 10 μm2 (600
Na+channels and 180 K+channels). The abscissa gives the voltage clamp value. (a) Results
for Na+channels. (b) Results for K+channels. Analytical results for the channel SDE model
are not shown because they are identical to those of the MC model.
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FIG. 3.
Analytical (lines) and numerical (symbols) results for autocorrelations R(t) of the fractions
of open channels in voltage clamp. The voltage clamp is set to 0 mV and the membrane area
is 10 μm2 (600 Na+channels and 180 K+channels). (a) Results for Na+channels. (b) Results
for K+channels. Analytical results for the channel SDE model are not shown because they
are identical to those of the MC model.

Goldwyn et al. Page 30

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2012 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 4.
Means and coefficients of variation (CV) of first 2000 interspike intervals as a function of
the DC level (abscissa) for a constant current input. (a) Results for a membrane area of 1
μm2. The inset magnifies the ordinate to illustrate the difference in mean ISIs between the
MC and channel SDE models. (b) Results for a membrane area of 10 μm2. (c) Results for a
membrane area of 100 μm2.
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FIG. 5.
Means and coefficients of variation (CV) of first 2000 interspike intervals as a function of
the DC level (abscissa) for a current input of the form IDC + Inoise ξ (t) where ξ (t) is a
Gaussian white noise process with mean zero and unit variance. Membrane area is 100 μm2.
(a) and (b) show results for Inoise = 1 and 2 μm2, respectively.
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FIG. 6.
Means and coefficients of variation (CV) of first 2000 interspike intervals for the MC model
(black line) and two quasistationary models (see text and Appendix D for details) in
response to constant current input. DC level is given by the abscissa. Membrane area is 100
μm2.
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TABLE I

Parameter values from [1]. Note that resting potential has been shifted to 0 mV.

Symbol Definition Value (units)

C membrane capacitance 1 (μF/cm2)

ḡNa maximal sodium conductance 120 (mS/cm2)

ḡK maximal potassium conductance 36 (mS/cm2)

gL leak conductance 0.3 (mS/cm2)

ENa sodium reversal potential 115 (mV)

EK potassium reversal potential −12 (mV)

EL leak reversal potential 10.6 (mV)

ρNa sodium channel density 60 (μm−2)

ρK potassium channel density 18 (μm−2)
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TABLE II

Membrane areas and corresponding channel counts used in numerical simulations

Membrane area (μm2)
No. of channels

Na+ K+

1 60 18

10 600 180

100 6000 1800
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