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Dengue fever (DF) is one of the most 
prevalent arboviral diseases in the world, and 
its global range of transmission has increased 
significantly in recent decades (Phillips 2008). 
Secondary DF infection with a serotype of 
dengue virus different from that of the primary 
infection commonly results in the more serious 
dengue hemorrhagic fever (Gubler 1998). The 
large-scale reemergence of DF during the past 
few decades has renewed the status of DF as 
a serious international public health problem, 
especially in tropical and subtropical areas, 
including Australia (Gubler 1998; Rogers et al. 
2006). Over the past 17 years (1993–2009), 
6,271 laboratory-confirmed DF cases have 
been reported to the Australian Department 
of Health and Ageing (2010). Major outbreaks 
have occurred in northern Queensland, cen-
tered in Cairns, Townsville, and the Torres 
Strait islands (Hanna et  al. 1998, 2001; 
Tropical Public Health Unit Network 2004). 
Although DF is not naturally endemic in 
Australia, the dengue vector—Aedes aegypti—
inhabits northern Queensland, and outbreaks 
can occur when the virus is introduced to the 
local mosquito population by infected interna-
tional travelers and migrants or residents who 
were infected while traveling overseas (Tropical 
Public Health Unit Network 2004). The recent 
arrival of the exotic species—Aedes albopictus—
into Australia is of greater concern for south-
ern Australia (Russell 2009). If Ae. albopictus 

becomes colonized on the mainland, it could 
very likely extend to all the southern states 
(Russell et al. 2005), broadening the potential 
geographical range of dengue transmission in 
Australia. Currently, no antidengue drugs are 
available, and no effective vaccine is available 
for DF (Edelman 2005).

Weather conditions directly affect the 
breeding, survival, and abundance of mosquitoes 
(Hales et al. 2002). The ideal temperature range 
for transmission of DF is 18–33.2°C, with 
female mosquitoes feeding more frequently 
when temperatures are higher (Depradine 
and Lovell 2004; Nagao et al. 2003). Some 
studies show that meteorological variables (e.g., 
rainfall, temperature, and relative humidity) are 
important climatic factors that could influence 
the risk of DF outbreaks (Depradine and Lovell 
2004; Diallo et al. 2003). These variables can be 
modeled to predict the onset and severity of DF 
epidemics. Social and economic factors may 
also contribute to DF transmission (Mondini 
and Chiaraualloti-neto 2008). Traveling to 
DF-endemic regions may also increase the risk 
of transmission (Schwartz et al. 2008; Wilder-
Smith and Gubler 2008; Wilder-Smith and 
Schwartz 2005). Unplanned urbanization 
and declining and inadequate public health 
resources for vector control are also key factors 
that promote dengue transmission (Gubler and 
Clark 1996). However, existing forecasting 
models for DF usually consider one set of 

variables (e.g., climate variability) and do 
not account for socioecological factors such 
as travel, sociodemographic characteristics, 
or interactions between climate variables and 
socioeconomic factors.

In Australia, current DF surveillance 
focuses on detecting imported cases, because 
a viremic traveler (imported case) could read-
ily initiate an outbreak. However, an outbreak 
is declared only after a locally acquired case 
becomes confirmed (Tropical Public Health 
Unit Network 2004). Therefore, assessing both 
imported and locally acquired cases is crucial 
for modeling DF epidemic dynamics and eval-
uating the risk of DF (Degallier et al. 2009).

Bayesian spatial models provide a flexi-
ble and rigorous approach for multilevel spa-
tial analysis and disease mapping (Best et al. 
2005). They are increasingly being used to esti-
mate spatial variation in infectious disease risk 
among spatially aggregated units and associated 
uncertainty (Hu et al. 2010c). These models 
can offer suitable platforms for incorporating 
and estimating spatial correlation while simul-
taneously estimating covariate effects.

Our previous study showed that there 
has been an increase in DF cases in southeast 
Queensland (Hu et al. 2010b). However, the 
underlying causes of changes in spatial patterns 
of DF need further investigation. In the pres-
ent study, we examined the potential impact of 
socioecological factors on DF in Queensland 
and assessed differences in spatial patterns and 
predictors of locally acquired and overseas-
acquired DF in Queensland, Australia.

Materials and Methods
Study area. Queensland is located in north-
east Australia between latitudes 10–28° S 
and longitudes 138–153° E; it covers around 
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1,727,200 km2, with 7,400 km of mainland 
coastline. There is significant variation in cli-
mate across the state. Low rainfall and hot 
summers occur in the inland west. A mon-
soonal pattern of wet and dry seasons is typi-
cal for the far north, and warm temperate 
conditions occur along the coastal strip. 
Queensland has an average temperature of 
25°C in summer and 15°C in winter. The 
average annual rainfall of about 1,000 mm 
falls mostly between January and March and 
ranges from < 150 mm/year in the south-
west to > 4,000 mm/year on the far north-
ern coast. There are 125 local government 
areas (LGAs) in Queensland, with popula-
tions ranging from 312 to 888,449 people 
(Australian Bureau of Statistics 2010).

Data collection. We obtained data from 
Queensland Health (the state government 
department of health, Brisbane, Australia) 
on numbers of notified DF cases by LGA, 
acquired both locally and overseas, for the 
period 1 January 2002 to 31 December 2005. 
Because DF is a notifiable infectious disease, it 
is a legal requirement for laboratories to report 
positive test results to the Communicable 
Disease Unit at Queensland Health, where the 
data are archived. These DF notification data 
were entered into a digital base map of LGAs 
using a geographic information system (GIS). 
We also obtained data on weather (including 
temperature and rainfall) from the Australian 
Bureau of Meteorology (Brisbane, Australia), 
including interpolated monthly mean maxi-
mum temperature and monthly precipitation 
between January 2002 and December 2005, 
which were available at a 0.25° × 0.25° grid 
resolution. Average temperature and rainfall 
values for each LGA during the study period 
were extracted using the GIS software pack-
age Vertical Map, version 3.0 (MapInfo 
Corporation 2003). We obtained data for the 
same time period for each LGA on the socio-
economic index for areas (SEIFA) and socio-
demographic factors, including population 
size and numbers of overseas travelers, from 
the Australian Bureau of Statistics (2010). 
SEIFA index values are derived from multiple-
weighted variables that take into account vari-
ables relating to education, occupation, wealth 
and living conditions, and so forth. SEIFA 
can provide a rank of the level of social and 
economic well-being by regions; lower values 
indicate lower socioeconomic status. We mod-
eled SEIFA as a continuous variable because 
its distribution was not highly skewed, and 
we did not want to lose information or reduce 
statistical power by categorizing the variable.

Data analysis. Separate Poisson regression 
models were developed in a Bayesian frame-
work for locally acquired and overseas-acquired 
cases, using WinBUGS software, version 1.4.3 
(MRC Biostatistics Unit 2008). These models 
assumed that the observed counts of DF cases 

(Ok) for the kth LGA (k = 1 . . . 125) followed 
a Poisson distribution with mean μk:

	 Ok ~ Poisson(μk) 	 [1] 
and 
	 log(μk) = log(Ek) + θk, 	 [2]

where Ek (the expected number of cases in 
LGA k) is an offset to control for population 
size. The mean log relative risk (RR), θk, for 
each predictor was modeled as

θk = α + (Tempk)β1 + (Raink)β2  
	 + (SEIFAk)β3 + (Visitorsk)β4  
	 + uk + vk, � [3]

where α is the intercept, β1 is the coefficient for 
temperature, β2 is the coefficient for rainfall, β3 
is the coefficient for SEIFA, β4 is the propor-
tion of overseas visitors in LGA k (numbers of 
overseas visitors and population of LGA), uk is 
a spatially structured random effect with mean 
zero and variance σu

2, and vk is a spatially 
unstructured random effect with mean zero 
and variance σv

2. Modeled values for tempera-
ture, rainfall, and SEIFA were centered around 
the mean values for each variable. Spatial struc-
turing in uk was modeled using a conditional 
autoregressive (CAR) prior structure, with spa-
tial relationships between LGAs modeled using 
a simple adjacency weights matrix (Lawson 
et al. 2003). Thus, uk has a normal distribution 
with conditional weighted mean given by the 
simple average of the neighbors of uk and con-
ditional variance inversely proportional to the 
number of neighbors.

We conducted an initial burn-in of 5,000 
iterations that were subsequently discarded. 
Convergence was assessed by visual inspec-
tion of posterior density plots, history plots, 
and autocorrelation of selected parameters. 
Convergence was reached within the first 
20,000 iterations for the model. A subsequent 
set of 40,000 iterations was used for more accu-
rate estimation (MRC Biostatistics Unit 2003). 
Model selection was undertaken using the 
deviance information criterion (DIC), where a 
lower DIC indicates a better trade-off between 
model fit and parsimony. In addition, mod-
els of locally acquired DF were run with and 
without data for a single outlier LGA (defined 
as observations well outside the main body of 

the data). In Poisson regression models, main 
effects and interaction effects were both con-
sidered. In all analyses, we adopted an α-level 
of 0.05 to indicate statistical significance.

Results
Table 1 shows the summary statistics for 
each variable. The mean monthly numbers 
of locally acquired and overseas-acquired DF 
cases were 7.89 and 1.54, respectively; the 
mean monthly maximum temperature, rain-
fall, SEIFA, and proportion of overseas visi-
tors were 28.55°C, 57.81 mm, 935.61, and 
12.27‰ (per thousand), respectively.

Scatterplots with regression lines in 
Figure 1 depict the crude relationships between 
the dependent and independent variables. 
These plots reveal that incidence rates of locally 
acquired DF were positively associated with 
average rainfall and maximum temperature, 
whereas incidence rates of overseas-acquired 
DF were positively associated with all the inde-
pendent variables. One LGA had an extremely 
large number of locally acquired DF cases (512 
cases, compared with the next highest value of 
316 cases).

Figure 2 shows the spatial patterns of aver-
age monthly rainfall, maximum temperature, 
proportion of overseas visitors, and SEIFA in 
Queensland by LGA, as well as numbers of 
locally acquired and overseas-acquired cases. 
These maps confirm variation in these charac-
teristics by geographical location.

The estimated increase in locally acquired 
DF cases was 6% [95% credible interval (CI): 
2%, 11%] and 61% (95% CI: 2%, 241%) 
for a 1-mm increase in average monthly rain-
fall and a 1°C increase in average monthly 
maximum temperature, respectively (Table 2). 
The expected increase in overseas-acquired 
DF cases was 1% (95% CI: 0%, 3%) and 1% 
(95% CI: 0%, 2%) for a 1-mm increase in 
average rainfall and a 1-unit increase in SEIFA 
score, respectively. No substantial associa-
tions were observed between locally acquired 
DF and the proportion of overseas visitors 
or SEIFA, or between overseas-acquired DF 
and maximum temperature or the propor-
tion of overseas visitors. The estimated spa-
tial variation (u; mean ± SD = 0.745 ± 0.745 
for locally acquired cases and 0.331 ± 0.363 
for overseas-acquired cases) was small relative 

Table 1. Descriptive statistics of DF and socioecological factors by LGA in Queensland, January 2002 
through December 2005.

Variable Mean ± SD Range
DFa

Locally acquired 7.89 ± 54.81 0–521
Overseas acquired 1.54 ± 7.31 0–76

Temperature (°C)b 28.55 ± 2.47 23.96–34.11
Rainfall (mm)c 57.80 ± 30.43 10.61–260.44
SEIFA 935.61 ± 41.63 831.36–1059.84
Proportion of overseas visitors (‰)d 12.27 ± 24.49 0–219.23
aNumbers of locally acquired DF by LGA and of overseas-acquired DF. bAverage maximum temperature by LGA. cAverage 
rainfall by LGA. dNumber of overseas visitors and population of LGA (per thousand).
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to the remaining unstructured variation (v; 
2.346 ± 0.707 for locally acquired cases and 
0.483 ± 0.258 for overseas-acquired cases; 
Table 2). The spatial variation is the variation 
that is spatially structured (i.e., demonstrates 
spatial autocorrelation), after accounting for 
the model covariates (which themselves may 
explain some of the spatial structure of the 
data). The unstructured variation is the com-
ponent that is spatially random. We tested 
interactions between rainfall, temperature, 
SEIFA, and proportion of overseas visi-
tors in our models. However, no significant 
interactions were found among the variables 
(p > 0.05). Spatial models that included both 
spatially structured and unstructured random 
effects had the smallest DIC (136 and 183 
for models of locally acquired and overseas-
acquired DF, respectively, vs. 138 and 185 
for models with a spatially structured random 
effect only and 1,646 and 198 for models 
without random effects).

Spatial Bayesian CAR analyses of locally 
acquired DF were conducted with and with-
out an LGA that had an extreme value for 
locally acquired DF cases, and the model 
estimated without the extreme observation 
was slightly better fit than the model with 
the extreme observation (the DIC decreased 
from 135 to 128). However, average rain-
fall (RR = 1.05; 95% CI: 1.03, 1.08) and 

maximum temperature (RR = 1.58; 95% CI: 
1.03, 2.33) were still significantly associated 
with locally acquired DF when the outlier was 
excluded from the model.

Posterior estimated RRs of locally acquired 
and overseas-acquired DF indicated that high-
risk areas of locally acquired DF were located 
in northern Queensland, whereas high-risk 
areas of overseas-acquired DF were located in 
coastal cities of Queensland (Figure 3).

Estimated residual variation after taking 
into account the socioecological variables indi-
cated that high-incidence LGA clusters for 
locally acquired DF were located in northern 
Queensland, whereas high-incidence LGA 
clusters for overseas-acquired DF were located 
in northern and southeastern Queensland 
(Figure 4). Figure 3 is based on the raw data 
and shows the overall spatial variability within 
the dataset. Figure 4 shows the spatial random 
effect, which, as described above, is the com-
ponent of variation that is spatially structured 
(i.e., demonstrates spatial autocorrelation), after 
accounting for the model covariates. It is, in 
effect, a spatially smoothed representation of the 
residual risk after accounting for the covariates.

Discussion
The results of this study indicate that socio
ecological factors may have played a significant 
role in the transmission of DF in Queensland, 

Australia. DF risk is spatially clustered with 
different patterns for locally acquired and 
overseas-acquired cases. There appeared to 
be different socioecological drivers of locally 
acquired and overseas-acquired DF. Clusters 
for locally acquired DF indicated high-risk 
areas in northern Queensland, whereas clusters 
for overseas-acquired DF indicated high-risk 
areas in northern and southeastern Queensland. 
Therefore, identifying locally acquired and 
overseas-acquired DF is crucial for developing 
an integrated early warning system for DF.

Social and economic factors may affect DF 
transmission directly or indirectly. Tourism 
and travel have become important mecha-
nisms for facilitating the spread of DF and its 
vectors (Wilder-Smith and Schwartz 2005). 
In this study, we found that the average score 
of SEIFA in an LGA was associated with over-
seas-acquired DF in Queensland. The results 
suggest that a higher average SEIFA score 
(indicating LGAs with higher average socio-
economic status) is associated with an increase 
in the number of overseas-acquired DF cases. 
People in the higher socioeconomic groups 
may be more likely to engage in recreational 
activities such as camping and overseas 
travel that may increase the risk of becoming 
infected with DF. There was little evidence 
of a relationship between rainfall and DF for 
overseas-acquired cases, which is consistent 
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Figure 1. Scatterplot with regression lines of DF incidence rates and explanatory variables.
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Figure 2. Locally acquired DF and overseas-acquired DF by rainfall (A), maximum temperature (B), SEIFA (C), and proportion of overseas travel (D), by LGA 
in Queensland.
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with expectations given that local environ-
mental conditions would not be expected to 
influence the risk of becoming infected while 
overseas. Maps of the spatially structured ran-
dom effect indicate residual spatial clustering 
that is not explained by the socioecological 
factors included in the models. Bayesian CAR 
methods can incorporate spatial correlation 
and uncertainty into the modeling process 
by including unknown parameters as random 
variables (Zacarias and Andersson 2010). This 

approach compensates for residual variability 
resulting from spatial variation in parameters 
that were not included in the models, such as 
land use, urbanization, air-conditioning use, 
population density, and water storage prac-
tices (Hu et al. 2010c).

Temperature and rainfall were associated 
with the incidence of locally acquired DF in 
Queensland. Rainfall has also been identified 
as a contributing factor in the transmission 
of DF (Banu et al. 2011; Hurtado-Diaz et al. 

2007). All mosquitoes including Ae. aegypti 
have aquatic larval and pupal stages and there-
fore require water for breeding. A few studies 
have suggested that the greatest increase in 
Ae. aegypti density occurs at the onset of a rainy 
season (Keating 2001; Lu et al. 2009; Nagao 
et  al. 2003). Temperature can also affect 
pathogen replication, maturation, the period 
of infectivity, and the vector’s geographic range 
or distribution. Higher temperatures accelerate 
the rate of development of the DF arboviruses, 
thus increasing the proportion of mosquitoes 
that are infectious (Patz et al. 1998). It has 
been suggested that global climate change will 
have an effect on the future spatial and tem-
poral distribution of DF (McMichael et al. 
2006). As climate change continues, there are 
some concerns that the endemic range of DF 
will expand geographically (Hopp and Foley 
2001). Increasing temperatures could increase 
the transmission potential and prevalence of 
DF and extend the season during which DF 
transmission occurs (Patz 2001). The relative 
importance of environmental versus social 
variables on the risk of infection is unclear 
(Russell 2009; Russell et al. 2009). With the 
incidence rates of DF continuing to increase, 
the relative importance of and interaction 
between environmental and climatic factors 
need to be elucidated. A recent study suggested 
that the expanded use of large rainwater tanks 

Table 2. Regression coefficients from Bayesian spatial CAR models of DF in Queensland, Australia.

Variable Posterior mean ± SD Monte Carlo error RR (95%CI)
Model 1: locally acquired cases

Intercept –5.349 ± 1.004 0.04
Rainfall (mm) 0.061 ± 0.019 < 0.01 1.06 (1.02, 1.11)
Temperature (°C) 0.476 ± 0.213 < 0.01 1.61 (1.03, 2.41)
SEIFA 0.004 ± 0.012 < 0.01 1.00 (0.98, 1.03)
Proportion of overseas visitors (‰) –0.002 ± 0.016 < 0.01 0.99 (0.97, 1.03)
Heterogeneity

Structured (u) 0.745 ± 0.745 0.08
Unstructured (v) 2.346 ± 0.707 0.04

Model 2: overseas-acquired cases
Intercept –0.973 ± 0.2763 < 0.01
Rainfall (mm) 0.014 ± 0.005 < 0.01 1.01 (1.00, 1.03)
Temperature (°C) –0.048 ± 0.004 < 0.01 0.95 (0.77, 1.14)
SEIFA 0.008 ± 0.004 < 0.01 1.01 (1.00, 1.02)
Proportion of overseas visitors (‰) –0.002 ± 0.016 < 0.01 0.99 (0.97, 1.03)
Heterogeneity

Structured (u) 0.331 ± 0.363 0.02
Unstructured (v) 0.483 ± 0.258 0.01

Figure 3. RR of locally acquired DF (A) and overseas-acquired DF (B) from spatial CAR model.
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throughout urban regions of Australia may 
have a greater impact on vector distributions 
than on the direct effects of warming in the 
future (Beebe et al. 2009). Reiter et al. (2003) 
suggested that the low prevalence of DF is 
primarily due to economic and behavioral fac-
tors (e.g., use of air-conditioning) rather than 
climatic factors. Another study suggested that 
effects of global climate change on DF will 
vary among different local areas (Johansson 
et al. 2009).

Hales et al. (2002) used logistic regres-
sion to model the presence or absence of DF 
on the basis of 1961–1990 climate reports. 
They concluded that the geographical limits 
of DF transmission are strongly determined 
by climate. The model results were applied to 
future climate change situations to generate 
projections of DF in the 2050s and 2080s. 
Rogers et al. (2006) used nonlinear discrimi-
nant analysis to capture the covariance charac
teristics of sites of DF presence and absence. 
However, such models do not account for 
many nonclimate aspects of the future world, 
and spatial autocorrelation was not completely 
removed by these studies.

Transmission of DF is determined by 
many factors, including social, economic, 
climatic, and ecological conditions and human 
immunity (McMichael et al. 2006). Climate 
change might affect the geographic range of 

various vector-borne diseases, including DF, 
although empirical evidence needs to be fur-
ther established. Rainfall has become more 
variable globally, and the frequency of intense 
rainfall has increased in some areas. Our 
previous results suggested that a decrease in 
the Southern Oscillation Index, which is a 
standardized index based on the observed sea 
level pressure differences between Tahiti and 
Darwin, Australia (i.e., warmer and drier con-
ditions), was significantly associated with an 
increase in the monthly numbers of postcode 
areas with reported DF cases in Queensland, 
Australia (Hu et  al. 2010a). Therefore, a 
dynamic and integrated early warning system 
based on climate might help risk managers 
and local public health authorities identify 
the communities at increased risk of DF. The 
advantage of this approach would be to plan 
DF control and prevention programs well in 
advance rather than waiting for the occurrence 
of outbreaks during epidemic seasons.

The DIC was employed for model com-
parison in this study. Other measures can also 
be used for model comparison, such as the log-
arithmic score (LS) and its variants (the cross-
validated LS, continuous ranked probability 
score, score regression, and mean Brier score) 
(Gneiting and Raftery 2007; Roos and Held 
2011). These measures focus primarily on the 
log likelihood and predictive fit, whereas the 

DIC is an approximation of the Bayes factor 
that is an accepted measure for Bayesian model 
evaluation, particularly for models without 
many random effects. However, in practice, 
for models such as the one considered here, 
there is little difference in model choice based 
on the DIC and LS (Riebler et al. 2011).

The strengths of this study are that, first, a 
sophisticated Bayesian spatial model was used 
to evaluate the difference in the potential pre-
dictors between locally acquired and overseas-
acquired cases of DF in Queensland. Second, 
comprehensive and detailed information on 
socioecological factors by LGA was linked 
across the whole state and incorporated into 
the statistical models. Finally, the results from 
this study may have important implications 
for public health decision making in identify-
ing risk factors and high-risk areas to control 
and prevent DF infection.

This study has two major limitations. 
First, measurement and information biases 
are possible in this type of ecological study. 
For example, underreporting would have been 
likely if people infected by DF had subclinical 
conditions and did not seek medical atten-
tion. Second, little biological or behavioral 
information was available on community- 
or individual-level factors (e.g., mosquito 
population densities, human behaviors, and 
population immunity) that may potentially 

Figure 4. Spatial random effects for incidence of locally acquired DF (A) and overseas-acquired DF (B).
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confound associations between the socioeco-
logical characteristics examined and DF trans-
mission. For example, we could not account 
for differences in the use of air-conditioning. 
If the global warming trend continues, air-
conditioning may become even more preva-
lent, which may decrease the probability of 
DF transmission by decreasing time spent 
outdoors or exposure to vectors that enter 
homes through open windows.

The overall findings of this study support 
the notion of different socioecological drivers 
of locally or overseas acquired DF. An early 
warning system for DF based on a Bayesian 
spatial model would facilitate the early identi-
fication of impending epidemics, which could 
lead to a more rapid response than is possible 
currently, thereby reducing the magnitude 
and health and economic impact of epidem-
ics. Novel methods developed in this study 
may have wide applications in other infec-
tious disease control and risk-management 
programs, environmental health decision 
making, and public health practices.
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