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Abstract

Phosphoglycerate kinase (PGK) catalyzes an important ATP-generating step in glycolysis. PGK1 deficiency is an uncommon
X-linked inherited disorder, generally characterized by various combinations of non-spherocytic hemolytic anemia,
neurological dysfunctions, and myopathies. Patients rarely exhibit all three clinical features. To provide a molecular
framework to the different pathological manifestations, all known mutations were reviewed and 16 mutant enzymes,
obtained as recombinant forms, were functionally and structurally characterized. Most mutations heavily affect thermal
stability and to a different extent catalytic efficiency, in line with the remarkably low PGK activity clinically observed in the
patients. Mutations grossly impairing protein stability, but moderately affecting kinetic properties (p.I47N, p.L89P, p.C316R,
p.S320N, and p.A354P) present the most homogeneous correlation with the clinical phenotype. Patients carrying these
mutations display hemolytic anemia and neurological disorders, and,except for p.A354P variant, no myopaty. Variants highly
perturbed in both catalytic efficiency (p.G158V, p.D164V, p.K191del, D285V, p.D315N, and p.T378P) and heat stability (all,
but p.T378P) result to be mainly associated with myopathy alone. Finally, mutations faintly affecting molecular properties
(p.R206P, p.E252A, p.I253T, p.V266M, and p.D268N) correlate with a wide spectrum of clinical symptoms. These are the first
studies that correlate the clinical symptoms with the molecular properties of the mutant enzymes. All findings indicate that
the different clinical manifestations associated with PGK1 deficiency chiefly depend on the distinctive type of perturbations
caused by mutations in the PGK1 gene, highlighting the need for determination of the molecular properties of PGK variants
to assist in prognosis and genetic counseling. However, the clinical symptoms can not be understood only on the bases of
molecular properties of the mutant enzyme. Different (environmental, metabolic, genetic and/or epigenetic) intervening
factors can contribute toward the expression of PGK deficient clinical phenotypes.
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Introduction

Phosphoglycerate kinase (PGK) deficiency (OMIM 300653) is

one of the relatively uncommon causes of hereditary non-

spherocytic hemolytic anemia (HNSHA) which has gained the

attention of physicians of different fields because a defective enzyme

activity may also cause rhabdomyolysis, mental retardation, and

various neurological disorders [1]. PGK (EC 2.7.2.3) is an essential

enzyme for all living organisms. It catalyzes the reversible

phosphotransfer reaction from 1,3-bisphosphoglycerate (1,3-BPG)

to MgADP to produce 3-phosphoglycerate (3-PG) and MgATP, an

important ATP-generating step in glycolysis. In addition to its

physiological activity, human PGK can phosphorylate L-nucleoside

analogues, which are used in antiviral and anticancer therapies [2–

4]. Moreover, PGK was also shown to participate in the DNA

replication and repair in mammal cell nuclei [5]. Finally,

extracellular PGK has been recently reported to exhibit thiol

reductase activity on plasmin, leading to angiostatin formation,

which inhibits angiogenesis and tumor growth [6,7].

PGK is a typical hinge-bending monomeric enzyme containing

two nearly equal-sized domains that essentially correspond to the

N- and C-terminal portion of the protein [8]. The N-terminal

domain binds 3-PG or 1,3-BPG, whereas the C-terminal domain

binds MgADP or MgATP. The two domains are separated by a

deep cleft and linked by two alpha-helices (a-helix 7 and a-helix

14) [8,9].

During the catalytic cycle the enzyme undergoes large

conformational rearrangements, proceeding from an open form

waiting for the substrates to a closed form performing the transfer

of the phosphoryl group. Although conformational changes are

promoted by substrate binding, only the concerted action of both

substrates is able to trigger the domain closure, which leads to the

proper geometry of the active site. Four hinge points contribute to

the interdomain motions. Upon binding of the ligands the bending

becomes restrained to a single hinge dominant point [9].

PGK requires magnesium ions for its activity and is character-

ized by an unusual kinetic behavior toward both substrates, being

activated at high concentrations of either 3-PG or MgATP [10].

Thus, the kinetic profiles of PGK do not obey a simple Michaelis-

Menten model and Lineweaver-Burk plots are biphasic. The

enzyme is also activated by low concentrations of various

multivalent anions, such as pyrophosphate, sulfate, phosphate,

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e32065



citrate. The anion activation, which is displayed at low substrate

concentrations, seems to make the Lineweaver-Burk plots linear

toward substrates [11]. The rationale of the kinetic behavior of

PGK has not been so far unraveled, although basing on

crystallographic studies an enzyme model has been suggested in

which a secondary regulatory site is formed upon domain closure,

in addition to the primary catalytic site [12]. Thus, at low

concentrations the anion can bind to the regulatory site and

increases PGK activity, whereas at high concentrations the anion

can substitute the substrate at the catalytic site and therefore

acquires inhibitory functions [8].

Two human phosphoglycerate kinase isoenzymes, PGK1 and

PGK2, have been so far identified, characterized by distinctive

tissue localization and encoded by two distinct genes [13,14].

PGK1 is ubiquitously expressed in all somatic cells, including the

red blood cells (RBC). Its gene maps to chromosome Xq13.3,

spans approximately 23 kilobases and contains 11 exons and 10

introns [15]. PGK2, also known as testis form, is unique to

meiotic/postmeiotic spermatogenic cells, and is expressed by an

intronless gene which maps to chromosome 6p12–21.1 [14,15].

The PGK2 gene is a retroposon which arose by reverse

transcriptase-mediated processing of a transcript from PGK1 gene.

In the human genome two non-functional pseudogenes have also

been detected both presumably derived from the PGK1 gene and

mapping to chromosome Xq12 and 19p13, respectively [13].

PGK1 and PGK2 isoenzymes are structurally and functionally

similar. They are both 417 amino acid-long with 87–88% amino

acid sequence identity, and an apparent molecular mass of

approximately 45 kDa.

PGK1 deficiency is inherited as an X-linked recessive trait.

Thus, males have full expression of the disorder, whereas females

are usually asymptomatic sharing a population of deficient cells

coexisting with a normal cell population. Since the first description

by Kraus et al. [16], nearly 40 patients with PGK1 deficiency have

been reported, 27 of them characterized at molecular level.

Twenty different mutations have been so far identified (Table 1)

[17–40]. Fifteen are missense mutations, two deletions of the

coding region and three alterations of the splicing site. PGK1

deficiency is generally associated with moderate to severe non-

spherocytic hemolytic anemia, often accompanied with central

nervous system (CNS) disorders. In some cases PGK deficient

patients exhibit muscular disorders. Mental retardation, behav-

ioral abnormalities, seizures or strokes represent the main

neurological alterations, whereas cramps and myoglobinuria

characterize the myopathic forms. Interestingly, patients generally

exhibit myopathy only after prolonged physical exercise. The

reasons for the phenotypic variability associated with mutations of

the PGK1 gene are still unknown and worthy unraveling.

In this study, the properties of 16 mutant enzymes obtained as

recombinant forms were investigated and compared to those of

the recombinant wild-type enzyme with the final aim to define the

properties of the protein, and to correlate them with the

pathological outcome.

Materials and Methods

Materials
Restriction enzymes and Taq polymerase were purchased from

New England Biolabs. AMV reverse transciptase from Roche

Diagnostics. Oligonucleotides were synthesized by Invitrogen.

Quick Change XL Site-Directed Mutagenesis Kit was from

Stratagene. ATP, 3-phosphoglycerate (3-PG), glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), NADH, isopropyl-b-D-

thiogalactopyranoside (IPTG) were from Sigma-Aldrich. Other

chemicals were reagent grade.

Construction of expression vector encoding PGK1
To obtain the nucleotide sequence encoding PGK1, peripheral

blood (10 ml) was collected from a normal subject after obtaining

written informed consent and approval from the Institutional

Human Research Committee of Fondazione IRCCS Cà Granda

Ospedale Maggiore Policlinico of Milano. After blood collection,

subject’s name was replaced with codes to ensure anonymity. The

procedures followed were in accordance with the Helsinki

International ethical standards on human experimentation. Total

RNA, obtained from leucocytes by Trizol method [41] was reverse

transcribed, and the entire cDNA was amplified by polymerase

chain reaction (PCR, 94uC, 30 sec; 58uC, 30 sec; 72uC, 120 sec;

35 cycles), using primers designed according to the reference

sequence (NCBI Reference Sequence: NM_000291.3). The

forward primer was 59-TCGTTGACCGAATCACCGAC; the

reverse primer was 59-GTGCATTCTAGAGTGCATATATTT.

The product was cloned into pCRII-TOPO vector (TA Cloning

Kit; Invitrogen) and sequenced. A transition A.G was inadver-

tently generated at nucleotide 117 after the stop codon.

The insert of the recombinant pCRII-TOPO vector was PCR

amplified (94uC, 20 sec; 52uC, 30 sec; 72uC, 90 sec; 5 cycles;

94uC, 20 sec; 60uC, 30 sec; 72uC, 90 sec; 25 cycles) using 59-

CCGTCTTCATATGTCGCTTTCTAACAAGCTGAC as for-

ward primer, and 59-CCGCTGGAGCTATTAAATATTGCT-

GAGAGCATCCACC as reverse primer, which included NdeI

and XhoI sites, respectively. After digestion, the PGK1 cDNA was

inserted into NdeI/XhoI sites of pET-23b(+) expression vector

(Novagen). The recombinant expression vector obtained was

designed pMM1. The insert was checked by sequencing.

Construction of expression vectors encoding mutant
PGK1 enzymes

To obtain mutant enzymes, pMM1 was subjected to site-

directed mutagenesis using Quick Change XL Site-directed

Mutagenesis Kit (Stratagene) and sense and antisense mutagenic

oligonucleotides. In all cases, but two, the oligonucleotides

contained a single mutated base at the middle of their sequence.

In the case of p.V266M, the oligonucleotides contained two

mutated bases, whereas in the case of p.K191del, the oligonucle-

otides were without the codon for lysine (Table 2). The presence of

the desired mutations and the absence of unwanted additional

mutations were confirmed by sequencing the inserts.

Expression and purification of PGKI enzymatic forms
Wild-type and mutant enzymes were expressed in E.coli

BL21(DE3) pLysS cells transformed with the selected plasmids

after a 5-hours induction with 0.5 mM isopropyl-b-D-thiogalacto-

pyranoside. The induction temperature was 37uC for the following

enzymes: wild-type, p.R206P, p.E252A, p.I253T, p.V266M,

p.D268N. To express the remaining enzymes the induction

temperature was lowered to 25uC.

To purify the enzymes, cells from one liter culture were

collected by centrifugation, suspended in 50 ml Buffer A (20 mM

Tris(tris(hydroxymethil)aminomethane)-HCl pH 8.0, 1 mM

EDTA, 2 mM b-mercaptoethanol), sonicated, centrifuged and

the supernatant, after an additional centrifugation at 150.000 g,

was applied to a 2764 cm DEAE-Sepharose FF (GE Healthcare)

column equilibrated in buffer A. The enzyme activity was eluted as

a sharp single peak using equilibration buffer. The enzyme

obtained from one liter culture was approximately 90 mg in the
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case of the wild-type recombinant form. Mutant enzymes were

generally expressed at lower level (Table 3). Protein quantification

was determined according to Lowry et al. [42].

Molecular mass determination
To determine the molecular mass of the native enzyme, the purified

PGK1 (100 ml, 0.1 mg/ml) was subjected to an analytical gel filtration

on a Superose 12 HR 10/30 pre-packed column (GE-Healthcare)

equilibrated in buffer A. For column calibration the following proteins

were used: aldolase (120 kDa), albumin (67 kDa), ovoalbumin

(45 kDa), chimotrysinogen (25 kDa) and ribonuclease (14 kDa).

Enzyme activity assay
The enzyme activity of PGK1 was determined at 37uC, with 3-

PG and MgATP as substrates, by GAPDH coupled spectro-

phometric assay according to the method recommended by the

International Committee for Standardization in Hematology [43].

The standard reaction mixture contained 100 mM Tris pH 8.0,

0.5 mM EDTA, 2 mM MgCl2, 0.24 mM NADH, 40 mg

GAPDH, 5 mM 3-PG, and 5 mM MgATP, in a final volume of

0.5 ml. The reaction was started by adding enzyme solution (0.1–

0.5 mg). One unit is the amount of enzyme catalyzing the

oxidation of 1 mmol NADH/min under the above conditions.

Enzyme kinetic studies
Enzymatic activity was assayed at 37uC by using various

concentrations of 3-PG and MgATP under conditions identical to

those described above except for substrates. Kinetic parameters

were determined as follows: for 3-PG at fixed concentration of

5 mM MgATP; for MgATP at fixed concentration of 5 mM 3-

PG. In all cases the reaction was started by adding the enzyme

(0.1–0.8 U/ml) and the enzyme activity was assayed at least at 10

different concentrations of substrate. All measurements were

performed in triplicate by using a Jasco V-550 UV/VIS

spectrophotometer (Jasco-Europe).

Kinetic parameters were calculated according to Szilagyi et al.

[12], and using the Sigma Plot software (SPSS Inc).

kcat, or turnover number, is the number of catalytic events per

second. Km is the substrate concentration at which the reaction

velocity is half maximal. kcat/Km is a measure of how efficiently an

enzyme converts substrate to product at subsaturating substrate

concentrations.

Thermal stability assays
The thermal stability was measured by incubating the enzyme

(0.1–0.2 mg/ml) at given temperatures in buffer A. At intervals,

samples were removed, chilled and assayed for enzyme activity.

Table 1. PGK1 mutations and clinical features in patients with PGK1 deficiency.

Nucleotide
Change

Amino acid
change

Variant
name

n6 of
patients

age of
diagnosis
(years)

RBC PGK
residual
activity
(%)

Muscle PGK
residual
activity
(%)

Hb
(g/dl)

Reticulocytes
(%)

RBC 2,3-
BPG
increased Symptoms References

A M N

c.140 T.A ap.I47N Barcelona 1 3 8 N.A. 6.6–7.3 N.A. + + 2 + [17]

c.266 T.C ap.L89P Matsue 1 9 5 N.A. N.A. N.A. + + 2 + [18]

c.473 G.T ap.G158V Shizuoka 1 27 1 N.A. 12.8 2.5 2 2 + 2 [19]

c.491 A.T ap.D164V Amiens/New
York

7 2–19 5 N.A. 2.0–10.0 5.0–26.0 + + 2 + [20–23]

c.571.573
delAAG

ap.K191del Alabama 1 36 4 N.A. 14.1 6.4 N.A. 2 2 2 [24]

c.617 G.C ap.R206P Uppsala 1 26 10 N.A. 5.6–13.7 5.6–13.7 + +/2 2 + [25,26]

c.755 A.C ap.E252A Antwerp 1 25 6 8 13.2 N.A. N.A. 2 + 2 [27]

c.758 T.C ap.I253T Hamamatsu 1 11 8 4 N.A. N.A. N.A. 2 + + [28]

c.796 G.A;
c.798 C.G

ap.V266M Tokio 1 6 10 N.A. 9.3 12.5 + + 2 + [29]

c.802 G.A ap.D268N Munchen population survey 21 N.A. N.A. 0.4–1.3 2 2 2 2 [30]

c.854 A.T ap.D285V Herlev 1 68 49 N.A. 9–10 10–45 N.A. 2 2 2 [31]

c.943 G.A ap.D315N Creteil 1 31 3 5 14.3 N.A. + 2 + 2 [20]

c.946 T.C ap.C316R Michigan 1 9 10 N.A. 7.5–13.0 1.5–5.0 N.A. +/2 2 + [32]

c.959 G.A ap.S320N Murcia 1 6 36 N.A. 7.6 9.0 N.A. + 2 + [17]

c.1060 G.C ap.A354P Kyoto 1 3 6 N.A. 4.9–9.0 24.0 N.A. + + + [33]

c.1132 A.C ap.T378P Afula 2 18, 25 2 1 13.4–14.5 N.A. N.A. 2 + 2 [34,35]

IVS4+1 G.T splicing alteration North Carolina 1 12 3 2 N.A. 2.7 N.A. 2 + + [36]

c.637.640
delGGCG

frameshift Fukui 1 36 6 3 N.A. N.A. N.A. 2 + 2 [37]

c.639 C.T splicing alteration - 2 16, 21 5 3 N.A. N.A. N.A. 2 + 2 [38,39]

IVS7+5 G.A splicing alteration Fukuroi 1 33 14 10 N.A. N.A. N.A. 2 + + [40]

A: anemia (+/2: compensated hemolytic anemia with occasional hemolytic crises); M: muscular disorders after physical exercises; N: neurological disorders; N.A.: not
available;
avariants considered in this study.
doi:10.1371/journal.pone.0032065.t001
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Relative activity was calculated as the percent of the enzyme

activity before the incubation; t1/2 is the time required by the

enzyme to lose 50% of its activity at a given temperature; T50 is

the temperature at which the enzyme loses 50% of its activity in

10 min.

Results

To study the effects of genetic mutations on the molecular

properties of PGK1, the desired modifications (Table 1) were

introduced into the cloned cDNA of PGK1 gene, and the

mutated enzymatic forms were expressed in a bacterial system,

purified to homogeneity and biochemically characterized.

Maximal expression of most enzymes was obtained at 25uC
(Table 3). The three-dimensional structure of the enzyme

showing the amino acid residues affected by the mutations is

represented in Figure 1. The adopted amino acid numbering is

referred to the protein form which includes the initial

methionine. Based on both 12% SDS-PAGE and analytical gel

filtration chromatography, all enzymes examined were mono-

mers of approximately 45 kDa (Figure 2).

Protein thermal stability
Thermal stability was evaluated both in wild type and mutant

PGK1 enzymes. All enzymes were initially treated at 45uC (the

temperature commonly used in clinical analysis of PGK1

deficiency, Figure 3,A) and their half-life values (t1/2, see

Material and Methods) were calculated (Table 4). The wild-type

form was stable, retaining full activity after two hours of

incubation at this temperature. One group of 5 mutant enzymes

(p.E252A, p.I253T, p.V266M, p.D268N and p.T378P) had at

45uC a behavior similar to that of the wild-type enzyme (t1/2

values, .60 min) and, except for p.R206P, the remaining

enzymes were highly sensitive to heat, halving their respective

activities in less than 8 minute-incubation at 45uC. p.I47N,

p.L89P, p.D164V, p.D285V, p.D315N, p.C316R, p.S320N and

p.A354P showed the highest instability, their activities dropping

to 50% after less than 30 minutes of incubation at the

physiological temperature of 37uC (Figure 3,B).

Moreover, an additional and more in-depth thermal analysis

was performed incubating the enzymes at a wider range of

temperatures (25uC–60uC; Figure 3,C), and calculating the

temperatures at which they lost 50% of their respective activities

after a period of ten minutes (T50). T50 was 49uC for the wild-type

PGK1. Only 5 mutant enzymes (p.E252A, p.I253T, p.V266M,

p.D268N, and p.T378P) had values comparable or even higher

than that of the wild-type, all other variants tested had T50 values

lower than the control. In some instances the T50 was reduced of

more than 10uC (Table 4).

Table 2. Sense and antisense oligonucleotides used for site
directed mutagenesis.

Mutations oligonucleotides

p.I47N forward 59-CTGCTGTCCCAAGCAACAAATTCTGCTTGGAC-39

reverse 59-GTCCAAGCAGAATTTGTTGCTTGGGACAGCAG-39

p.L89P forward 59-GAACTCAAATCTCTGCCGGGCAAGGATGTTC-39

reverse 59-GAACATCCTTGCCCGGCAGAGATTTGAGTTC-39

p.G158V forward 59-CTTCACTTTCCAAGCTAGTGGATGTCTATGTC-39

reverse 59-GACATAGACATCCACTAGCTTGGAAAGTGAAG-39

p.D164V forward 59-GATGTCTATGTCAATGTTGCTTTTGGCACTGC-39

reverse 59-GCAGTGCCAAAAGCAACATTGACATAGACATC-39

p.K191del forward 59-CTGGTGGGTTTTTGATGAAGGAGCTGAACTAC-39

reverse 59-GTAGTTCAGCTCCTTCATCAAAAACCCACCAG-39

p.R206P forward 59-GAGAGCCCAGAGCCACCCTTCCTGGCC-39

reverse 59-GGCCAGGAAGGGTGGCTCTGGGCTCTC-39

p.E252A forward 59-GTGCTCAACAACATGGCGATTGGCACTTCTC-39

reverse 59-GAGAAGTGCCAATCGCCATGTTGTTGAGCAC-39

p.I253T forward 59-CAACAACATGGAGACTGGCACTTCTCTGTTTG-39

reverse 59-CAAACAGAGAAGTGCCAGTCTCCATGTTGTTG-39

p.V266M forward 59-GGGAGCCAAGATTATGAAAGACCTAATGTCC-39

reverse 59-GGACATTAGGTCTTTCATAATCTTGGCTCCC-39

p.D268N forward 59-GCCAAGATTGTCAAAAACCTAATGTCCAAAGC-39

reverse 59-GCTTTGGACATTAGGTTTTTGACAATCTTGGC-39

p.D285V forward 59-GATTACCTTGCCTGTTGTCTTTGTCACTGCTG-39

reverse 59-GTCGTCACTGTTTGACAACAGGCAAGGTAATC-39

p.D315N forward 59-CTGGATGGGCTTGAACTGTGGTCCTGAAAG-39

reverse 59-CTTTCAGGACCACAGTTCAAGCCCATCCAG-39

p.C316R forward 59-GATGGGCTTGGACCGTGGTCCTGAAAG-39

reverse 59-CTTTCAGGACCACGGTCCAAGCCCATC-39

p.S320N forward 59-GACTGTGGTCCTGAAAACAGCAAGAAGTATGC-39

reverse 59-GCATACTTCTTGCTGTTTTCAGGACCACAGTC-39

p.A354P forward 59-CCGGGGAACCAAACCTCTCATGGATGAG-39

reverse 59-CTCATCCATGAGAGGTTTGGTTCCCCGG-39

p.T378P forward 59-GGAGACACTGCCCCTTGCTGTGCCAAATG-39

reverse 59-CATTTGGCACAGCAAGGGGCAGTGTCTCC-39

The underlined letters indicate the mutated bases.
doi:10.1371/journal.pone.0032065.t002

Table 3. Expression of recombinant PGK1 enzymes.

Induction
temperature

Expressed
PGKa (mg)

Specific activity of
purified enzymeb (U/mg)

wild-type 37uC 99.9 816.0

p.I47N 25uC 13.0 229.2

p.L89P 25uC 7.1 573.1

p.G158V 25uC 8.8 104.3

p.D164V 25uC 30.1 55.0

p.K191del 25uC 55.3 99.4

p.R206P 37uC 77.7 738.6

p.E252A 37uC 59.4 501.2

p.I253T 37uC 66.9 862.0

p.V266M 37uC 9.5 735.1

p.D268N 37uC 52.8 457.5

p.D285V 25uC 52.5 47.4

p.D315N 25uC 35.6 185.4

p.C316R 25uC 37.1 253.3

p.S320N 25uC 8.2 282.1

p.A354P 25uC 53.9 287.2

p.T378P 25uC 27.2 73.0

aObtained dividing the total PGK activity of the free cell extract by the specific
activity of the purified enzyme. Data are referred to 1 L of cell culture.

bDetermined at 5 mM 3PG and 5 mM Mg-ATP.
doi:10.1371/journal.pone.0032065.t003

Phosphoglycerate Kinase Deficiency

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e32065



Kinetic analysis of the wild-type PGK1 and mutant
enzymes

The residual enzymatic activities reported in the literature

associated with PGK1 gene mutations are shown in Table 1.

Enzyme activity is generally lower than 10% of normal, except for

p.D268N, p.D285V and p.S320N variants (21%, 49% and 36%,

respectively).

In an attempt to understand the reason for the observed

decreased activity, the kinetic properties of the wild-type and

mutant enzymes were compared. Kinetic analyses were performed

on the reverse reaction, at fixed concentration of free Mg2+ and

using either MgATP (Figure 4,A) or 3-PG (Figure 4,B) as variable

substrate. In all cases, the curve of velocity versus substrate

concentration could not be fitted by a single hyperbola (non-

Michaelian character), since the enzymes were activated by high

concentrations of substrates. As a consequence the double

reciprocal plots of the kinetic data were biphasic, represented by

an interrupted straight line. For this reason the apparent Km and

kcat values reported in Table 5 were obtained extrapolating the

linear portion of the curves in the low substrate concentration

range excluding the data affected by substrate activation. This

range of substrate concentrations likely approaches the physiolog-

ical situation.

As for kinetics versus MgATP (Figure 4,A), the apparent Km of

the wild-type enzyme was valued at 0.28 mM, and the apparent

kcat at 553 sec21. All variants showed an affinity toward this

substrate similar to that of the wild-type, with the exception of

p.D315N and p.T378P. In both cases, the apparent Km value was

five-fold higher than that of the wild-type enzyme (1.36 mM and

1.43 mM, respectively). For most mutants the catalytical rates

were affected, although to a different extent. Outstanding are the

apparent kcat values of variants p.G158V, p.D164V, p.D285V and

p.T378P that were 10% or less than that of the wild-type enzyme.

When 3-PG was the variable substrate (Figure 4,B), the wild-

type enzyme exhibited an apparent Km value equal to 0.17 mM

and an apparent kcat value of 468 sec21. pD164V and p.K191del

showed a significant reduction of their affinity toward 3-PG

(apparent Km, 1.07 mM and 1.52 mM, respectively), whereas all

other variants behaved like the wild-type enzyme. As far as the

apparent kcat was concerned, as in the case of MgATP, p.G158V,

p.D164V, p.D285V and p.T378P showed values lowered to 10%

that of wild-type enzyme.

Discussion

The main objective of this research was to define how the

enzyme alterations caused by PGK1 mutations could affect

enzyme activity and generate the clinical manifestations of this

disease. To this purpose, all the 20 mutations so far reported in

Figure 1. Ribbon representation of the human PGK1. Three-
dimensional structure of open (A) and closed (B) human PGK1. The
figures were generated from the atomic coordinates of Protein Data
Bank, entry 2XE7 and 2WZC, using the Swiss-Pdb viewer (http://expasy.
org/spdbv/). The black spheres indicate the Ca atoms of the amino acid
residues subjected to mutagenesis. The arrows point to the substrates
binding sites.
doi:10.1371/journal.pone.0032065.g001

Figure 2. Assessment of the oligomeric state of recombinant
PGK1. Elution profile of PGK1 from the analytical gel-filtration on a
Superose 12HR 10/30 prepacked column. The position of the peak
corresponds to a protein of approximately 45 kDa. The inset shows 12%
SDS-PAGE of the purified PGK1 run in parallel with molecular mass
standards, and stained with Coomassie Blue R-250.
doi:10.1371/journal.pone.0032065.g002
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literature were reviewed (Table 1) and 16 of them investigated at

the protein level using purified preparations of the enzymes

(Tables 4 and 5). The remaining four mutations were not

considered, being predicted to have dramatic outcomes, such as

complete absence of the protein product or an aberrant form of it.

The in-depth biochemical characterization of PGK1 variants

shows that all mutations, with few exceptions, heavily impair the

thermal stability and, to a different extent, the catalytic properties

of the enzymes (Tables 4 and 5). Thus, the severity of molecular

defects generally accounts for the remarkably low (mostly, ,10%

of normal) PGK activity observed in patients (Table 1).

A possible correlation with the different clinical manifestations

of PGK deficient patients has been evidenced by grouping the

characterized enzymatic variants according to their molecular

defects (Table 6). The molecular interactions potentially affected

by mutations, as inferred by the three-dimensional structures of

human PGK1 in the open and in the closed form [44,45], are

shown in Table 7.

One group of 5 mutant enzymes including p.I47N (Barcelona),

p.L89P (Matsue), p.C316R (Michigan), p.S320N (Murcia), and

p.A354P (Kyoto), are grossly perturbed in their protein stability

and moderately affected in kinetic properties. A common clinical

Figure 3. Thermal stability of PGK1 enzymes. Thermal stability of
the PGK1 wild-type and variants at 45uC (panel A) and at 37uC (panel B).
Each enzyme was incubated in buffer A and aliquots were collected at
intervals for measuring residual activity. Plot of the residual activities at
10 minutes versus temperatures (panel C). Each enzyme was subjected
to heat inactivation in a range of temperature from 25uC to 60uC. After
10 minutes of incubation at a given temperature, the enzyme sample
was chilled and the residual activity measured. Residual activity was
expressed as percentage of initial activity. N, wild-type; &, p.I47N; m,
p.L89P; ., p.G158V; X p.D164V; +, p.K191del; #, p.R206P; %, p.E252A;
n, p.I253T; ,, p.V266M; e, p.D268N; 6, p.D285V; N, p.D315N; &,
p.C316R; m, p.S320N; ., p.A354P; X, p.T378P.
doi:10.1371/journal.pone.0032065.g003

Table 4. Thermal stability parameters of recombinant PGK1
enzymes.

t1/2 376C (min) t1/2 456C (min) T50 (6C)

wild-type stable .609 49.0

p.I47N 89250 09430 35.9

p.L89P 89000 09250 36.7

p.G158V stable 59540 42.5

p.D164V 109500 09430 37.2

p.K191del stable 79480 44.4

p.R206P stable 329000 46.8

p.E252A stable .609 51.0

p.I253T stable .609 49.8

p.V266M stable .609 47.2

p.D268N stable .609 49.9

p.D285V 239400 29240 39.2

p.D315N 129150 49420 40.4

p.C316R 119550 09560 38.4

p.S320N 189250 19130 38.5

p.A354P 289500 19120 40.1

p.T378P stable .609 49.4

Results are means (SE) for 3 determinations from at least 2 different protein
preparations.
doi:10.1371/journal.pone.0032065.t004
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phenotype can be observed in patients carrying these mutations:

all of them in fact display chronic hemolytic anemia and

neurological dysfunctions, and except for p.A354P, no myopathy.

A second group of 6 variants comprising p.G158V (Shizuoka),

p.D164V (New York/Amiens), p.K191del (Alabama), p.D285V

(Herlev), p.D315N (Creteil), and p.T378P (Afula) display a great

reduction of catalytic efficiency, mostly due to a cut of catalytic

rate (kcat), and in some cases (p.D164V, p.K191del, p.D315N, and

p.T378P) coupled with an increase of apparent Km values (Table 5).

Moreover, with the exception of p.T378P, all members of this

group are highly heat sensitive, suggesting that the carriers of these

mutations should suffer from a multisystem disease (erythrocyte,

muscle, and CNS involvement). Intriguingly, with the exception of

the carriers of p.D164V, all the other patients show neither

chronic hemolytic anemia nor neurological dysfunctions. Three of

them have myopathy.

Lastly, a group of 5 variants, namely p.R206P (Uppsala),

p.E252A (Antwerp), p.I253T (Hamamatsu), p.V266M (Tokio),

Figure 4. Steady state kinetics of PGK1 enzymes. Steady state kinetics of PGK1 wild-type and variants as a function of Mg-ATP at fixed 5 mM 3-
PG (panel A) and as a function of 3-PG at fixed 5 mM MgATP (panel B). All experiments were performed at 37uC as reported in the ‘‘Material and
Methods’’ section. N, wild-type; &, p.I47N; m, p.L89P; ., p.G158V; X p.D164V; +, p.K191del; #, p.R206P; %, p.E252A; n, p.I253T; ,, p.V266M; e,
p.D268N; 6, p.D285V; N p.D315N; &, p.C316R; m, p.S320N; ., p.A354P; X, p.T378P.
doi:10.1371/journal.pone.0032065.g004

Table 5. Apparent kinetic constants of recombinant wild-type PGK1 and mutant forms.

Mg-ATP 3-PG

kcat (s21) Km (mM) kcat/Km (s21 mM21) kcat (s21) Km (mM) kcat/Km (s21 mM21)

wild type 553.2628.5 0.2860.041 1975.7 468.2633.3 0.1760.011 2754.1

p.I47N 128.1610.5 0.2660.032 492.7 90.668.7 0.0860.006 1132.5

p.L89P 249.4633.7 0.2360.070 1084.3 394.5628.6 0.6660.029 597.7

p.G158V 53.465.2 0.4260.051 127.1 37.568.1 0.1860.012 208.3

p.D164V 27.963.1 0.2160.030 132.9 27.064.9 1.0760.099 25.2

p.K191del 66.166.3 0.4060.032 165.3 98.868.1 1.5260.108 65.0

p.R206P 381.9642.0 0.2660.012 1468.8 450.1629.6 0.1560.020 3000.7

p.E252A 293.5624.1 0.3660.027 815.3 280.0612.3 0.3560.028 800.0

p.I253T 578.7633.4 0.4260.029 1377.8 588.0631.0 0.2760.014 2177.8

p.V266M 389.9630.1 0.2560.015 1559.6 499.1624.5 0.2960.011 1721.0

p.D268N 257.2624.1 0.2260.016 1169.1 215.1610.7 0.2660.018 827.3

p.D285V 24.762.2 0.2760.018 91.5 27.261.9 0.3460.020 80.0

p.D315N 134.769.1 1.3660.060 99.0 79.165.7 0.1260.009 659.2

p.C316R 98.766.3 0.2160.009 470.0 116.168.4 0.3060.011 387.0

p.S320N 104.165.7 0.1960.010 547.9 257.1611.4 0.4760.022 547.0

p.A354P 225.9612.4 0.8760.080 259.7 201.069.1 0.5360.025 379.2

p.T378P 44.963.3 1.4360.065 31.4 47.163.4 0.1560.010 314.0

Results are means (SE) for 3 determinations from at least 2 different protein preparations.
doi:10.1371/journal.pone.0032065.t005
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and p.D268N (Munchen) do not display heavy alterations of their

molecular properties, on the whole behaving like the wild-type

enzyme. The patients differ one from each other for clinical

symptoms.

A more detailed discussion of each group follows.

The first group of mutations stands out from the others since it

presents the most homogeneous correlation with tissues affected

(erythrocytes and CNS). In addition, all patients were diagnosed in

childhood (Table 1). The mutations affect above all the amino acid

residues which play a main role in preserving protein structure.

For instance, I47 and L89 are involved on both hydrogen/ionic

and hydrophobic interactions in both open and closed conforma-

tions (Table 7). In addition L89 is substituted by an a-helix-

destabilizing proline inside the a-helix 2. In a similar way the

instability of the variant A354P can find an explanation in the

introduction of the proline in a-helix 12. Therefore, a possible

explanation for the absence of muscular dysfunctions is that the

skeletal muscle has the capability to promptly replace the enzyme

fraction damaged by a sudden increase of body temperature (fever

or strenuous exercise gives rise to physiological temperature

increase [46]). The mutant enzymes, although thermolable, have

enough activity to allow sufficient metabolic flow in glycolysis.

Mature RBC face a different situation, being prevented from

performing protein synthesis. Thus, an increased degradation rate

of such variants leads to a decreased PGK1 content which

primarily accounts for the enzyme deficiency and in turn for a

reduced ATP production. Anyway, in these conditions RBC could

count on the Rapoport-Luebering shunt for energy generation

bypassing the PGK1 reaction [47]. Nevertheless, severe anemia is

observed. It is conceivable, as previously suggested [48], that the

true cause of the hemolysis is better ascribable to an increase of

acidity or inhibition of several glycolytic enzymes (such as

hexokinase, phosphofructo kinase, and pyruvate kinase) as a

consequence of an increased intracellular concentration of 2,3-

BPG, as already reported [17,18,20,21,26,29].

As for the neurological dysfunctions, the tissue presumably does

not promptly supply new enzyme to replace the damaged fraction,

leading to a depletion of ATP. Moreover, the reduced production

of 3-PG could affect the biosynthesis of some derived neuromod-

ulators [49].

With the mutants of the second group, in which all amino acids

affected by mutations are involved in hydrogen/ionic interactions

(Table 7), we are faced by a tangled situation in which the

occurrence of quite obscure factors has to be invoked from time to

time to explain the reasons of the different clinical signs of patients.

The carriers of p.G158V p.D315N and p.T378P are all

characterized by muscle weakness and myoglobinuria after

induced exercise, without chronic anemia and CNS dysfunction

[20,34,35]. The present data highlight the deleterious effects of

mutations on the enzyme (p.G158V, catalytic activity reduced to

approximately 8%, T50, 6.5uC lowered; p.D315N and p.T378P,

catalytic efficiency reduced to 5% and 1.5%, respectively, mainly

as a consequence of lowered affinity toward Mg-ATP; T50 reduced

by 9uC, only in the case of p.D315N). Peculiar is the behavior of

the enzyme isolated from the RBC of patient with p.G158V

substitution, that has characteristics similar to the wild-type [19]. A

possible explanation is that the enzyme isolated from RBC is the

ectopically expressed PGK2 isoenzyme. An ectopic expression of

PGK2 can probably occur in those tissues where the activity of

PGK1 is absent. This suggestion is supported by the fact that

mutations leading to aberrant forms of PGK1 (the last 4 mutations

in Table 1) are associated with a clinical phenotype similar to that

of the carriers of p.G158V, p.D315N and p.T378P. The

uncontrolled expression of PGK2 or epigenetic events have been

Table 6. Classification of mutants on the basis of their ‘‘in vitro’’ altered properties and the associated clinical phenotypes.

Mutation amino acid affected by mutation molecular impairments symptoms

aconservation blocalization ccatalytic properties dprotein stability A M N

p.I47N ++ a-helix 1b + +++ + 2 +

p.L89P ++ a-helix 2 + +++ + 2 +

p.C316R + b-strand q + +++ +/2 2 +

p.S320N + a-helix 11 + +++ + 2 +

p.A354P 2 a-helix 12 + +++ + + +

p.G158V + loop a-helix 4, b-strand E ++ ++ 2 + 2

p.D164V ++ b-strand E +++ +++ + 2 +

p.K191del + a-helix 7 ++ ++ 2 2 2

p.D285V ++ b-strand o ++ +++ 2 2 2

p.D315N ++ b-strand q ++ +++ 2 + 2

p.T378P + a-helix 13 ++ 2 2 + 2

p.R206P + loop a-helix 7, b-strand G 2 + +/2 2 +

p.E252A 2 loop a-helix 9, a-helix 10 2 2 2 + 2

p.I253T ++ loop a-helix 9, a-helix 10 2 2 2 + +

p.V266M + a-helix 10a/b 2 2 + 2 +

p.D268N + a-helix 10b 2 2 2 2 2

a++: highly conserved; + conserved in vertebrates; 2 not conserved.
baccording to Palmai et al. [9].
ccatalytic efficiency toward 3-PG or MgATP: +++ ,1%; ++ ,10%; + ,25%; 2 comparable to wild-type.
dheat stability (T50): +++ nearly 10uC lowered; ++ nearly 3–7uC lowered; + nearly 2uC lowered; 2 comparable to wild-type.
A: anemia (+/2: compensated hemolytic anemia with occasional hemolytic crises); M: muscular disorders after physical exercises; N: neurological disorders.
doi:10.1371/journal.pone.0032065.t006
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already called into question to explain the mild phenotype

associated to the in-frame deletion delAAG c.571.573 or delAAG

c.574.576, which result in a PGK1 protein lacking one of the

tandem lysine residues at position 191 or 192 of the polypeptide

chain [50]. This mutation has been detected in a patient 36-year

old, affected by PGK1 deficiency with episodes of hemolysis with

jaundice, mainly in correspondence of febrile episodes [24]. The

present data show that both lysine residues of this region are

fundamental not only for preserving protein stability, as previously

suggested [24], but most of all for ensuring 3-PG binding and

catalytic function (Table 5). K191 and K192 are part of a-helix 7,

a crucial region of the enzyme between the N-terminal and C-

terminal domain. Deletion of one lysine is likely to shift the

arrangement of the amino acid residues, affecting key interactions

responsible for domain-domain communications and, although

indirectly, for 3-PG binding (L189 with D164; E193 with H391,

S393 and T394 of the hinge bL; F197 with F166 of a-helix 5 in the

vicinity of 3-PG binding site) [8]. Mutation p.K191del should be

deleterious for all tissues that primarily use glycolytic pathway to

obtain ATP. Therefore, these tissues have to rely on the alternative

PGK2 activity.

The carrier of p.D285V [31] was reported to be in good health

along his life and the diagnosis of PGK1 deficiency was performed

when he was elderly. Curiously, his RBC residual activity is 49%

of normal, in strong contradiction with the serious enzyme

alterations evidenced in this study. Conceivably, the p.D285V

substitution abolishes the hydrogen interactions established by

D285 with the backbone of G317, E319 and S320 in a-helix 11

(Table 7), thus affecting a H-bonding network essential for the

molecule arrangement [31]. Noteworthy, the nucleotide substitu-

tion (c.854 A.T) was only observed in about 90% of the DNA

studied and different hypotheses have been proposed to solve this

riddle. The present data reinforce the suggestion that this mutation

in the PGK1 gene occurred postzygotically, with only a fraction of

the cells in the soma carrying the mutation [31], thus leaving the

carrier asymptomatic.

c.491 A.T mutation turns out to be the most deleterious at the

protein level. In fact, p.D164V variant has a nearly 20-fold

reduction in its catalytic rate toward both substrates and a six-fold

reduction in its affinity for 3-PG, which is reflected in a substantial

decrease in the catalytic efficiency toward this substrate (2-order of

magnitude lower than that of wild-type). Moreover, the mutant

enzyme is severely affected in its protein stability (t1/2 at 37uC,

11 min). Most probably, D164 is functionally important in both 3-

PG binding, although indirectly, and in transmitting to C-domain

the conformational changes induced by 3-PG binding. Besides, the

molecular interactions engaged by D164 with its counterparts are

crucial for preserving the native structure of the enzyme. D164 is

located at the terminus of b-E strand in N-domain and interacts

with the backbone of residues located at position 188, 189 and 190

of a-helix 7 of PGK1 (Table 7). c.491 A.T is the most frequent

mutation affecting the PGK1 gene, being found in 7 patients

belonging to four different families [20–23]. All these patients have

chronic hemolytic anemia and neurological dysfunctions, but no

signs of muscular disorders.

With regard to the third group of mutations, data suggest that

clinical manifestations of these patients are not the consequence of

the amino acid substitutions in PGK1, the variants displaying

features of the authentic enzyme, at least at physiological

conditions.

p.D268N variant, described in a population survey [30], is

associated with an asymptomatic clinical phenotype. The

erythrocyte residual activity is 20% of normal (Table 1). Thus,

as previously reported [51], the decreased enzyme activity, at least

in the RBC, could be due to a decreased protein content ensuing

from the nucleotide substitution.

The mutation causing p.E252A substitution is a nucleotide

transversion (A.C) at nt 755 position of PGK1 c.DNA, just

adjacent to the 39 end of exon 7. As a consequence, the consensus

59 splicing sequence AGgt is changed to a nonconsensus sequence

CGgt leading to a reduction of splicing efficiency (approximately

only 10%) [27]. Thus, the highly reduced activity found in cells

(8% in muscle, 6% in RBC) is most likely a result of a low content

of PGK1, due to a reduced maturation of its mRNA. Thus, not

surprisingly, the clinical phenotype (myophaty, but no anemia or

neurological defects) is similar to that shown by the patients with

other splicing mutations (Table 1).

The clinical manifestations associated to p.I253T, p.V266M

and p.R206P mutations (recurrent myoglobinuria and mental

retardation, but no hemolysis, in the first case [28]; hemolysis and

neurological signs but no myopaty, in the second case [29]; mild

hemolytic anemia and mental retardation, but no rabdomyolysis

in the third case [25,26]) can not be understood only on the bases

of well-defined molecular properties of the mutant enzyme.

In conclusion, the hemolytic disorder associated with neurolog-

ical dysfunctions is in general present in PGK deficient patients

with variants unstable but only mildly affected in catalytic

properties. Conversely, the myopathy without hemolytic or

neurological symptoms is observed in some patients with variants

heavily affected in both catalytic properties and protein stability

(Table 6). Thus, different clinical phenotypes correlate with the

distinctive type of perturbations caused by the mutations, stressing

the need for the determination of the molecular properties of PGK

variants to assist in prognosis and genetic counseling.

The occurrence of additional genetic and/or epigenetic factors

that contribute to the phenotypic variability cannot be excluded.

The ectopic expression of an isoenzyme has been already

described, for instance, in the case of pyruvate kinase deficiency

[52]. Pharmacological, nutritional and, more in general, environ-

mental factors cannot be dismissed, especially in consideration of

the paucity of reported cases of PGK1 deficiency. The secondary

activities described for the enzyme, such as thiol reductase,

replication and repair of DNA, may as well be responsible of some

clinical manifestations.
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