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Abstract

Mismatch repair-deficient colorectal cancers (CRC) display widespread instability at DNA microsatellite sequences (MSI).
Although MSI has been reported to commonly occur at coding repeats, leading to alterations in the function of a number of
genes encoding cancer-related proteins, nothing is known about the putative impact of this process on non-coding
microRNAs. In miRbase V15, we identified very few human microRNA genes with mono- or di-nucleotide repeats (n = 27). A
mutational analysis of these sequences in a large series of MSI CRC cell lines and primary tumors underscored instability in
15 of the 24 microRNA genes successfully studied at variable frequencies ranging from 2.5% to 100%. Following a maximum
likelihood statistical method, microRNA genes were separated into two groups that differed significantly in their mutation
frequencies and in their tendency to represent mutations that may or may not be under selective pressures during MSI
tumoral progression. The first group included 21 genes that displayed no or few mutations in CRC. The second group
contained three genes, i.e., hsa-mir-1273c, hsa-mir-1303 and hsa-mir-567, with frequent ($80%) and sometimes bi-allelic
mutations in MSI tumors. For the only one expressed in colonic tissues, hsa-mir-1303, no direct link was found between the
presence or not of mono- or bi-allelic alterations and the levels of mature miR expression in MSI cell lines, as determined by
sequencing and quantitative PCR respectively. Overall, our results provide evidence that DNA repeats contained in human
miRNA genes are relatively rare and preserved from mutations due to MSI in MMR-deficient cancer cells. Functional studies
are now required to conclude whether mutated miRNAs, and especially the miR-1303, might have a role in MSI
tumorigenesis.
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Introduction

During the last decade, microRNA (miRNA) genes have been

extensively identified in mammals, plants and viruses. They

encode short (,22 nucleotides) single-stranded mature RNA

molecules (miRs) that regulate gene expression mostly by base

pairing with the 39 UTR of target mRNA [1,2]. In humans, it is

estimated that more than one thousand miRs control the

expression of about 60% of protein-coding genes. Numerous

functional studies have reported the participation of miRs in

various cellular processes, and subsequently, their deregulation in

a number of human diseases including cancer [2,3]. MiRNA genes

can be located within introns and less frequently within exons, or

intergenic regions, their expression being regulated by indepen-

dent or host gene promoters [4]. Excepting miRNA genes arising

entirely from the spliced out introns of host’s mRNA (named

mirtrons [5]), each microRNA gene produces three types of

molecules that will undergo successive cleavages by two RNAses,

called Drosha and Dicer, to yield the fully functional miR: a large

primary transcript (pri-miR, ,500 to 3000 bases), a hairpin-like

intermediate precursor (pre-miR, ,60 to 80 bases), and a transient

miRNA duplex from which two different mature miRs are usually

produced at different (major miR/minor miR*) or equivalent

(miR-5p/miR-3p) amounts [5,6]. Each maturation step relies

heavily on crucial structural features that dictate a correct and

reliable biogenesis of the mature miRNA. Both size and sequence

variations in various regions of the miRNA hairpin (basal segment,

stem, miRNA duplex and loop) can cause dysregulation of miR

biogenesis and are believed to have tumorigenic consequences

[7,8,9,10,11,12].

Several genetic and epigenetic mechanisms that lead to the

alteration of miR expression and function have been described in

human tumors, including colorectal cancer (CRC) [13,14,15]. A

methylation of miRNA-34b/c CpG islands, for instance, has been

frequently observed in CRC cell lines and primary tumors [16],

and an increased expression of miR-17-92 cluster has been noted

in conjunction with a chromosomal instability (CIN) at the

chromosome band 13q31 containing this miRNA locus [17].

Importantly, CIN also called MSS (microsatellite stability)

characterizes the main subset of CRC (representing 80–85% of

all CRCs). Microsatellite instability (MSI), on the other hand, a

particularity resulting from a DNA mismatch repair (MMR)
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deficiency, has been reported in the remaining 15–20% of CRCs

[18]. In MSI CRC, which usually does not display CIN, tumor

progression is thought to result notably from the accumulation of

secondary mutational events (deletion/insertion) affecting micro-

satellites, repeated sequences of short DNA motifs (1–6 bp),

contained in cancer-related genes [19,20]. These mutations affect

target genes involved in various biological pathways such as the

regulation of cell cycle and/or cell proliferation (TGFBR2, IGF2R,

TCF4, AXIN2, PTEN, RIZ…), the regulation of apoptosis (BAX,

CASP5, BCL10, APAF1, FAS…), or the DNA damage signalling

and repair pathways (RAD50, BLM, MSH3, MSH6, MBD4, MLH3,

CHK1, ATR…). In the majority of target genes, frame-shift

mutations were observed in exonic repeats, most often mononu-

cleotide tracts, leading to the production of truncated proteins.

More rarely, somatic mutations in intronic mononucleotide

repeats of MSI target genes (MRE11 and HSP110) were shown

to lead to aberrant splicing and to the generation of altered

proteins [21,22].

In this study, we investigated for the first time whether miRNA

genes, regardless of their genomic location, might constitute new

targets of MSI in CRC. All human miRNA genes containing

mononucleotide (MNR) or dinucleotide repeats (DNR) ($7

repeats) in their hairpin sequences were screened for mutations

(nucleotides additions/deletions) using a large series of MMR-

deficient CRC cell lines and primary tumors, as well as

lymphoblastoid cell lines (LBLs) and MSS CRC controls enabling

the assessment of the polymorphic status of these sequences.

Results

Screening for microsatellite repeats in miRNA hairpins
and determination of their polymorphism in MMR-
proficient cell lines

Amongst the 940 human miRNA sequences listed in miRbase

V15, 24 contain MNR with at least seven repeat units (2.5%)

(Table 1). DNR ($7 repeats) are more rarely found in miRNA

sequences (3/940, 0.3%) (Table 1). These miRNA genes are

distributed on several chromosomes. The majority is found in

protein-coding genes (22/27, 81.5%), mostly within intronic

sequences (21/22, 95.5%). Repeated sequences vary in size and

can reach up to 18 repeats. More than two-thirds of MNR (17/24;

71%) are small (7 to 8 bp) and A/T rich (16/24; 67%). They span

many regions of the hairpin precursor (Figure 1) considered

important for miR maturation and/or function. These regions

consist of the basal segments, the stem, the miRNA duplex and the

terminal loop [7,8,9,10]. Two miRNAs (hsa-mir-511-1 and hsa-mir-

511-2) are duplicates of the same gene and display a unique

sequence indistinguishable in our analysis. Except hsa-mir-1234

and hsa-mir-3166, all miRNA genes were successfully amplified

using a set of fluorescent primers bordering the hairpin sequence.

MiRNA genes were first analyzed in healthy individuals (LBLs,

n = 40) for an evaluation of the inherent polymorphism (Table 2).

Out of 21 MNR analyzed in normal DNA samples, the majority

(17 genes) was shown to be monomorphic (Table 2). Length

polymorphism (1 bp shift) in hsa-mir-1303 was observed with the

smaller allele having the highest allelic frequency (Table S1, Figure

S1). Single nucleotide polymorphisms (SNP) rs33982250 and

rs34889453, both corresponding to an Adenine deletion, are

reported for hsa-mir-1303 and are located outside the MNR [23].

Rare alleles with up to 3-bp shifts were also identified in hsa-mir-

511, hsa-mir-543 and hsa-mir-1302-7 genes (Table S1, Figure S1).

Similar results were obtained in a series of 25 primary MSS

colorectal tumors and 13 MSS CRC cell lines (Table S1).

MiRNA genes with DNR appeared to be highly polymorphic

(Table 2). Two of 3 genes displayed several alleles with important

length variations: 6 and 15 alleles found respectively for hsa-mir-

620 and hsa-mir-558 in healthy individuals (Table S1, Figure S1).

Here, length polymorphisms have been reported to be localized

within the microsatellite repeats [23].

Mutation analysis of miRNA genes with MNR and DNR
The instability of all miRNA repeats was investigated in a series

of 41 primary MSI CRCs and 14 MSI CRC cell lines (Table 2).

Primary MSS CRCs (n = 25) and MSS CRC cell lines (n = 13) are

used as controls. With very few exceptions, the MSS controls did

not show size alterations in any of the miRNA repeats (3/557 and

3/304 mutational events in primary tumors and cell lines,

respectively), while 135/913 and 50/326 mutational events were

observed in MSI primary tumors (p = 2.2610216) and cell lines

(p = 2.28610210), respectively. Analysis of DNR showed that 2

miRNAs with 7 (hsa-mir-1277) and 11 repeats (hsa-mir-620) were

unaltered in MSI samples. Hsa-mir-558 with 18 repeats appeared

mutated in one third of MSI cell lines (4/13; 30.8%) and MSI

CRCs (12/38; 31.6%) (Table 2).

Table 1. Intergenic and intragenic microRNA genes
containing MNR or DNR.

miRNA gene
Chromosomic
location Genomic location Repeat size

hsa-mir-1302-7 8q24.3 IG A7

hsa-mir-511-1 10p12.33 I T7

hsa-mir-511-2 10p12.33 I T7

hsa-mir-543 14q32.31 I T7

hsa-mir-548f-3 5q22.1 I T7

hsa-mir-548f-5 Xp21.1 I T7

hsa-mir-548u 6p11.2 I T7

hsa-mir-3166 11q14.2 IG T7

hsa-mir-328 16q22.1 I G7

hsa-mir-1225 16p13.3 I* G7

hsa-mir-4271 3p21.31 E G7

hsa-mir-92b 1q22 I C7

hsa-mir-152 17q21.32 I C7

hsa-mir-296 20q13.32 I C7

hsa-mir-1249 22q13.31 I C7

hsa-mir-320c-1 18q11.2 I A8

hsa-mir-525 19q13.42 IG A8

hsa-mir-320b-2 1q42.11 I A9

hsa-mir-644 20q11.22 I T9

hsa-mir-4329 Xq23 IG T9

hsa-mir-1273c 6q25.2 I T11

hsa-mir-567 3q13.2 I A13

hsa-mir-1303 5q33.2 IG T13

hsa-mir-1234 8q24.3 I* G18

hsa-mir-1277 Xq24 I (AU)7

hsa-mir-620 2q24.21 I (UA)11

hsa-mir-558 12p22.3 I (GU)18

IG, intergenic; I, intronic; I*, mirtron (miRNAs from small intronic sequences); E,
exonic.
doi:10.1371/journal.pone.0031862.t001
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Statistical studies were performed on miRNAs with MNR

because of their largest number (n = 21). Based on the data

reported in Table 2, we show that the majority of miRNA genes

are rarely (3/21 with mutation rate #15%) or not altered (14/21,

66%) in MSI CRC cell lines, while very few genes (4/21; 19%) are

found to be significantly mutated. Similar results were obtained in

MSI CRCs (Table 2). However, alterations were less frequently

encountered in MSI tumors compared to cell lines, an observation

in accordance with what is reported for genes with coding MNRs

[24]. Additionally, we noted a significant correlation between the

size of miRNA MNRs and the mutation frequency in MSI tumors

(p,0.001, r = 0.76) (Figure 2). This correlation was already

observed for many microsatellite sequences independently of their

genomic localizations (intergenic, coding/exonic, coding/59 39

untranslated and intronic MNRs) (Figure S2).

miRNA genes with MNR segregate into different groups
Using a maximum likelihood statistical method as previously

described (refer to Materials and Methods and [24]), we identified

two distinct groups of miRNA genes containing MNR that

differed in their mutability in MSI primary tumors (Figure 3).

Briefly, the test considers that all genes belong to one group of

frequency and opposes to this configuration the alternative

hypothesis of two mutually exclusive groups of frequencies. The

likelihood ratio calculates the chances of each hypothesis and gives

the most ‘‘likely’’ to occur. The first, largest group comprises

miRNA genes found to be not or not much mutated in MSI

tumors (18/21; 86%). The second group contained 3 miRNA

genes (hsa-mir-1273c, hsa-mir-567 and hsa-mir-1303) frequently

mutated in MSI CRCs ($75%). Similar groups were defined in

MSI CRC cell lines (Figure S3).

Characterization of alterations and their impact on
mature miRNA expression

Our analysis allowed the identification of 3 MSI-targeted

miRNAs: hsa-mir-1273c, hsa-mir-567 and hsa-mir-1303. For these

genes, the great majority of MSI cell lines presented up to 3 bp

deletions (Figure 4, Table S2), and rarely a nucleotide addition

(Table S2). A bi-allelic mutation was also noted in 36%, 57% and

83% of altered MSI CRC cell lines for mir-1273c, mir-567 or mir-

1303, respectively (Figure 4, Table S2). Similar alterations were

found in MSI primary tumors with the exception of hsa-mir-1273c,

which generally displayed smaller levels of alterations in tumors

(only 1 bp-deletion) (Figure 4, Table S2). Concerning the

polymorphic hsa-mir-1303 gene, whose major allele displays an

A-deletion (Table S1), the hairpin precursor was sequenced in

each MSI CRC cell line to determine the real extent of the

deletion. Like LBL and MSS cell lines (Table S1), MSI cell lines

appeared to be homozygous (50%; delA/delA) or heterozygous

(50%, delA/A) for the ‘‘delA’’ allele. The relevance of the ‘‘delA’’

SNP in hsa-mir-1303 is shown in Figure 5A that illustrates changes

in the terminal loop of the mir-1303 hairpin structures. The

dimension of the loop containing the microsatellite decreases when

the alterations get bigger and whenever the hairpin structure

contains the A-addition SNP (Figure 5A).

Based on these results, we hypothesized that nucleotide

deletions encountered in miRNA precursors might affect the

biogenesis of mature miRs, modifying their levels of expression

and/or their sequence as reported for some other miRNA genes

[7,8,9,10]. Using specific quantitative RT-PCR technologies, we

determined the relative expression of each mature miR in wild-

type (WT) and mutated CRC cell lines in comparison to

expression in healthy colonic mucosae. Expression of miR-567

and miR-1273c was not detectable in colonic mucosae and

colorectal cell lines (CT.36 cycles) (data not shown); whereas

miR-1303 appeared to be fairly expressed in both normal and

tumor colonic cells (Figure 5B). Taking into account the level of

instability, miR-1303 expression was first analysed in MSI CRC

cell lines. With normal colonic mucosae serving as controls, no

difference in miR-1303 expression was noted between unaltered

hsa-mir-1303 MSI cell lines and the heterozygously mutated MSI

cell lines (Figure 5B). An increase in the expression of miR-1303

expression was nevertheless observed in some of the MSI cell lines

mutated on both alleles (Figure 5B). Furthermore, cell lines

supposed to have identical structures of miRNA hairpins

(Figure 5C), did not show comparable expression levels. It seems,

therefore, as long as the size of the loop does not correlate to the

levels of expression, that MSI alterations have no repercussion on

mature miR expression. A significant increase of miR-1303

observed in MSS CRC cell lines in comparison to normal colonic

mucosa supported this result (Figure 5B).

Discussion

To date, the only established indirect impact of MSI process on

miRNA biogenesis is the targeting and therefore disruption of

protein coding genes involved in miRNA processing and transport

[25,26,27,28]. Our study is the first reporting somatic mutations in

miRNA genes due to MSI in MMR-deficient CRCs. By screening

the quasi totality of MNR and DNR ($7 repeat units) contained in

miRbase-V15-annotated miRNA hairpin sequences, hsa-mir-

1273c, hsa-mir-1303 and hsa-mir-567 were demonstrated to be

Figure 1. Representative scheme of miRNA hairpins with
repeats spaning different locations. The basal segment (BS,
single-stranded RNA), stem (S, double-stranded RNA) and terminal loop
(L) are designated. The duplex (D, containing one or two potential miRs)
is considered as a different entity and therefore distinguished from the
stem region. Regions of the hairpin covered by MNRs or DNRs are noted
for each miRNAs. To the left of the scheme are miRNA genes whose
sequence repeats overlap two regions.
doi:10.1371/journal.pone.0031862.g001
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mutated at high frequency in both CRC cell lines and primary

tumors. Since high mutation frequency is the first criterion

currently taken into consideration to identify target genes that play

a role in the MSI-driven pathway to cancer [19,20,29,30], these

miRNA genes may thus constitute real target for MSI. In contrast,

all other miRNA alterations we identified are likely to be the result

of the background of genetic instability characterizing these

tumors. They were found to be affected at low frequency and may

play only a minor role in colon tumorigenesis, if any. Besides, some

miRNA genes containing microsatellite were found to be never

mutated in CRC cell lines and primary tumours. They might be

considered as ‘survivor’ miRNA genes whose mutations are not

selected for during tumor progression since they could be highly

deleterious for cancer cells [19].

MSI is also influenced by sequence criteria, e.g. the length of the

repeat. Expectedly, we observed an overall positive correlation

between the length of miRNA repeats and their mutation rates in

MSI CRC, corroborating the observation made for coding and

non-coding MNR. As required for protein coding genes [29,30],

functional criteria are necessary to assert that MSI-targeted

miRNA genes have a role in MSI colon tumorigenesis. MiRNAs

are deeply involved in the regulation of gene expression, being

Table 2. Polymorphism and somatic mutation frequency of microsatellite repeats in miRNA genes.

CRC cell lines Colorectal primary tumors

miRNA gene LBL (%) Polymorphism MSS (%) MSI (%) P value MSS (%) MSI (%) P value

MNR

hsa-mir-1302-7 1/33 (3%)a yes 0/13 (0%) 0/14 (0%)b NS 0/24 (0%) 1/36 (2.8%)b NS

hsa-mir-511 3/40 (7.5%)a yes 0/13 (0%) 0/14 (0%)b NS 0/23 (0%) 0/36 (0%)b NS

hsa-mir-543 6/35 (17.1%)a yes 0/13 (0%) 1/14 (7%)b NS 0/25 (0%) 2/39 (5%)b NS

hsa-mir-548f-3 0/36 (0%) no 0/13 (0%) 0/14 (0%) NS 0/23 (0%) 0/36 (0%) NS

hsa-mir-548f-5 0/38 (0%) no 0/13 (0%) 0/14 (0%) NS 0/24 (0%) 1/40 (2.5%) NS

hsa-mir-548u 0/32 (0%) no 0/13 (0%) 0/12 (0%) NS 0/23 (0%) 0/39 (0%) NS

hsa-mir-328 0/34 (0%) no 0/12 (0%) 0/14 (0%) NS 0/22 (0%) 0/40 (0%) NS

hsa-mir-1225 0/37 (0%) no 0/13 (0%) 0/13 (0%) NS 1/22 (4,6%) 0/33 (0%) NS

hsa-mir-4271 0/33 (0%) no 0/10 (0%) 0/13 (0%) NS 0/23 (0%) 1/38 (2.6%) NS

hsa-mir-92b 0/38 (0%) no 0/13 (0%) 0/14 (0%) NS 0/24 (0%) 0/40 (0%) NS

hsa-mir-152 0/40 (0%) no 0/13 (0%) 0/14 (0%) NS 0/20 (0%) 0/37 (0%) NS

hsa-mir-296 0/36 (0%) no 0/13 (0%) 0/14 (0%) NS 0/24 (0%) 0/38 (0%) NS

hsa-mir-1249 0/23 (0%) no 1/13 (7.7%) 0/13 (0%) NS 0/24 (0%) 2/39 (5%) NS

hsa-mir-320c-1 0/38 (0%) no 0/13 (0%) 0/14 (0%) NS 0/23 (0%) 1/38 (2.6%) NS

hsa-mir-525 0/38 (0%) no 0/13 (0%) 2/14 (14.3%) NS 0/21 (0%) 0/33 (0%) NS

hsa-mir-320b-2 0/37 (0%) no 0/13 (0%) 1/14 (7.1%) NS 0/24 (0%) 3/40 (7.5%) NS

hsa-mir-644 0/40 (0%) no 0/12 (0%) 6/14 (42.9%) 0.03 0/23 (0%) 8/39 (20.5%) 0.053

hsa-mir-4329 0/40 (0%) no 2/12 (16.7%) 0/13 (0%) NS 0/22 (0%) 6/38 (15.8%) NS

hsa-mir-1273c 0/32 (0%) no 0/13 (0%) 9/11 (82%) ,0.0001 0/25 (0%) 33/39 (84.6%) ,0.0001

hsa-mir-567 0/39 (0%) no 0/12 (0%) 14/14 (100%) ,0.0001 2/25 (8%) 31/39 (79.5%) ,0.0001

hsa-mir-1303 20/39 (51%)a yes 0/13 (0%) 12/14 (85.7%)b ,0.0001 0/23 (0%) 33/40 (82.5%)b ,0.0001

DNR

hsa-mir-1277 0/40 (0%) no 0/13 (0%) 0/14 (0%) NS 0/25 (0%) 1/41 (2.4%) NS

hsa-mir-620 32/40 (80%)a yes 0/13 (0%) 1/14 (7%)b NS 0/21 (0%) 1/38 (2.6%)b NS

hsa-mir-558 35/40 (87.5%)a yes 0/12 (0%) 4/13 (30.8%)b 0.095 0/24 (0%) 12/38 (31.6%)b 0.006

NS, not significant;
athe polymorphism rate is the percentage of normal samples showing length variations when compared to the major peak (see Table S1, Figure S1);
bmutation rates were estimated by taking into account sizes that diverge from the normal polymorphism (refer to Figure S1).
doi:10.1371/journal.pone.0031862.t002

Figure 2. Correlation between the lengths of mononucleotide
repeats in miRNAs and their mutation rates in MSI CRCs. Note
the highly significant correlation observed.
doi:10.1371/journal.pone.0031862.g002
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therefore associated with various biological processes. No

biological role has yet been attributed to hsa-mir-1303 that is,

amongst these, the only miR that was significantly expressed in the

colonic mucosa. Several hundreds of mRNA can be assigned in

silico to miR-1303 depending on the software used, and further

analyses are necessary to define those whose in vivo expression

really depends on hsa-mir-1303. Furthermore, the priority is to

prove that MNR alterations due to MSI may impact mir-1303

function. Several teams have already highlighted the major role of

the terminal loop within the primary miRNA hairpin in miRNA

biogenesis and function [8,9]. In addition, a single base alteration

(i.e. SNP) within the miRNA gene itself (pri-, pre- and mature

miRNA sequences) is sometimes sufficient to alter miRNA

expression and/or function in cancers, blocking the processing

of pri-miRNA to pre-miRNA [23,31] or, conversely, increasing

mature miR expression [32]. We failed here to observe any

evident correlation between expression level of mature miR-1303

and mutation in the DNA repeat contained in its terminal loop in

MSI CRC cells, regardless of the SNP adjacent to the loop.

Further studies using appropriate plasmid constructions will be

developed to know whether MNR mutations affecting this miRNA

gene could modify the processing of the mature miR-1303

generating different miRs [33] or the function of the pri- or pre-

miRNA molecules that are recently reported by Trujillo et al. [34]

to be biologically active.

In conclusion, our findings have two main implications for the

role of miRNA in MSI-driven carcinogenesis. They first provide

evidence that MSI CRCs display only a few somatic mutations

affecting a small number of miRNA genes containing DNA

repeats with yet unclear consequence on the processing and

function of these molecules. Functional studies are now required to

enforce the idea that the miR-1303 might have a role in MSI

tumorigenesis. Secondly, they show that DNA repeats contained in

miRNA genes are relatively rare and usually preserved from

mutations due to MSI in MMR-deficient cancer cells. This study

focuses on the nucleotide repeats located in the hairpin sequences

that contain at least the pre-miRNA, and could be enlarged to

MNR located in other regions of miRNA genes important for the

transcription and the processing of large primary miRNA

transcripts (pri-miRNAs).

Materials and Methods

DNA samples
Normal DNA was obtained from 40 healthy individuals

(lymphoblastoid cell lines) provided by CEPH (Centre d’Etude

du Polymorphisme Humain, Paris, France). Primary tumor tissues

(41 MSI and 25 MSS tumors) from patients undergoing surgery

for CRC at either the Saint-Antoine hospital (Paris, France) or the

hospital of Hautepierre (Strasbourg, France) were collected at the

Biological Resources Centers of each institution. Written informed

consent was obtained from all patients. Ethics approval was

obtained from the Human Research Ethics Committee (Paris,

France) and from the ‘‘Comité pour la Protection des Personnes de

Strasbourg’’ (CPPEST IV, Strasbourg, France). The MSI status

was determined by fluorescent multiplex PCR, as previously

described [35], and allowed the evaluation of the percentage of

epithelial carcinoma tissue in MSI samples. Only tumors with at

least 40% of tumor material have been included in our study.

DNA was extracted from 14 MSI and 13 MSS CRC cell lines

using QIAamp DNA mini Kit (Qiagen, Courtaboeuf, France)

according to manufacturer’s instructions.

Identification of mono- and dinucleotide repeats
A systematic screening for mono and dinucleotide repeats was

performed in miRbase (version 15, April 2010 release) (http://

www.mirbase.org/) [6]. This database provides sequences of

miRNA hairpin precursors and mature miRNAs in various

species. We selected human miRNAs having at least 7 repeat

units. This minimum number was chosen because microsatellites

were rarely found to be unstable below 7 repeats (refer to

SelTarbase, http://www.seltarbase.org/).

Figure 3. Classification of miRNAs with MNR according to their mutation frequencies in MSI CRCs. Two distinct groups of miRNAs with
MNR are established based on their mutation frequencies in MSI primary tumors. The cut-off value is calculated by the ratio of likelihood statistical
method and is marked by a dashed vertical line. Note that hsa-mir-644 is included in the group of miRNAs rarely or not mutated in MSI CRCs (n = 18,
frequency of mutation ,25%) whereas hsa-mir-1273c, hsa-mir-567 and hsa-mir-1303 constitute the group of miRNAs frequently altered (n = 3,
frequency of mutation .75%).
doi:10.1371/journal.pone.0031862.g003
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Mutation analysis
Specific primers flanking the hairpin sequences were designed

using the Amplifix software for each miRNA candidate. PCR

amplification was performed in a final volume of 25 ml with 5 ng

of DNA, high or low MgCl2 concentration, with or without Q

solution, and Taq DNA polymerase (Qiagen). Primer sequences

are listed in Table S3. The thermal cycling conditions comprised

an initial denaturation step at 94uC for 3 min, followed by 35

cycles at 94uC for 45 sec; 60uC for 60 sec and 72uC for 60 sec.

Finnzyme Phusion High-Fidelity DNA polymerase (Thermo

Fisher Scientific, Illkirch, France) was also used in some cases

according to manufacturer’s protocol. Adequate dilutions of the

fluorescent PCR products were mixed with formamide and

GeneScanTM 400HD ROXTM Size Standard (Life Technologies,

Courtaboeuf, France), heat-denatured and run on a short capillary

containing GS Performance Optimized Polymer 7 on the ABI

3100 Genetic Analyzer. Data were visualized and annotated in the

GeneMapper 3.7 software (Life Technologies).

Sequencing of hsa-mir-1303 hairpin precursor
A sequence containing the hsa-mir-1303 hairpin precursor was

amplified by the Finnzyme Phusion High-Fidelity DNA polymerase

(Thermo Fisher Scientific) using the following primers: F-

GTGAACTAAACGCTGCCTCTGCTA and R-TGCAGGA-

ACCGTACTAAGCACT (Tm = 66uC). PCR products were then

purified on 96-well Multiscreen-PCR filtration plats (Millipore,

Molsheim, France). Sequencing reaction was carried out using the

Big Dye Terminator Kit V3.1 (Life Technologies) according to the

manufacturer’s protocol and using separately the forward or reverse

primers. Sequences products were then purified on 96-well

Multiscreen-DV plates (Millipore) with Sephadex G-50 Fine and

analysed on an ABI 3100 Genetic Analyzer (Life Technologies)

Reverse-Transcription and Real-Time quantitative PCR
Total RNA was prepared from exponentially grown cells (9 MSS

and 14 MSI CRC cells) and normal colonic mucosa from patients

with CRC (n = 7) using TRIzol reagent (Life Technologies) then

quantified using a NanoDrop spectrophotometer. cDNAs were

generated from 10 ng or 100 ng of total RNA using miRNA-specific

stem loop RT primers (Life Technologies) for miR-1303 or miR-

1273c, respectively. RT-qPCR assays were performed in triplicate

on an ABI 7900 Sequence Detection System using the TaqMan

MicroRNA assay according to the manufacturer’s instructions (Life

Technologies). For the detection of miR-567, the miScript PCR

system (miScript RT and miScript SYBR Green PCR kits) was used

according to the manufacturer’s instructions (Qiagen). With both

technologies, CT, the cycle number at which the amount of

amplified target reaches a fixed threshold, was determined. CT

above 36 were considered as false positives. Mature miRNA

expression was normalized to that of RNU48 (Life Technologies)

or RNU6B (Qiagen) (DCT = CTmiR2CTRNU). Comparative quan-

tification was performed using a calibrator sample. Relative miRNA

expression was expressed as 22DDCT (22(DCT sample2DCTcalibrator)).

The thermal cycling conditions comprised 45 cycles at 95uC for 15 s

and 60uC for 1 min (Life Technologies) or 45 cycles at 94uC for 15 s,

55uC for 30 s and 70uC for 30 s, preceded by an initial activation

step at 95uC for 15 min (Qiagen).

Statistical analyses
The differences between variables were assessed with the Chi-2

or Fisher’s exact test, when required. Student t-test was used to

evaluate differences in miR expression levels.

As previously described by Duval et al., a ratio of likelihood was

calculated to assign each miRNA to a frequency group [24]. With

Ni, the number of tumors tested at locus i and ni, the number of

tumors unstable at this locus, the H1 alternative hypothesis

assumes the presence of two types of loci (ie. miRNA genes) that

differ in their mutation frequencies (a ‘‘stable’’ group with a low

mutation rate, p1; and an ‘‘unstable’’ group with a high mutation

rate, p2. a and 1-a are the proportions of sites with the p1 and p2

Figure 4. MNR instabilities in hsa-mir-1273c (T11), hsa-mir-567
(A13) and hsa-mir-1303 (T13). Allelic profiles for several MSI CRC cell
lines and primary tumors are shown. Normal profiles are defined in LBL
and MSS cell lines and primary tumors. For monomorphic genes, a
dashed vertical line indicates the unique allele. The polymorphic zone
for hsa-mir-1303 is defined between two dashed vertical lines going
along the 2 alleles (see Figure S1). Sizes (bp) are indicated in a box
below each profile. Various allelic deletions ranging from 1 to 4 bp were
observed in MSI CRC cell lines and primary tumors and are indicated in
bold. The observed deletions were sometimes bi-allelic in MSI CRC cell
lines. In MSI primary tumors, the allelic profiles were also highly
suggestive of bi-allelic mutations. Due to the inherent polymorphism
that can modify the length of the sequence, the hairpin sequence of
hsa-mir-1303 was determined for a correct and reliable evaluation of the
alterations in MSI CRC cell lines (see Table S2).
doi:10.1371/journal.pone.0031862.g004
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instability respectively). Conversely, the H0 null hypothesis

assumes that all miRNA genes can be grouped in one frequency

class, p0, where no significant differences exist between each

miRNA locus. The ratio of likelihood is given by: 2 ln
L(H1)

L(H0)

where L(H0)~P
i

Ni

ni

� �
½pni

0 (1{p0)Ni{ni �

and L(H1)~P
i

Ni

ni

� �
½ap

ni
1 (1{p1)Ni{ni z(1{a)p

ni
2 (1{p2)Ni{ni �

This ratio follows a Chi-square distribution with two degrees of

freedom.

For all tests, a 95% confidence interval was applied and P,0.05

was considered as significant.

Supporting Information

Figure S1 Allelic profiles of polymorphic miRNA genes
in LBLs. For hsa-mir-1303 (T13), hsa-mir-620 ((TA)11) and hsa-mir-

558 ((GT)18) genes, the polymorphic zone is determined between

the smallest and the largest alleles (located between the two dashed

vertical lines) observed in a large series of 40 lymphoblastoid cell

lines from healthy individuals. The length of the predominant

alleles (bp) is indicated in a box below each profile.

(TIF)

Figure 5. Secondary structures of WT and mutated hsa-mir-1303 and expression levels of miR-1303 in CRC cell lines. A: Alterations in
repeat sequences of hsa-mir-1303 (A) and its variant (delA) did not seem to affect overall the secondary structure of the hairpin but the dimension of
the loop (annoted inside) is slightly reduced as determined by mfold software (http://mfold.rna.albany.edu/). Mature miR (bold letters) and MNR
(underlined letters) are shown in both hairpin sequences. The arrows indicate the potential positions of an Adenine deletion that leads to an
enlargement of the loop. B: Comparison of the relative expressions of mature miR-1303 in MSS (unaltered MNR) and MSI CRC cell lines with none,
mono- or bi-allelic mutations of hsa-mir-1303. MiR expression was normalized to the expression of RNU48. Means are shown for each group (black
horizontal line). A significant increase in the expression of miR-1303 was observed between MSS cell lines and normal colonic mucosae (p = 0.012). C:
Absence of correlation between the size of mir-1303 loop and the levels of mature miR-1303 expression in MSI cell lines with no (HCT-8, TC7) or bi-
allelic mutations (LS411, RKO, LIM2405, KM12, LoVo, HCT116) in MNR of hsa-mir-1303. Note cell lines that produce hairpin precursors with the same
size of the loop do express mature miR-1303 at various levels.
doi:10.1371/journal.pone.0031862.g005
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Figure S2 Comparison of mutation frequencies of
miRNA MNRs to those of exonic, untranslated, intronic
or intergenic MNRs. MNRs with sizes between 7 and 13 bp

and different genomic locations were included in this comparison.

These MNRs are taken from SelTarbase (http://www.seltarbase.

org/, October 2010 release), an open database of human

mononucleotidic microsatellite mutations in MSI cancers.

(TIF)

Figure S3 Classification of miRNAs with MNR based on
to their mutation frequencies in MSI CRC cell lines. Two

distinct groups of miRNAs with MNR are determined according

to the frequency of mutation in MSI cell lines. The cut-off value is

calculated by the ratio of likelihood method and is signalled by a

dashed vertical line. Note that hsa-mir-644 is incorporated in the

group of miRNAs frequently altered, that also includes hsa-mir-

1273c, hsa-mir-567 and hsa-mir-1303 (n = 4, frequency of mutation

.45%). All the other miRNAs constitute the group of miRNAs

rarely altered or not altered at all (n = 17, frequency of mutation

,15%).

(TIF)

Table S1 Allelic distribution of polymorphic miRNA
genes in LBLs and MSS colorectal tumors and cell lines.

(DOC)

Table S2 Size alterations of miRNA loci in MSI CRC cell
lines.

(DOC)

Table S3 Primers sequences for mutation analysis of
miRNAs.

(DOC)
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