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Abstract

A mammalian type opsin 5 (neuropsin) is a recently identified ultraviolet (UV)-sensitive pigment of the retina and other
photosensitive organs in birds. Two other opsin 5-related molecules have been found in the genomes of non-mammalian
vertebrates. However, their functions have not been examined as yet. Here, we identify the molecular properties of a second
avian opsin 5, cOpn5L2 (chicken opsin 5-like 2), and its localization in the post-hatch chicken. Spectrophotometric analysis
and radionucleotide-binding assay have revealed that cOpn5L2 is a UV-sensitive bistable pigment that couples with the Gi
subtype of guanine nucleotide-binding protein (G protein). As a bistable pigment, it also shows the direct binding ability to
agonist all-trans-retinal to activate G protein. The absorption maxima of UV-light-absorbing and visible light-absorbing
forms were 350 and 521 nm, respectively. Expression analysis showed relatively high expression of cOpn5L2 mRNA in the
adrenal gland, which is not photoreceptive but an endocrine organ, while lower expression was found in the brain and
retina. At the protein level, cOpn5L2 immunoreactive cells were present in the chromaffin cells of the adrenal gland. In the
brain, cOpn5L2 immunoreactive cells were found in the paraventricular and supraoptic nuclei of the anterior hypothalamus,
known for photoreceptive deep brain areas. In the retina, cOpn5L2 protein was localized to subsets of cells in the ganglion
cell layer and the inner nuclear layer. These results suggest that the non-mammalian type opsin 5 (Opn5L2) functions as a
second UV sensor in the photoreceptive organs, while it might function as chemosensor using its direct binding ability to
agonist all-trans-retinal in non-photoreceptive organs such as the adrenal gland of birds.
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Introduction

Light has been exploited for information by organisms

throughout the evolution of photoreceptors and, ultimately, eyes

and other photoreceptive organs in animals. The transduction of

photons into cellular signals uses seven transmembrane-spanning

opsin proteins that combine with a vitamin A-derived, nonprotein

retinal chromophore. Opsins, which control sensitivity to light of

different wavelengths, have evolved into at least seven distinct

families (reviewed in [1,2,3]). These families transduce light using

trimetric G protein-coupled mechanisms and consist of 1)

invertebrate visual opsins and vertebrate melanopsin (opsin 4)

that couple with Gq-type G proteins, 2) vertebrate visual opsins,

four kinds of non-visual opsins (parietopsins, pinopsins, para-

pinopsins, and vertebrate ancient opsins), encephalopsins and

teleost multiple tissue opsins (opsin 3), which mainly couple with

Gi group G proteins including Gt, 3) Go-coupled opsins found in

scallops and amphioxus, 4) Gs-coupled opsins found in jellyfish, 5)

neuropsins or opsin 5, 6) peropsins, and 7) the photoisomerase

group.

The opsin 5 (Opn5) group was first identified in the eye, brain,

testis and spinal cord in mice and humans [4]. Although Opn5 is

closely related phylogenetically to retinal photoisomerases, the

molecular properties of a chicken homolog of Opn5, chicken

Opn5, mammalian type (cOpn5m), have been recently elucidated

as an ultraviolet (UV)-sensitive bistable pigment that couples with

the Gi subtype of G proteins [5]. In addition, this mammalian type

Opn5 was hypothesized to mediate hypothalamic photoreception

for seasonal testicular growth in birds [6]. On the other hand, it

was reported that there are at least three Opn5-like genes in the

chicken, and two of them are only found in non-mammalian

vertebrates, such as birds and fish [7]. However, their molecular

properties and functions, with the exception of cOpn5m, have not

been characterized. Since the deduced amino acid sequence of the

two other Opn5-related genes showed relatively low sequence

identity/similarity compared with the mammalian type Opn5, it is

crucial to identify the molecular properties and distribution in the

retina, brain, and other organs, and determine whether these three

Opn5-related molecules functionally comprise the same Opn5

subfamily.
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To test this, here we determined the absorption spectrum, the

retinal configurations, and the G protein activation ability of a

chicken Opn5-like 2, cOpn5L2, reconstituted in cultured cells. We

further examined the expression pattern of cOpn5L2 in various

tissues at the mRNA and protein levels. Our results show that

cOpn5L2 is a member of the Opn5 subfamily based on the

molecular properties, while it has a distinct expression pattern

from that of the previously-identified mammalian type Opn5,

suggesting its dual roles in the photoreceptive and non-

photoreceptive organs of birds.

Results

Molecular properties of cOpn5L2
To investigate the molecular properties of cOpn5L2, we

purified recombinant cOpn5L2 expressed in cultured cells.

Figure 1A showed the absorption spectrum and the light-

dependent changes of cOpn5L2 reconstituted with 11-cis-retinal.

UV light irradiation of the pigment resulted in a shift of the

spectrum into the visible region. Yellow light irradiation

subsequently caused the formation of a pigment having an

identical spectrum with the original one. Re-irradiation of the

pigment with UV and yellow light led to identical spectrum

changes, which was confirmed by the difference spectra shown in

Figure 1B. Moreover, we prepared cOpn5L2 purified after

incubation with all-trans-retinal (Figure 1C). The absorption

spectrum of this pigment had two peaks; one was in the visible

region, and the other was in UV region. Irradiation with yellow

light on the pigment induced the formation of a pigment having an

absorption maximum in the UV region. A simultaneous increase

and decrease of the absorption at the visible and UV region was

repeatedly observed by subsequent UV and visible light irradia-

tions (Figure 1D). These results showed that UV and visible light-

absorbing forms were inter-convertible by light irradiation. The

calculated absorption spectra indicated that the absorption

maxima of UV and visible light-absorbing forms are 350 nm

and 521 nm, respectively (Figure 1A, inset).

We next analyzed the retinal configurations of these two forms

(Figure 1E). The pigment that was purified contained a large

amount of 11-cis-retinal after incubation with all-trans-retinal. This

was most likely because the binding affinity of cOpn5L2 to 11-cis-

retinal is greater than that to all-trans-retinal, so that 11-cis-retinal

formed from the thermal isomerization of the all-trans-form in the

culture medium preferentially bound to cOpn5L2. Irradiation

with yellow light on the pigment increased the amount of the 11-

cis-form and decreased the amount of the all-trans-form. Subse-

quent irradiation with UV light caused an opposite shift of retinal

isomers. These results showed that UV and visible light-absorbing

forms contain 11-cis- and all-trans-retinals, respectively. Moreover,

these results are consistent with the results obtained from

cOpn5m [5].

Our previous report revealed that cOpn5m can couple with Gi-

type G proteins [5]. A sequence comparison between cOpn5m

and cOpn5L2 indicated that the ‘‘glutamic/aspartic acid (E/D)-

arginine (R)-tyrosine (Y)’’ motif in helix III, which is well-

conserved among many G protein-coupled receptors (GPCRs), is

maintained in cOpn5m but changed into an ‘‘isoleucine (I)-R-

phenylalanine (F)’’ triad in the cOpn5L2 opsin [7]. Thus, we

analyzed whether cOpn5L2 had efficient G protein activation

ability. The pigment reconstituted with 11-cis-retinal was able to

markedly activate Gi in a UV light-dependent manner, and the

activity was suppressed by subsequent yellow light irradiation

(Figure 1F). Therefore, cOpn5L2 also functions as a Gi-coupled

GPCR, and the visible light-absorbing form that has all-trans-

retinal is in an active state. In the case of the pigment incubated

with all-trans-retinal, the dark state had detectable activity

(Figure 1G). Sequential yellow light and UV light irradiation

resulted in a decrease and increase of the activity, as observed in

the pigment reconstituted with 11-cis-retinal. In consideration of

the results from the spectrum and the retinal configuration of the

pigment incubated with all-trans-retinal, all-trans-retinal most likely

incorporates directly into cOpn5L2, which results in induction of

basal constitutive activity.

Localization of cOpnL2 in post-hatching chicken neural
and endocrine tissues

As a first step for elucidating the function of cOpn5L2, we

examined relative mRNA levels of cOpn5L2 in a panel of ten

chicken tissues by quantitative polymerase chain reaction (PCR).

Since relatively higher expression was observed in the post-

hatching chick adrenal glands, brain, and retina (Figure 2A), we

focused on characterizing the cOpn5L2-expressing cells in these

three tissues. Standard in situ hybridization revealed that cOpn5L2

is expressed in part of the adrenal glands of the post-hatching chick

(Figure 2B, C). In contrast, we could not detect cOpn5L2 mRNA in

the post-hatching retina by standard in situ hybridization with

digoxigenin-labeled probes (not shown), which indicates lower

amount of mRNA expression than the sensitivity of in situ

hybridization. We then raised specific antibodies against peptides

corresponding to the N-terminal or C-terminal region of

cOpn5L2. We found that both antibodies were specific to

cOpn5L2, with anti-cOpn5L2 (N) or anti-cOpn5L2 (C) only

identifying cOpn5L2-transfected cells, as shown by western blot

analysis (Figure 2D). We compared the immunoreactivity of the

two antibodies and did not detect noticeable differences in their

staining pattern (Figure 2E, F). Since the anti-cOpn5L2 (C)

antibody exhibited stronger immnunoreactivity with lower back-

ground than the anti-cOpn5L (N) antibody, we used the cOpn5L2

(C) antibody for subsequent immunostaining experiments.

Localization of cOpn5L2 in the adrenal glands
As mentioned above, cOpn5L2 mRNA was detected in a portion

of the adrenal glands (Figure 2B). Immunohistochemical studies

also showed that cOpn5L2 protein was localized to a portion of

the adrenal glands (Figure 3A). The adrenal glands consist of two

distinct cell lineages; the adrenal cortex, which is derived from the

mesoderm, similar to the urogenital system, and produces steroids,

and the medulla, which is derived from the neural crest, similar to

the sympathetic nervous system, and produces catecholamines.

However, in avian adrenal glands, the cortical and medullary

tissues are intermingled throughout the gland, which is different

from that of mammals. To determine whether cOpn5L2

immunoreactive (IR) cells are cortical or medullary, double

immunostaining was performed using the anti-cOpn5L2 antibody

together with the anti-tyrosine hydroxylase (TH) antibody, which

stains catecholamine-producing cells in the medulla [8]. We found

that cOpn5L2 IR cells overlapped with TH-positive cells (Table

S1), showing that cOpn5L2 is localized to the chromaffin body,

which is the medullary component of the adrenal gland

(Figure 3A–D, D9). High magnification of cOpn5L2 IR medullary

cells revealed that cOpn5L2 protein is localized to the cytoplasm

(Figure 3D–F).

Localization of cOpn5L2 in the brain
Non-mammalian species have been known to possess photore-

ceptors outside the eye, such as in the deep brain and pineal gland.

We found that, in contrast to cOpn5m, cOpn5L2 was not present
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Figure 1. Molecular properties of cOpn5L2. Absorption spectra, retinal configurations and G protein activation of cOpn5L2. A, Absorption
spectra of cOpn5L2 purified after incubation with 11-cis-retinal. Spectra were recorded in the dark (curve 1), after UV light irradiation (curve 2), after
subsequent yellow light (.500 nm) irradiation (curve 3), and after UV light re-irradiation (curve 4). (inset) The calculated absorption spectra of
cOpn5L2 in the dark (curve 1) and after UV light irradiation (curve 2). The calculation procedures are described in the text. B, Spectral changes caused
by UV light irradiation (curve 1), subsequent yellow light irradiation (curve 2), and UV light re-irradiation (curve 3). C, Absorption spectra of cOpn5L2
purified after incubation with all-trans-retinal. Spectra were recorded in the dark (curve 1), after yellow light irradiation (curve 2), after subsequent UV
light irradiation (curve 3), after yellow light re-irradiation (curve 4), and after UV light re-irradiation (curve 5). D, Spectral changes caused by yellow
light irradiation (curve 1), subsequent UV light irradiation (curve 2), yellow light re-irradiation (curve 3), and UV light re-irradiation (curve 4). E, Retinal
configurations in cOpn5L2 purified after incubation with all-trans-retinal. (left-hand panel) The retinal isomers before irradiation, after yellow light
irradiation, and after subsequent UV light irradiation were analyzed with HPLC after extraction of the chromophore as retinal oximes (syn and anti
forms of 9-cis-, 11-cis-, 13-cis-, and all-trans-retinal oximes). (right-hand panel) Isomeric compositions of retinal before and after light irradiation of
cOpn5L2. F, Gi-type G protein activation ability by cOpn5L2 purified after incubation with 11-cis-retinal. The time-dependent change of the activity
was measured in the dark (open circle), after UV light irradiation (open square), after subsequent yellow light irradiation (open triangle), and after UV
light re-irradiation (open diamond). G, The Gi activation ability of cOpn5L2 purified after incubation with all-trans-retinal. The activity was measured in
the dark (open circle), after yellow light irradiation (open square), after subsequent UV light irradiation (open triangle), and after yellow light re-
irradiation (open diamond). G protein activation assay in (F) and (G) was performed at 0uC, and data are presented as the means 6 S.D. of three
independent experiments.
doi:10.1371/journal.pone.0031534.g001
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in the pineal gland (Figure 4A). Since deep brain photoreceptors of

the avian species have been found in the ventral forebrain

(reviewed in [9]), we focused on the forebrain to examine the

localization of cOpn5L2. We first examined whether cOpn5L2

was localized to the paraventricular organ (PVO) of the

hypothalamus. The PVO is composed of cerebrospinal fluid-

contacting neurons, whose knob-like terminals protrude into the

lumen of the third ventricle [10], where cOpn5m is co-localized

with serotonin and likely regulates testicular growth in birds [5,6].

We found that cOpn5L2 was not localized to the PVO (Figure 4B),

but was present in a subset of cells located laterally to the PVO, the

posterior hypothalamic nucleus, toward the lateral hypothalamic

Figure 2. The expression pattern of cOpn5L2. Revealed by quantitative PCR (A), in situ hybridization (B, C), western blot analysis (D), and
immunohistochemistry (E, F). A, Quantitative PCR analysis of ten tissues (as shown) from post-hatching chick (2 weeks). cOpn5m mRNA level in retina
is referred to as 1. B, C, In situ hybridization of the chick adrenal gland at post-hatching day 30 (P30). A sense probe for cOpn5L2 shows no staining in
the consecutive section (C). D, (Left and middle) Western blot analysis using a cOpn5L2 (N-term) or cOpn5L2 (C-term) antibody. Cell lysates of mock
or cOpn5L2-expressing cells were loaded. (Right) cOpn5L2 cDNA is tagged with C-terminal amino acids of bovine rhodopsin and its expression was
confirmed using an anti-bovine rhodopsin antibody (rho1D4). E, F, Immunohistochemistory of the brain using cOpn5L2 (N-term) (E) or cOpn5L2 (C-
term) (F) antibody. The lateral hypothalamic area (P10) is shown. Nuclei are stained with DAPI (blue). cOpn5L2 immunoreactive (IR) cells are shown in
green (arrowheads). Scale bars, 100 mm (B, C), and 50 mm (E, F).
doi:10.1371/journal.pone.0031534.g002
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area (Figure 4C; Figure 2F, Figure 4D). In the anterior

hypothalamus, more prominent cOpn5L2 IR was observed in a

small subset of cells of the paraventricular nucleus, located just

dorsal to the region where TH-positive cells are present (Figure 4E,

F). It is known that gonadotropin-releasing hormone (GnRH) IR

perikarya are located in the medial preoptic nucleus [11]. We

found that cOpn5L2 IR cells were located ventral to the region

where the GnRH IR cells reside (Figure 4G, H; Figure S1).

cOpn5L2 was also localized to a subset of cells in the supraoptic

nucleus (Figure 4I), where cOpn5L2 IR perikarya and fibers were

partly immunoreactive to the anti-GnRH antibody (Figure 4J). We

further examined whether cOpn5L2 IR cells overlapped with

vasotocin IR cells in these regions. Vasotocin is a vasopressin-like

nonapeptide in birds, which is produced by the hypothalamic

neurosecretory magnocellular neurons of supraoptic and para-

ventricular nuclei (Figure 4K, Figure 5A) ([12]; reviewed in [13]).

cOpn5L2 IR cells in the supraoptic and paraventricular nuclei

partly overlapped with vasotocin IR cells (Figure 4K; Figure 5B,

C) (Table S2). In contrast, cOpn5L2 IR somata were not observed

in the dorsal part of the paraventricular nucleus where numerous

vasotocin IR cells were found (Figure 5A).

In telencephalon, cOpn5L2 IR cells were found in the

ventrolateral region to the lateral ventricle, which is the lateral

part of the bed nucleus of stria terminalis (Figure 5D). This region

corresponds to part of the avian limbic system. The cOpn5L2 IR

cells were widely spread across the middle to lateral region of the

forebrain (Figure 5E).

Localization of cOpn5L2 in the retina
In the retina, cOpn5L2 protein was localized to a subset of cells

of the ganglion cell layer (GCL) and the inner half of the inner

nuclear layer (INL) (Figure 6A–C, Figure S2). Double staining

using the two antibodies against cOpn5L2 and cOpn5m, a

mammalian type Opn5 [5,7], showed that cOpn5L2 IR cells in

the INL were not positive for cOpn5m (Figure 6D, E). In contrast,

we were not successful in detecting reliable signals for cOpn5L2

using the avidin biotin complex method in GCL cells, which

precluded us from determining whether cOpn5L2 IR cells in the

GCL overlapped with cOpn5m IR cells or not. We next sought to

examine whether these cOpn5L2 IR cells were subsets of retinal

ganglion cells or amacrine cells by using known retinal cell

markers. In the GCL, displaced cholinergic amacrine cells are

present whose somata are located adjacent to the inner plexiform

layer [14]. Using antibodies to choline acetyltransferase (ChAT),

we found that cOpn5L2 IR cells in the GCL were not stained by

this antibody (Figure 6F-F0), indicating that they are not displaced

cholinergic amacrine cells. Instead, the cOpn5L2 IR cells were

positive for Islet1 (n = 15/20), a homeodomain-containing tran-

scription factor expressed by most of the retinal ganglion cells [15]

(Figure 6G-G0). Thus, the vast majority of cOpn5L2 IR cells in the

GCL are likely a subset of retinal ganglion cells.

On the other hand, we found that cOpn5L2 IR cells in the INL

express Meis, a subfamily of homeoproteins (Figure 6H-H0). Two

Meis family members have been identified in the chicken genome

[16]. Although the antibody used in this study cannot discriminate

between the two Meis proteins, Meis2 is known to be expressed by

a subpopulation of c-aminobutyric acid (GABA) ergic amacrine

cells in vertebrate mature retina, including near-hatched chick

retina [17]. In agreement with these findings, cOpn5L2 IR cells in

the INL were positive for glutamic acid decarboxylase (GAD)

65/67, which is a rate-limiting enzyme in the synthesis of GABA

(Figure 6I-I0). In contrast, the cOpn5L2 IR cells in the INL were

not positive for ChAT (Figure 6J, J9), serotonin (Figure 6K, Figure

S3), vasoactive intestinal peptide (Figure 6L), or tyrosine

hydroxylase, a marker for dopaminergic amacrine cells

(Figure 6M). Thus, cOpn5L2 IR cells in the INL are most likely

a subset of GABAergic amacrine cells.

Discussion

In this study, we have characterized the molecular properties of

another type of chicken Opn5, cOpn5L2. This pigment is a UV-

sensitive bistable pigment that activates Gi-type G proteins in a

Figure 3. Immunohistochemistry of the adrenal gland. cOpn5L2 immunoreactivity is shown in green, cell nuclei in blue, and TH (B, C, D9) or F-
actin (E) in magenta. A–C, cOpn5L2 IR cells are localized to the TH-producing cells in the adrenal gland at P15. D, D9, High magnification of the
adrenal medullary cells at P30. E, to reveal the epithelial cell shape, filamentous actin is visualized by staining with rhodamine-phalloidin. cOpn5L2-
immunoreactivity is observed in the cytoplasm. F, The xz and yz views of a selected point in the image are shown, supporting the cOpn5L2
localization in the cytoplasm. Scale bars, 50 mm (A–C), 10 mm (D, D9, E), and 7.5 mm (F).
doi:10.1371/journal.pone.0031534.g003
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Figure 4. Distribution of cOpn5L2 immunoreactive neurons in chicken brain at P10. Three coronal levels, from posterior hypothalamus to
preoptic regions, are illustrated. The approximate location of these regions is shown on the sagittal schema of chicken brain on the left. Red boxes
indicate the areas of the confocal images. cOpn5L2 IR neurons and perikarya are indicated in green. The scale bars represent 20 mm. In all panels
except (D, I), the sections were co-stained by two antibodies. The marker antibodies (magenta) used are indicated in each panel. For all images the
DAPI stain is blue. A–D, Coronal sections through the posterior hypothalamus. A, Pineal gland (PG), in which there are no cOpn5L2 IR cells. As a
positive control, PG was stained with an anti-serotonin antibody. B, Paraventricular organ (PVO), in which there are no cOpn5L2 IR cells. As a control,
the PVO was stained with an anti-serotonin antibody. C, The posterior hypothalamic nucleus (PH), located laterally to the PVO. Weak but distinct
immunoreactivity for cOpn5L2 is observed. D, High magnification of cOpn5L2 IR cells in the lateral hypothalamic area (LH), shown in Figure 2F. In
these cells, thread-like immunoreactive signals are seen. E–H, Coronal sections through the anterior hypothalamus. E, Paraventricular nucleus (Pa) and
nucleus anterior medialis hypothalami (AM). cOpn5L2 IR cells are found in the Pa, dorsal to the TH IR cells in the AM. F, High magnification of a
cOpn5L2 IR cell shown in (E). The large soma is immunoreactive for cOpn5L2, and TH IR fibers are seen in the vicinity of the cOpn5L2 IR cell. G,
Paraventricular nucleus, in which cOpn5L2 IR cells and GnRH IR fibers (yellow arrows) are scattered. H, High magnification of two cOpn5L2 IR cells
shown in (G). A yellow arrow indicates a GnRH IR fiber. I–K, Coronal sections through the preoptic region. I, Supraoptic nucleus (SO), in which
cOpn5L2 IR somata and long fibers are seen. The cOpn5L2 IR neuron is bipolar. J, In the SO, cOpn5L2 IR and GnRH IR cells are observed, shown in
white. High magnification of a representative cell (arrow) is shown in the inset. K, In the SO, some vasotocin (vaso) IR cells are also positive for
cOpn5L2 (arrows).
doi:10.1371/journal.pone.0031534.g004
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state of having an all-trans-retinal chromophore. Immunohisto-

chemical studies have revealed that cOpn5L2 protein is localized

to subsets of cells in the retina and deep brain that are distinct

from those for cOpn5m, and to the adrenal gland, which is not

photoreceptive but an endocrine organ.

cOpn5L2 is a functional GPCR in the Opn5 (neuropsin)
group

We previously named Opn5L2 as Opn5-like 2 because the

amino acid sequences are most closely related to Opn5, although

their identities and similarities are relatively low, even in the core

transmembrane region (34% identity/55% similarity between

cOpn5m and cOpn5L2) [7]. Since this study showed that the

molecular properties of cOpn5L2 are quite similar to that of

cOpn5m, we concluded that cOpn5L2 functionally belongs to the

Opn5 (neuropsin) group. We also showed that cOpn5L2 can

activate G proteins, although it does not have the typical E/DRY

motif conserved among the class A GPCRs or rhodopsin family.

This triplet of amino acids is located at the boundary between

helix III and intracellular loop 2 and is thought to be required for

G protein activation ([18]; reviewed in [19,20]). Specifically,

tyrosine is the least conserved amino acid and is generally not

important for receptor function (reviewed in [21]). Arginine is one

of the most conserved residues in rhodopsin-like GPCRs and

stabilizes both the inactive and the activated conformations of

GPCRs [22,23,24]. Mutation in the glutamic acid/aspartic acid

leads to a constitutive active state of rhodopsin family GPCRs

[25,26,27]. Taken together, these studies indicate that cOpn5L2

may somewhat exhibit agonist-independent basal receptor activity,

since it has an IRF motif instead of E/DRY and can activate G

proteins.

Comparison of the molecular properties between
cOpn5L2 and cOpn5m

cOpn5L2 shares several molecular properties with cOpn5m,

and both are sensitive to UV light and activate Gi-type G proteins.

However, these proteins have differences in the characteristics of

the visible light-absorbing forms. The absorption maximum of the

form in cOpn5L2 (521 nm) is approximately 50 nm longer than

that of cOpn5m (474 nm). Thus, the regeneration of the UV light-

absorbing form is caused by irradiation with different wavelengths

of visible light between cOpn5L2 and cOpn5m. In other words,

cOpn5L2 can be inactivated by the absorption of longer

wavelength light, which could more easily transmit into the head.

Moreover, the efficiency of G protein activation by the visible

light-absorbing form of cOpn5L2, which is produced by direct

binding to exogenous all-trans-retinal, is comparable to that after

UV light irradiation of the 11-cis-retinal bound form. However,

this is not the case for cOpn5m: The activation efficiency by

cOpn5m with direct binding to exogenous all-trans-retinal, is

significantly lower than that after UV light irradiation of the 11-cis-

retinal bound form [5]. Taken together, extraocular, deep brain

cOpn5L2 more likely functions as a light-dependent inactivating

pigment after direct binding to available all-trans-retinal without

the visual cycle mechanism that provides a supply of 11-cis retinal.

cOpn5L2 in the adrenal gland: cOpn5L2 may act as a
chemosensor?

Although a previous study showed that gonad-adrenal activity

of the quail is increased in long day conditions through the

vasotocinergic system of the brain [28], there have been no reports

on the direct photosensitivity of the adrenal glands to date.

Therefore, it is hard to imagine that UV to visible light can be

transferred to such a deep internal organ. In this regard, it is worth

considering that cOpn5L2 can bind to all-trans-retinal and activate

G protein even before irradiation (Figure 1E, G), which is not seen

for classical bleaching photopigments, such as rod and cone opsins.

Therefore, we hypothesize that under specified circumstances,

cOpn5L2 might be able to bind to all-trans-retinal as a ligand

unrelated to light absorption. Recently, it was reported that a

Drosophila rhodopsin, Rh1, is not only involved in light sensation but

also in temperature discrimination [29]. The postulated scenario is

that a still-unidentified accessory factor that interacts with this

rhodopsin accelerates its intrinsic thermal activity. Furthermore, the

activity as thermosensor can be replaced by other Drosophila

Figure 5. Distribution of cOpn5L2 immunoreactive neurons in the forebrain. A–C, Coronal sections through the anterior hypothalamus at
P10. A, The dorsal part of the paraventricular nucleus, in which many vasotocin-positive cells are seen, but no cOpn5L2 IR cells are observed. B,
Paraventricular nucleus, ventral to the region shown in (A), in which cOpn5L2 IR cells are seen. C, High magnification of paraventricular nucleus. A
different section from that shown in (B). Some vasotocin IR cells are also positive for cOpn5L2 (arrows). D, E, Coronal sections through the anterior
hypothalamus. Images are focused on the telencephalon. D, cOpn5L2 IR cells are found in the bed nucleus of the stria terminalis, lateral part (BstL), in
which TH IR fibers are prominent. E, cOpn5L2 IR cells are also scattered in the lateral region of the telencephalon. Co, optic chiasm; IIIv, third ventricle;
Lv, lateral ventricle. The scale bars represent 20 mm.
doi:10.1371/journal.pone.0031534.g005
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Figure 6. Immunohistochemistry of the chick retina at P10. A, cOpn5L2 IR cells in the inner nuclear layer (inl) and ganglion cell layer (gcl)
(green, arrowheads). Parvalbumin is visualized in magenta to reveal subsets of amacrine cells in the inner nuclear layer (inl) and sublamina I and V in
the inner plexiform layer (ipl) [47]. B, A representative cOpn5L2 IR cell in the INL. C, A representative cOpn5L2 IR cell in the GCL. D, A cOpn5L2 IR cell
in the INL after two-color ABC immunostaining. E, A cOpn5m IR cell in the INL of the same retinal section as shown in (D). F-F0, The cOpn5L2 IR cell
(green in F, F0) in the GCL is not positive for ChAT (magenta in F9, F0). G-G0, The cOpn5L2 IR cell (arrow) in the GCL (G, G0) is positive for Islet1 (G9, G0).
H-H0, cOpn5L2 IR cells in the INL (H, H0) are positive for Meis (H9, H0). I-I0, The cOpn5L2 IR cell in the INL (I, I0) is positive for GAD65/67 (I9, I0). J, J9,
cOpn5L2 IR cells in the INL (green, arrowheads in J) are not positive for ChAT. Some cOpn5L2 IR cells are adjacent to ChAT IR cells (J), and others are
separate from the ChAT IR cells (J9). K, One cOpn5L2 IR cell in the vicinity of a serotonin IR cell, while the other is located apart from it. L, cOpn5L2 IR
cells are not positive for VIP. M, A cOpn5L2 IR cell adjacent to a TH IR cell. For all images, DAPI is blue. Scale bars, 50 mm (A), 10 mm (B–E, G-I0, K–M),
and 20 mm (F-F0, J, J9).
doi:10.1371/journal.pone.0031534.g006
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rhodopsins as well as mammalian melanopsin. Thus, it is

conceivable to assume that cOpn5L2 acts as a chemosensor that

detects certain chemical stimuli such as all-trans-retinal, although

this hypothesis needs to be determined in future studies.

Naturally produced catecholamines include norepinephrine,

epinephrine, and dopamine, but the main secretory products of

the adrenal medulla are norepinephrine and epinephrine [30].

These adrenal catecholamines have diverse functions that affect the

vascular system, carbohydrate metabolism, and neural activities.

This study showed that cOpn5L2 is localized to the adrenal medulla

that produces catecholamines, suggesting the possibility that GPCR

signaling through cOpn5L2 modulates the secretion or biosynthesis

of the adrenal catecholamines or vice versa.

cOpn5L2 in the brain: cOpn5L2 signaling modulates
functions of reproductive neuropeptides?

This study has elucidated the localization of cOpn5L2 in the

post-hatch chick brain. Its distribution is different from that of

cOpn5m: cOpn5L2 is localized to several nuclei in the anterior

hypothalamus, but is not present in the pineal gland or PVO of the

hypothalamus. Characteristically, cOpn5L2 IR cells partly

overlapped with vasotocin IR or GnRH IR cells in the anterior

hypothalamus. It is known that many species of birds are

photoperiodic, whereby long days have a stimulatory effect on

the reproductive activity (reviewed in [31]). The sensory receptor

that mediates the response to photoperiod is thought to be located

in the brain (reviewed in [32]). On the other hand, immunohis-

tochemical studies have shown that the GnRH-system is

influenced by photoperiod and mirrors sexual differentiation in

the quail brain [33]. Thus, UV photoreception through cOpn5L2

in these hypothalamic nuclei may regulate reproductive activities

through these neuropeptides. It is worth mentioning that

cOpn5L2 IR somata are located in the deep brain nuclei more

than 100 mm laterally from the third ventricle (Figure 4E), while

cOpn5m IR cells are located in the wall of the third ventricle [5,6].

Given that cOpn5L2 has a basal activation ability when it couples

to all-trans-retinal in the dark state, it is also crucial to inactivate

cOpn5L2-GPCR signaling through visible light irradiation in

these brain nuclei.

A recent study has shown that testicular growth is induced by

short-wave photo-stimulation in eye-patched, pinealectomized

quail, and that the quail Opn5m IR neurons from the PVO seem

to project to the external zone of the median eminence [6]. They

suggested that testicular growth through Opn5m is mediated by

the induction of thyroid stimulating hormone expression in the

pars tuberalis of the posterior hypothalamus and secretion of

GnRH from the nerve termini. However, the possible action of

cOpn5L2 seems to be totally different: cOpn5L2 exists in subsets

of vasotocinergic or GnRHergic neurons of paraventricular and

supraoptic nuclei, which are known to regulate reproductive

activity. That is, these neuroendocrine cells include cOpn5L2-

expressing photo- or chemoreceptor cells in birds. Vasotocin, which

was originally characterized as the antidiuretic hormone, also shows

vasomotor and thermoregulatory effects and can even control

oviposition (reviewed in [13] [34]). Thus, cOpn5L2-GPCR

signaling might be involved in regulating these functions as well.

cOpn5L2 in the retina: A subset of GABAergic amacrine
cells possesses the cOpn5L2 photopigment

cOpn5L2 protein is localized to subsets of cells in the GCL and

INL, which is a similar characteristic to cOpn5m. However,

double immunostaining showed that cOpn5L2 IR amacrine cells

are a different subset from those of cOpn5m in the retina,

although this study could not determine whether this was also true

for GCL cells. The current study and previous studies have shown

that cOpn5L2 IR amacrine cells and cOpn5m-expressing amacrine

cells are GABAergic [7]. It is known that retinal GABA levels show

a circadian rhythm in rodents [35], and the in vivo administration

of GABA agonists modulates both dopamine and melatonin

synthesis in the chicken retina [36]. In addition to the pineal gland,

the retina itself displays many rhythmic physiological events, such

as melatonin and dopamine production and secretion [37].

Although melanopsin is postulated to be responsible for the

rhythmic synthesis of these bioactive substances, the two Opn5

cognates, cOpn5L2 and cOpn5m, may also play a similar role in

the chick retina though the action of the inhibitory neurotrans-

mitter GABA.

Conclusions
We have for the first time characterized the molecular

properties of cOpn5L2, a second Opn5-like photopigment in

birds. cOpn5L2 exhibits UV-sensitive GPCR activity in vitro,

similar to the mammalian type Opn5, cOpn5m. However, its

tissue distribution diverges from that of cOpn5m. Compared to

cOpn5m, cOpn5L2 is localized to a different subset of GABAergic

amacrine cells, including subsets of vasotocin or GnRH IR cells in

the anterior hypothalamus, suggesting that cOpn5L2 has different

functions than cOpn5m. Localization of cOpn5L2 in the brain,

which is located laterally to the midline third ventricle, and in the

adrenal gland, which is located deeply inside the body, suggests

another physiological role of cOpn5L2 that is unrelated to

photoreception. We therefore propose that cOpn5L2 exhibits

dual mode of functional expression depending upon how much

light is available to the tissues where cOpn5L2 is present (Figure 7).

This rather nascent opsin, opsin 5-like 2, exclusively found in non-

mammalian vertebrates, may dually function as a photosensor and

a chemosensor, whose endogenous ligand and possible accessory

proteins or retinoid cycle metabolism that modulate the ligand-

binding affinity or accelerate the intrinsic chemosensor activity

should be identified in the future studies.

Materials and Methods

Animals and ethics statement
Fertilized chicken eggs (Gallus gallus domesticus) were purchased

from a commercial farm (Goto-furanjyo, Inc., Gifu, Japan; http://

www.gotonohiyoko.co.jp/) and incubated at 37.5uC in a humid-

ified incubator until hatching. Post-hatch chicks were housed

under a 12:12 light-dark cycle with food and water ad libitum.

Animals were anesthetized and euthanized at Zeitgeber time 6–10.

The brain and other tissues were dissected and processed for RNA

extraction, western blotting, and immunohistochemistry. The use

of animals in these experiments was in accordance with the

guidelines established by the Ministry of Education, Culture,

Sports, Science, and Technology, Japan, and University of

Tokushima. The protocol was approved by the Committee on

the Ethics of Animal Experiments of the University of Tokushima

(Permit Number: 08089). All surgery as performed under

anesthesia, and all efforts were made to minimize suffering.

Preparation of purified cOpn5L2 pigments
The RNA fraction extracted from the chick retina (post-

hatching day 10) was used for oligo (dT) primed synthesis of the

cDNA, which was applied to 59- and 39 rapid amplification of

cDNA (RACE). According to the sequences obtained by 59- and

39-RACE, the entire coding sequence of cOpn5L2 was amplified

using primers as follows: cO5L2-S2, 59- TTAAAACCTT-
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CACCTGCTTTCACAGG-39 and cO5L2-AS2, 59- GCGACT-

CAGAATCTTGGCGTATGTT-39. The nucleotide sequence

has been submitted to the DDBJ database under the accession

number DDBJ: AB368183. The cDNA of cOpn5L2 was tagged by

the epitope sequence of the anti-bovine rhodopsin monoclonal

antibody Rho1D4 (ETSQVAPA) at the C-terminus and was

inserted into a mammalian expression vector pCAGGS [38]. The

plasmid DNA was transfected into HEK293 cells using the

calcium phosphate method. After 1 day of incubation, 11-cis- or

all-trans-retinal was added into the medium (final retinal

concentration, 5 mM). After additional incubation for 1 day in

the dark, the cells were collected. The pigments were extracted

with 1% dodecylmaltoside (DM) in buffer A (50 mM 4-[2-

hydroxyethyl]-1-piperazineethanesulfonic acid [HEPES] [pH 6.5]

and 140 mM NaCl) and were purified by Rho1D4-conjugated

agarose. The purified pigments were eluted with 0.02% DM in

buffer A containing the synthetic peptide that corresponded to the

C-terminus of bovine rhodopsin [5].

Preparation of G proteins
The rat Gia1 subunit was expressed in the Escherichia coli strain

BL21 by using Gia1 cDNA constructed into the pQE6 plasmid

vector and was purified as previously described [39]. The purified

Gia1 was mixed with an equal amount of Gtbc purified from

bovine rod outer segments.

Spectrophotometry and high performance liquid
chromatography (HPLC) analysis

Absorption spectra were recorded at 0uC with a Shimadzu UV-

2400 spectrophotometer. The sample was irradiated with UV light

through a UV-D35 glass filter (Asahi Technoglass) or with yellow

light through a Y-52 cutoff filter (Toshiba) from a 1 kW halogen

lamp (Master HILUX-HR; Rikagaku). The absorption spectra of

visible and UV light-absorbing forms of cOpn5L2 were calculated

from the methods previously described [5]. Briefly, the spectral

region at wavelengths longer than the maximum of the main peak

of the spectrum difference between the visible and UV light-

absorbing forms of the pigment was best-fitted with a template

spectrum previously described [40,41]. The best-fitting spectrum

was considered to be the visible light-absorbing form of the

pigment. The absorption spectrum of the UV light-absorbing form

was then calculated by adding the visible light-absorbing form to

the difference spectrum. The retinal configurations of each sample

were analyzed by HPLC (LC-10AT VP; Shimadzu) equipped with

a silica column (15066 mm, A-012-3; YMC) according to the

previous study [42].

G protein activation assay
A radionucleotide filter-binding assay, which measures guano-

sine diphosphate (GDP)/guanosine triphosphate (GTP)cS ex-

change by G protein, was performed as previously described [5].

All procedures were carried out at 0uC. The assay mixture

consisted of 50 mM HEPES (pH 7.0), 140 mM NaCl, 5 mM

MgCl2, 1 mM dithiothreitol, 0.01% DM, 1 mM [35S] GTPcS, and

2 mM GDP. The purified cOpn5L2 (final concentration: 5 nM)

was mixed with the G protein solution (final concentration:

600 nM) and was kept in the dark or irradiated with UV light for

1 min or with subsequent yellow light (.500 nm) for 1 min. After

irradiation, the GDP/GTPcS exchange reaction was initiated by

the addition of [35S] GTPcS solution into the mixture of the

pigment and G protein. After incubation for the selected time in

the dark, an aliquot (20 ml) was removed from the sample into

200 ml of stop solution (20 mM Tris-HCl [pH 7.4], 100 mM

NaCl, 25 mM MgCl2, 1 mM GTPcS, and 2 mM GDP) and

immediately filtered through a nitrocellulose membrane to trap

[35S] GTPcS bound to G proteins. The amount of bound [35S]

GTPcS was quantified by assaying the membrane with a liquid

scintillation counter (Tri-Carb 2910 TR; PerkinElmer).

Quantitative PCR
A panel of post-hatching (2 weeks) chick tissues (kidney, liver,

heart, testis, lung, brain, muscle, spleen, retina, and adrenal

glands) was dissected, snap frozen by liquid nitrogen, and stored at

280uC until required. The methods of RNA extraction, cDNA

synthesis, PCR primers and conditions, and relative quantification

of transcript levels were previously described [7]. The amplified

cDNA fragments were confirmed by electrophoresis and sequenc-

ing to identify the desired ones.

Antibodies
Specific antibodies were raised to the N-terminus or C-terminus

of cOpn5L2 using the guinea pig. Each polyclonal antibody was

Figure 7. Functions of cOpn5L2 may depend on how much light is available to the cOpn5L2-expressing tissues. Availability of
retinoids and interactions with cOpn5L2 may also influence whether photons or ligands transduce signals.
doi:10.1371/journal.pone.0031534.g007
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raised against a 15 or 17 amino acid synthetic peptide conjugated

to Keyhole Limpet Hemocyanin by Tanpaku-Seisei-Kogyo

(Gunma, Japan), according to their standard procedures (N-term:

MEEQYISKLHPVVDY; C-term: IRLSPTAKVESQGAARH).

These antibodies were affinity purified prior to use by Tanpaku-

Seisei-Kogyo. The primary antibodies used in this study included:

mouse anti-tyrosine hydroxylase (TH) antibody (MAB318, Che-

micon Millipore), mouse anti-Islet1 antibody (40.2D6, Develop-

mental Studies Hybridoma Bank), rabbit anti-choline acetyltrans-

ferase (ChAT) antibody (#2017, a gift from Dr. Miles Epstein,

University of Wisconsin, USA), rabbit anti-Meis antibody

(MAB1614, Millipore), rabbit anti-glutamic acid decarboxylase

(GAD) 65/67 antibody (ab11070, Abcam), rabbit anti-vasoactive

intestinal peptide (VIP) antibody (AR443-5R, Biogenex), rabbit

anti-serotonin antibody (a gift from Dr. David V. Pow, University

of Newcastle, Australia), rabbit anti-gonadotropin releasing

hormone (GnRH) antibody (ab5617, Abcam), and rabbit anti-

vasopressin antibody (T-4563, Bachem). The secondary antibodies

used in this study included: Cyanine 3 (Cy3)-labeled donkey anti-

mouse and anti-rabbit IgG (Jackson Immunoresearch, catalogue

numbers 715-166-150 and 715-166-152, respectively), and Alexa

Fluor 488-labeled goat anti-guinea pig IgG (Invitrogen, A-11073).

Western blotting
The extract from the cOpn5L2-transfected HEK293 cells was

subjected to 12% sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE), transferred onto a polyvinylidene

difluoride (PVDF) membrane, and probed with anti-cOpn5L2-C-

term (diluted 1:1000) or anti-cOpn5L2-N-term (diluted 1:1000)

antibody. Immunoreactive proteins were detected by the avidin

biotin complex (ABC) method and visualized with a horseradish

peroxidase-diaminobenzidine (DAB) reaction.

Fixation and sectioning
Chick eye, brain, and adrenal glands were quickly dissected,

fixed with 4% paraformaldehyde in phosphate-buffered saline

(PBS) for 3 h (for the eyes) or 16 h (for brain and adrenal glands) at

4uC and then transferred to 20% sucrose until they sank. After

embedding the samples in optimal cutting temperature compound

(Sakura, Japan), the tissues were sectioned with a cryostat (Leica) at

a 20 mm thickness. Sections were thaw-mounted onto SuperFrost

Plus slides (Fisher Scientific), dried at 37uC, and stored at 230uC
until use. The anatomy of the chick brain was determined

according to Puelles et al. (2007) [43] and the nomenclature

adopted in this study was based on this atlas and previous studies

[44,45,46].

Immunohistochemistry
Fluorescent immunolabeling was performed using standard

techniques. Briefly, all slides were blocked for 30 min at room

temperature in PBS Triton X-100 (0.25%) (PBST) with 5% serum

from the same species as the corresponding secondary antibodies.

Primary antibodies were diluted in PBST with 5% serum and

secondary antibodies in PBS. All wash steps were performed 3

times with PBST for 5 min each. Primary antibodies (anti-

cOpn5L2-C-term [diluted 1:2000–1:500], anti-cOpn5L2-N-term

[diluted 1:500], anti-TH [diluted 1:250], anti-Islet1 [diluted 1:50],

anti-ChAT [diluted 1:1000], anti-Meis [diluted 1:500], anti-

GAD65/67 [diluted 1:200], anti-serotonin [diluted 1:2000], anti-

VIP [diluted 1:1], anti-GnRH [diluted 1:1000], and anti-

vasopressin [diluted 1:500]) were incubated for 5 h at room

temperature or for 16 h at 4uC. The anti-vasopressin antibody

employed here has 100% cross-reactivity to avian vasotocin

(Arginine8-vasotocin) according to the manufacturer’s instructions.

Secondary antibodies were incubated for 1.5 h at room temper-

ature and diluted 1:750. For double fluorescent labeling

experiments, the slides were incubated with primary antibodies

and secondary antibodies in a sequential manner: anti-cOpn5L2-

C-ter followed by anti-TH or other antibodies. The cell nuclei

were stained with 49,6-diamidino-2-phenylindole (DAPI) (Vector

Laboratories) or DRAQ5TM (Biostatus) and filamentous actin was

stained with rhodamine-phalloidin (Invitrogen, R415). The slides

were mounted with anti-fade mountant, Vectashield (Vector, H-

1500 or H-1400). Fluorescent images were collected using a Leica

TCS-SP5 confocal laser-scanning microscope, excitation 405, 488,

543, and 633 nm with emission wavelengths of 424–489, 505–539,

551–618, and 679–702 nm for DAPI, green, Cy3, and DRAQ5,

respectively.

Double immunostaining of cOpn5L2 and cOpn5m
Since both of these antibodies were made in guinea pig,

retinal sections were first immunostained with anti-cOpn5L2(C)

antibody [5] using Vectastain ABC Elite Kit and ImmPACTTM

DAB Peroxidase Substrate (Vector), and subsequently treated

with citrate acid solution (pH 6) at 121uC for 15 minutes. The

samples were then sequentially stained with anti-cOpn5m

antibody using the alkaline phosphatase (AP) system (Vectastain

ABC-AP Kit and Vector Blue Alkaline Phosphatase Kit, Vector).

We could not achieve reliable detection of cOpn5L2 immunore-

active signals in the retinal ganglion cell layer using the ABC

method.

Colocalization analysis
We assessed numbers for the percentage of overlap of cOpn5L2

and marker proteins within cells using the ImageJ software plug-in

Colocalisation Thresholds (http://rsbweb.nih.gov/ij/). Briefly, after

sequential immunostaining of both orders (anti-cOpn5L2 to anti-

TH, or anti-TH to anti-cOpn5L2), five confocal images were

taken for each staining order and analyzed for colocalization

(Table S1). The images were taken under the same confocal

microscopic conditions and contained 229659 cells (mean6

standard deviation [S. D.], n = 10) of the adrenal gland.

Proportions of overlapping cells in the paraventricular and

supraoptic nuclei, and retinal ganglion cells were calculated by

counting cells manually on confocal images with a 663 objective

zoom 2 (Table S2 and in the text).

Supporting Information

Table S1 Proportion of overlapping cells in the adrenal
gland as revealed by Manders’ coefficient (M1, M2)
using a colocalization tool (see Materials and Methods).
*M1, proportion of cOpn5L2 immunoreactive (IR) cells among

tyrosine hydroxylase (TH)-positive cells. **M2, proportion of TH-

positive cells among cOpn5L2 IR cells.

(TIF)

Table S2 Numbers of overlapping cells in the brain
nuclei.

(TIF)

Figure S1 A GnRH immunoreactive cell, locating dorsal
to the region where cOpn5L2 immunoreactive cells
reside.

(TIF)

Figure S2 An enlarged image of Figure 6A. See legend for

Fig. 6A.

(TIF)
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Figure S3 A full image of Figure 6K. Serotonin immuno-

reactivity is localized to an amacrine cell body in the inner nuclear

layer (INL), and two synaptic strata in the inner plexiform layer

(IPL). A weakly immunoreactive bipolar cell is also localized to the

INL (arrow), as reported previously (George A et al. (2005) Exp.

Eye Res. 81, 616–625).

(TIF)
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