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Decreased IRS Signaling Impairs (3-Cell Cycle
Progression and Survival in Transgenic Mice
Overexpressing S6K in 3-Cells

Lynda Elghazi,' Norman Balcazar," Manuel Blandino-Rosano,' Corentin Cras-Méneur,*
Szabolcs Fatrai,' Aaron P. Gould," Maggie M. Chi,”> Kelle H. Moley,? and Ernesto Bernal-Mizrachi®

OBJECTIVE—The purpose of this study was to evaluate the
role of the S6K arm of mammalian target of rapamycin complex
1 (mTORCY1) signaling in regulation of B-cell mass and function.
Additionally, we aimed to delineate the importance of in vivo S6K
activation in the regulation of insulin signaling and the extent to
which alteration of insulin receptor substrate (IRS) signaling
modulates B-cell mass and function.

RESEARCH DESIGN AND METHODS—The current experi-
ments describe the phenotype of transgenic mice overexpressing
a constitutively active form of S6K under the control of the rat
insulin promoter.

RESULTS—Activation of S6K signaling in these mice improved
insulin secretion in the absence of changes in B-cell mass. The
lack of B-cell mass expansion resulted from decreased G,-S
progression and increased apoptosis. This phenotype was asso-
ciated with increased pl16 and p27 and decreased Cdk2 levels.
The changes in cell cycle were accompanied by diminished
survival signals because of impaired IRS/Akt signaling.

CONCLUSIONS—This work defines the importance of S6K in
regulation of B-cell cycle, cell size, function, and survival. These
experiments also demonstrate that in vivo downregulation of IRS
signaling by TORC1/S6K induces B-cell insulin resistance, and
that this mechanism could explain some of the abnormalities that
ultimately result in B-cell failure and diabetes in conditions of
nutrient overload. Diabetes 59:2390-2399, 2010

ancreatic B-cells expand their function and mass

in both physiologic and pathologic states of nu-

trient excess and increased insulin demand. Fail-

ure of 3-cells to expand adequately in settings of
increased insulin demand results in hyperglycemia and
diabetes. The mechanisms involved in (-cell failure in
diabetes are not well understood, but determining how
glucose and fat overload lead to impaired -cell mass and
function is a key component for understanding the natural
history of diabetes and generating pharmacologic agents
to treat and prevent this disease.
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The mammalian target of rapamycin (mTOR) signaling
pathway integrates growth factors and nutrient signals and
is essential for cell growth and proliferation (1,2). This
pathway is negatively regulated by the activation of tuber-
ous sclerosis complex TSC1/2 and AMP-activated protein
kinase (AMPK) signaling pathways (3-7). The mTOR is
part of two distinct complexes: mMTORC1 and mTORC2.
The mammalian TORCI1 is sensitive to rapamycin and
regulates protein translation modulation of ribosomal S6
kinase (S6K), eukaryote initiation factor 4E binding pro-
tein 1 (4E-BP1), and eukaryote initiation factor 4E (eIlF4E)
(8). The mTORC1 is composed of regulatory associated
protein of mTOR (Raptor), mLst/GBL, deptor and proline-
rich PKB/Akt substrate 40 kDa (PRAS40). The mTORC2
complex includes Lst8/GBL, deptor, rapamycin-insensitive
companion of mTOR (Rictor), proline-rich protein 5
(PRR5), and stress-activated protein kinase-interacting
protein-1 (mSIN) (9,10). The effects of mMTORC1 signaling
on cell growth, cell size, and cell cycle progression are
mediated, at least in part, by phosphorylation of the
downstream effectors S6K and 4E-BP1 (11). Activation of
S6K by mTOR phosphorylates the ribosomal protein S6
(rpS6). The importance of S6K signaling in B-cells has
been assessed in genetically modified models. Global S6K1
knockouts or mice with knockin at all five phosphorylat-
able serine residues of rpS6 exhibit decreased B-cell mass,
impaired insulin secretion, and hyperglycemia (12,13).
Moreover, S6K is important for insulinoma formation
induced by activation of Akt signaling (14). A major
limitation for understanding the role of S6K signaling in
B-cells using S6K-deficient mice is the concomitant alter-
ation in insulin sensitivity by negative feedback on insulin
receptor substrate (IRS) proteins (15-17). In contrast,
activation of mMTORCI1 signaling by conditional deletion of
TSC2 in B-cells enhances B-cell mass as a result of
increased proliferation and cell size (18,19). These exper-
iments suggest that mMTORC1/S6K signaling is an important
regulator of 3-cell mass, although the molecular mecha-
nisms and downstream signaling pathways are not well
characterized.

Growing evidence suggests that not only fat consumption,
but also protein intake and an increase in plasma amino acid
concentration, contribute to the development of glucose
intolerance, insulin resistance, and type 2 diabetes (20,21).
Recent findings demonstrate that S6K activation in states of
nutrient overload modulates insulin sensitivity by negatively
regulating IRS1 function under conditions of nutrient over-
load (15-17,22). In addition, the 4E-BP1l/elF4E signaling
pathway regulates glucose metabolism by modulation of
sensitivity to diet-induced obesity and insulin resistance (23).
Although this evidence underscores the importance for
mTOR/S6K activation in peripheral tissues as a central player

diabetes.diabetesjournals.org



A Insulin

£

s6KcARIP

WT

S6KcARIP

L. ELGHAZI AND ASSOCIATES

HA/Insulin

WT séKkcaARIP

HA—

Actin_>~~-- — ”

p-S6—» S ——

Actin > wee eme e s

FIG. 1. Assessment of transgene expression and activity in S6KCA*'F and wild-type (WT) mice. A: Staining for HA-tag (red) and insulin (green)
of pancreatic sections from 3-month-old wild-type and S6KCA®* mice. B: Inmunoblotting for HA-tag in islet lysates from 3-month-old wild-type
and transgenic mice. C: S6 kinase activity was assessed by immunoblotting for phospho-S6 protein using islets from wild-type and S6KCA*™
animals cultured overnight in 2 mmol/l glucose, 2% serum. Immunoblotting for actin was used as loading control. The figures are representative
blots of at least three independent experiments, all in duplicate (n =6). Scale bars represent 25 pm. (A high-quality digital representation of this

figure is available in the online issue.)

in insulin resistance in nutrient overload, the consequences
of activation of this pathway in pancreatic B-cells and the
implication of the negative feedback inhibition on IRS signal-
ing in vivo are unknown.

To study the role of S6K activation in B-cells, we
developed transgenic mice overexpressing a constltutlvely
active form of S6K in B-cells (S6KCAF™T). S6KCAE mice
exhibited improved glucose tolerance because of an in-
crease in insulin secretion and without changes in {3-cell
mass. The lack of 3-cell expansion was characterized by a
failure of B-cells to progress normally through the cell
cycle and increased apoptosis. Interestingly, these alter-
ations resulted, at least in part, by feedback inhibition on
IRS1/2/Akt signaling and increased levels of p16 and p27.
The current work defines the importance of the S6K arm
activation of mTORCI1 signaling in regulation of B-cell
cycle, cell size, function, and survival. These experiments
also demonstrate that in vivo downregulation of IRS
signaling by TORC1/S6K reduces growth factor signaling,
and this mechanism could explain some of the abnormal-
ities that ultimately result in B-cell failure and diabetes in
conditions of nutrient overload.

RESULTS

S6KCA®™ mice have increased S6 kinase activity in
islet PB-cells. To increase S6K signaling in B-cells, we
inserted a rapamycin-resistant p70S6K A2-46/ACT104
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(T412E) downstream of the rat insulin I promoter
(S6KCAF™) (24). Three viable and fertile lines were ob-
tained, and offspring from two founders with similar
transgene expression and disturbances in glucose toler-
ance were studied. The current studies describe the phe-
notypic characterization of one of these lines. Transgene
expression assessed by immunostaining for hemagglutinin
(HA) showed cytoplasmic and nuclear staining in most of
the B-cells (~80-90%) from S6KCAF® mice (Fig. 1A).
Immunoblotting for HA also displayed expression of the
transgene exclusively in S6KCA®™ (Fig. 1B). Transgene
expression was 4.6-fold higher than that of endogenous
S6K (P < 0.05). S6K activity measured by phosphorylation
of rpS6 was increased in S6KCA®” mice (Fig. 1C).

S6KCA®™ mice exhibit improved glucose tolerance
and enhanced insulin secretion. Glucose levels in 6-h
fasted S6KCAE™ mice were lower than those of wild-type
mice (Fig. 24). S6KCA®™” mice exhibited higher insulin
values than wild-type mice after 6-h fasting (Fig. 24). No
difference in glucose was observed after overnight fasting
(time 0; Fig. 2B and C, and data not shown) Glucose
tolerance test in 4-month-old S6KCAR® mice showed
lower glucose levels at 30 and 60 min (Fig. 2B). Improved
glucose tolerance was observed in 4- and 18-month-old
S6KCAR™ mice (data not shown and Fig. 2C), indicating
that these mice were protected from the impaired glucose
tolerance associated with aging (Fig. 2C). No changes in
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FIG. 2. S6KCAF™® exhibit improved glucose tolerance and augmented glucose-stimulated insulin secretion. A: Glucose and insulin levels in
4-month-old wild-type (WT) and S6KCA®'F male mice after 6 h of fasting (n = 12). Intraperitoneal glucose tolerance tests were performed in 4-
(B) and 18- (C) month-old wild-type and S6KCA®"* male mice. In vivo insulin secretion after intraperitoneal glucose in wild-type and S6KCA®™
mice at 4 (D) and 18 (E) months of age. F: Insulin secretion in isolated islets assessed by static incubation. G: Measurement of ATP/ADP ratio
in isolated islets. Data are presented as mean of ATP/ADP ratio per islet from at least 20 islets per mouse (n =3). In vivo data are presented as

mean = SE (*P < 0.05; n =6).

insulin sensitivity were observed by insulin tolerance tests
(data not shown).

Glucose-stimulated insulin secretion demonstrated
comparable insulin values after overnight fasting in 4- and
18-month-old S6KCA®™ and wild-type mice (Fig. 2D and
E). Insulin levels at 15 min after glucose injection were
increased in 4- and 18-month-old S6KCA®" mice (Fig. 2D
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and E). No difference between S6KCA®™ mice and con-
trols were observed after 30 min of glucose injection (Fig.
2D and E). Static incubation of isolated islets demon-
strated increased insulin levels in islets from S6KCA®™"
mice when exposed to 2 mmol/l glucose (Fig. 2F). Insulin
secretion was comparable after stimulation with 20 mmol/l1
glucose (Fig. 2F). Measurements of ATP/ADP content in
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FIG. 3. Islet morphometry in wild-type (WT) and S6KCA*'* animals. A:
Immunofluorescence staining for insulin (green) and non—f-cells (red)
in pancreatic sections from wild-type and S6KCA®'* mice. Assessment
of B-cell mass in 6- (B) and 18- (C) month-old wild-type and S6KCA®™*
male mice. Data are presented as mean + SE (*P < 0.05; n = 3). Scale
bars represent 25 pm. (A high-quality digital representation of this
figure is available in the online issue.)

isolated islets showed that islets from S6KCA®™” mice
exhibited higher levels of ATP/ADP in 2 mmol/l glucose
(Fig. 2G). Similar ATP/ADP levels between wild-type and
S6KCAFY were obtained with 20 mmol/l glucose.

Islet morphometry and analysis of cell size. Immuno-
fluorescence staining for insulin and non—3-cells showed
that islet architecture was conserved in S6KCARY® mice
(Fig. 3A). Similar B-cell mass between S6KCAF” and
wild-type mice B-cells was comparable at 6 and 18 months
of age (Fig. 3B and C). Islet size distribution between
S6KCAE™ and wild-type mice was unchanged (data not
shown). Double staining for HA and insulin in dispersed
islets from S6KCAF™ and wild-type mice showed that
B-cells from transgenic mice appeared to have increased in
size (supplementary Fig. 1 in the online appendix available at
http://diabetes.diabetesjournals.org/cgi/content/full/db09-0851/
DC1). Cell size measurements in pancreatic sections
stained for Glut2 and HA demonstrated a 50% increase in
the size of B-cells expressing the transgene (Fig. 4A and B,
P < 0.05). The number of B-cells per islet was reduced in
S6KCA®™ mice, suggesting that islets from these mice
exhibited fewer B-cells with increased cell size (Fig. 4C,
P < 0.05).

Assessment of proliferation and apoptosis in
S6KCA®™ and wild-type mice. B-Cell proliferation as-
sessed by Ki67 staining showed increased proliferative
rate in S6KCA®™ mice (Fig. 5A). The increased prolifera-
tive rate with absence of changes in B-cell mass suggests
that B-cells failed to complete the cell cycle or underwent
programmed cell death. Since Ki67 is a marker for G1, G2,
S, and M phases, we used bromodeoxyuridine (BrdU) and
phospho-Histone-3 (pH3) to specifically assess cell cycle
progression through the S and M phases, respectively. The
rate of BrdU in B-cells was similar between S6KCA®” and
wild-type mice, indicating that B-cells were not progress-
ing to the S phase (Fig. 5B). Also, no difference in the rate
of pH3 in B-cells was observed between wild-type and
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FIG. 4. Assessment of B-cell size in wild-type (WT) and S6KCA*™”
animals. A: Pancreatic section from wild-type and S6KCA®™" mice were
immunostained for HA (red) and Glut2 (green). B: Quantitation of
B-cell size in islets from wild-type and S6KCA®™" mice. Cell size in
B-cells from S6KCA®™ mice is presented based on expression of the
transgene (HA positive). Data include measurements of at least 250
cells from 4 wild-type and S6KCA®'™™ mice. C: Number of B-cells per
islet was calculated in at least 80 islets from wild-type and S6KCA®'®
mice. Data are presented as mean = SE (*P < 0.05; n =3). Scale bars
represent 25 pm. (A high-quality digital representation of this figure is
available in the online issue.)

S6KCAR™ mice (data not shown). Assessment of B-cell
apoptosis by cleaved caspase 3 staining showed a fourfold
increase in apoptosis in S6KCA™” mice (Fig. 5C). Similar
increases in apoptosis in S6KCA® mice were observed
by using transferase-mediated dUTP nick-end labeling
(TUNEL) assay (Fig. 5D). The results of these experiments
suggest that increased S6K activity in B-cells induced
entry, but delayed completion of the cell cycle. In addition,
these mice also exhibited increased apoptosis.
Alterations in cell cycle progression in S6KCA
mice are associated with increased p27 and pl6
levels. Assessment of cell cycle components responsi-
ble for G;-S progression demonstrated that protein
levels for Cyclin D1, D2, D3, E, and Cdk4 were similar in
islets from S6KCARP and wild-type mice (Fig. 64). In
contrast, Cdk2 was reduced in islets from S6KCA®™
mice (Fig. 6A). Levels for p16, a major regulator of G;-S
progression in B-cells, were increased in islets from
S6KCA®™ mice (Fig. 6A). Assessment of the Cip/Kip inhi-
bitors p21 and p27 showed that p27 levels were higher in
S6KCAR™ mice (Fig. 6A). The number of B-cells with
nuclear p27 was increased in S6KCA®™ mice (Fig. 6B).
Decreased IRS signaling in B-cells from S6KCA®'F
transgenics. To determine whether islets from S6KCA®™"
mice exhibited decreased IRS/Akt signaling, we performed
immunostaining for phospho-GSK3p. Marked reduction of
phospho-GSK33 staining was observed in islets from
S6KCA®™ mice (Fig. 7A). Levels for IRS1 and IRS2 were
decreased by 50 and 40%, respectively, in islet lysates from
S6KCAF™ mice (Fig. 7B, P < 0.05). Phosphorylation of IRS1
on Ser 307, one of the many S6K phosphorylation sites on

RIP
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FIG. 5. Assessment of B-cell proliferation and apoptosis in wild-type (WT) and S6KCA®'* mice. A: Proliferative index in sections stained for Ki67
and insulin (arrows: double positive cells). B: Proliferative rate on sections stained for BrdU and insulin. Quantitation of apoptosis by
immunostaining for cleaved caspase 3 (C) and TUNEL assay (D) in insulin-stained sections (apoptotic rate). B-Cells positive for cleaved caspase
3 and TUNEL are marked with arrows. Data are presented as mean = SE (*P < 0.05; n =3). Scale bars represent 25 pm. (A high-quality digital

representation of this figure is available in the online issue.)

IRS1, was increased in S6KCA®® mice (Fig. 7B). The
decreased IRS1 and IRS2 levels were associated with de-
creased levels of ]%hospho—GSK?)B and phospho-FoxOl in
islets from S6KCA" mice (Fig. 7B). As expected reduced
Akt si%laling also resulted in increased TSC2 levels in
S6KCA®™ mice (Fig. 7B). We next assessed the alterations in
IRS/Akt signaling after stimulation with insulin-like growth
factor 1 (IGF1) (Fig. 7C). Phosphorylation of Akt at Serd73
was unchanged in S6KCAF mice (Fig. 7C). S6KCAF™ mice
exhibited reduction of Akt phosphorylation at Thr308. The
decreased phosphorylation of Akt at Thr308 resulted in
reduced Akt activity, as demonstrated by phosphorylation of
GSK3p (Fig. 7C). Interestingly, phosphorylation of 4E-BP1, a
downstream mTORC1 target, was reduced in S6KCARP
mice. The results of the current experiments demonstrate

2394 DIABETES, VOL. 59, OCTOBER 2010

that activation of S6K in B-cells reduces Akt activity by
decreasing the levels of IRS proteins.

DISCUSSION

The results of the current studies serve to elucidate the
importance of S6K in regulation of B-cell mass and func-
tion and provide insight into the molecular mechanisms
involved in the adaptation of B-cells to states of nutrient
overload and hyperglycemia. Similar to exposure of 3-cells
to glucose and amino acids, activation of S6K signaling
resulted in improved glucose tolerance, insulin secretion,
and hyperinsulinemia. These findings show, for the first
time, that activation of S6K induces B-cell insulin resis-
tance by feedback inhibition of IRS signaling. Importantly,

diabetes.diabetesjournals.org
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these studies also show that S6K regulates IRS2 levels, a
major determinant for B-cell proliferation and survival.
The B-cell insulin resistance induced by this mechanism
had major effects on cell cycle regulation by modulation of
Cdk2, p27, and pl6 levels. Another major effect of insulin
resistance in this model was the increased apoptosis by
decreased survival signals from Akt. The current work
suggests that one of the major consequences of chronic
exposure of B-cells to nutrient overload is the develop-
ment of impaired IRS signaling. These results serve to
elucidate some of the abnormalities observed in adaptive
responses of -cells to nutrient excess and tentatively to
explain some of the mechanisms involved in glucose
toxicity. Finally, these data also demonstrate that the
negative feedback of S6K on IRS signaling can be a major
modulator of B-cell mass and function in vivo.

diabetes.diabetesjournals.org

The current study shows that activation of S6K signaling
in B-cells causes improved glucose tolerance by increase
in insulin secretion. The augmented insulin secretion in
the presence of normal B-cell mass suggests that S6K
modulates glucose-induced insulin secretion. Based on the
insulin secretion experiments, it is possible that S6K
activation regulates early events in insulin secretion, and
islet perifusion experiments will be required to address
this. The mechanism involved in this process is not
completely understood, but our experiments suggest that
modulation of the ATP/ADP ratio could play an important
role. Similar to the potentiation of insulin secretion by
amino acids reported in the literature, the maximal in-
crease in ATP/ADP ratio observed in islets from S6K in low
glucose could prime B-cells to respond to a glucose
challenge (25). These findings together with impaired
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glucose tolerance and defective insulin secretion in S6K1-
deficient mice or mice with knock-in at serine residues of
rpS6 suggest that S6K modulates insulin secretion. The
mechanism implicated in defective insulin secretion in
these models is unclear, but previous evidence suggests
that small cell size with a reduction in membrane surface
has pronounced effects on insulin secretion (26,27). The
relation between cell size and insulin secretion is intrigu-
ing, and it is reasonable to speculate that increased cell
size and membrane surface size could contribute to the
augmented insulin secretion observed in S6KCA®™ mice.
Further studies are needed to evaluate this hypothesis and
to explore a role of S6K in regulation of distal exocytotic
events involved in first and second phases of insulin
secretion.
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In the present work, overexpression of S6K recapitu-
lated the proliferative and the cell size phenotype de-
scribed in mice overexpressing a constitutively active
form of Akt and mice with conditional deletion of TSC2 in
B-cells (18,28,29). These results suggest that this kinase
relates some of the proliferative and growth signals in-
duced by Akt/mTOR. The effect of S6K on B-cell prolifer-
ation is also in agreement with recent findings implicating
this kinase in insulinoma formation by Akt activation (14).
The absence of B-cell mass changes, together with the
results of Ki67, BrdU, and pH3 measurements, suggests
that more B-cells enter the cell cycle, but G;-S progression
is delayed by partial inhibition of the cyclin D/Cdk4 and
cyclin E/Cdk2 complexes. The alteration in G;-S progres-
sion could be explained in part by increased levels of p16
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and p27, respectively, and lower Cdk2 expression. The
normal B-cell mass in this model could be explained by a
balance between increased entry, but slow progression
through the cell cycle combined with increased apoptosis
and a long half-life of B-cells. The increase in p16 levels is
intriguing, as this cell cycle inhibitor is a biomarker of
aging and is elevated in aged 3-cells (30). It is possible that
continuous activation of S6K reproduces some of the
abnormalities observed in aged P-cells. The augmented
levels and nuclear localization of p27 observed in
S6KCAR™” mice were most likely caused by a negative
feedback inhibition in IRS/Akt signaling. The decreased
insulin/IRS/Akt signaling could alter p27 levels by several
mechanisms, including FoxO1l-mediated p27 transcription
(31,32) and/or increases in p27 stability by GSK3B (33).
Decreased IRS signaling induces nuclear p27 in B-cells
from IRS2-deficient mice (34). The importance of p27 in
regulation of the B-cell cycle in our model resembles the
findings obtained in islets from models of diet-induced
obesity and suggests that S6K signaling may be implicated
in the B-cell failure observed in this model (34). Based on
the current studies and published evidence, p27 levels are
likely to be a marker for impaired IRS signaling in B-cells.
This mechanism plays a pivotal role in regulating cell-cycle
progression under normal conditions or in states of 3-cell
expansion (34). A major difference between the [-cell
mass phenotype of BTSC2 "~ and S6KCA" mice is that
B-cells from BTSC2 '~ are probably less susceptible to
inhibition in IRS signaling, as the mTOR activation in this
model is downstream and not dependent on IRS signaling.
In addition, the activation of the mTORC2/Akt pathway
could activate survival signals.

The alteration of B-cell survival was the other major
component observed by augmented S6K signaling in
B-cells. The mechanism involved in apoptosis in these
mice could be multifactorial, but our results are consistent
with a critical role for a negative feedback of S6K on
IRS1/IRS2/Akt signaling. The decreased Akt activity was
characterized by decreased phosphorylation of Thr308,
but not Serd73, suggesting alterations in PDK1 and not
mTORC2 activity. Assessment of downstream Akt targets
in islets from S6KCAZF mice implied that the inhibition of
IRS2/Akt signaling observed in S6KCA®® induced apopto-
sis by activation of FoxO1 and GSK3p. Interestingly, Pdx1
levels in S6KCA®Y mice were unchanged, suggesting that
this is not a major contributor to the increased apoptosis
in these mice (data not shown). The inhibition of IRS
signaling by S6K-mediated phosphorylation and degrada-
tion of IRS1 signaling has been demonstrated in vivo and
in vitro (15-17). Less is known about a feedback inhibition
on IRS2 signaling, but recent data on INSI cells suggest
that IGF1 signaling downregulates IRS2 protein by activa-
tion of mTOR signaling (35). Our results show, for the first
time, that S6K regulates IRS2 levels in vivo, and that this
mechanism has major implications for regulation of sur-
vival and cell cycle progression in B-cells. The increased
apoptosis observed in S6KCA® mice was unexpected, as
S6K has been shown to induce pro-survival signals by
inhibiting BAD in lymphocytes (36). This discrepancy
could be explained by the fact that B-cells are very
sensitive to modulation of IRS2 levels, as demonstrated in
mice deficient for IRS2 (37). The decreased survival in the
S6K mice is in contrast to the absence of apoptosis in
BTSC2 '~ mice (18). These could be explained, at least in
part, by the antiapoptotic effects induced by activation of
the elF4E and mTORC2 activation (21,38,39). Taken to-

diabetes.diabetesjournals.org

gether, these studies suggest that -cell insulin resistance
induced by a negative feedback of S6K on IRS signaling
not only affects cell cycle progression, but also impairs
survival signals. However, activation of S6K signaling
alone is not sufficient to induce B-cell failure and diabetes.

The results of the current studies suggest that activation
of S6K could play a major role in regulation of 3-cell cycle
progression and function, and implies that S6K relates
proliferative but not survival pathways induced by Akt
signaling or activation of mTORCI1 signaling. Another
important conclusion from these studies is that activating
proliferation is not always associated with increases in
mass, and that therapeutic strategies should include phar-
macologic agents that alter proliferation and apoptosis.
These studies collectively show the importance of the S6K
arm of mTOR signaling in regulating proliferation, cell
size, function, and survival, and increase our knowledge
about the mechanism used by B-cells to regulate G;-S
transition and mass. Additionally, these studies provide
information about the adaptation of the B-cell to states of
nutrient overload.

EXPERIMENTAL PROCEDURES

Generation of transgenic mice. The S6K mutant used in
these studies contains deletion of amino acids 2-46,
truncation of carboxy-terminal 104 amino acids, and thre-
onine to glutamatic acid mutation at position 412 (p70S6K
AD2-46/ADCT104 T412E). This mutant confers rapamycin
resistance and increases in basal S6K activity in trans-
fected cells (24,40). To achieve overexpression of a con-
stitutively active form of S6K in B-cells, this construct was
inserted behind the rat insulin promoter I (S6KCAFRD).
Three transgenic founders were obtained and backcrossed
to C57BL6J mice, and the N2 and N3 generation from two
lines with similar phenotype were analyzed. Wild-type
littermate males with comparable mixed background were
used as controls for all of the experiments. All procedures
were performed in accordance with Washington Universi-
ty’s Animal Studies Committee and the University Com-
mittee on Use and Care of Animals at the University of
Michigan.

Metabolic studies. Glucose was measured on whole
blood using AccuChek II glucometer (Roche Diagnostics).
Plasma insulin levels were determined using a rat insulin
ELISA kit (Crystal Chem). Glucose tolerance tests were
performed in 12-h fasted animals by injecting glucose (2
g/kg) intraperitoneally as described (28). Insulin secretion
in vivo was assessed using 3 g/kg of glucose intraperito-
neally in overnight-fasted mice.

Islet studies. Islet isolation was accomplished by colla-
genase digestion as described previously (28). Insulin
secretion was assessed by static incubation of isolated
islets as described (41). After overnight culture in RPMI
containing 5 mmol/l glucose, islets were precultured for
1 h in Krebs-Ringer medium containing 2 mmol/l glucose.
Groups of 10 islets in triplicate were incubated in Krebs-
Ringer medium containing 2 mmol/l glucose or 20 mmol/l
glucose for 1 h.

For ATP and ADP measurements, islets were isolated
and cultured for 24 h in RPMI containing 5 mmol/l glucose.
Thereafter, islets of similar size were handpicked and
precultured for 1 h in 0.5 ml Krebs-Ringer medium without
glucose in an organ-culture dish. Groups of 20 islets were
incubated for 1 h in Krebs-Ringer containing 2 mmol/l1 and
20 mmol/l glucose, respectively, and rinsed three times in
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Ringer without glucose. Individual islets were hand picked
in 1-pl medium, placed on a slide, and frozen immediately
in 2-methylbutane prechilled with liquid nitrogen. They
were then freeze-dried at —35°C overnight under vacuum
with less than 0.01 mm of Hg and removed for extraction.
Each islet was extracted in 0.5 pl of 0.1 N NaOH under oil,
heated at 80°C for 20 min, and neutralized with a 0.2-ul
mixture of 0.2 mol/l HCI and 0.1 mol/l TrisHCl pH6.8.
Samples were stored at —80°C. Aliquot (0.1 pl) was
obtained for ATP and ADP microanalysis respectively
(42). Data are presented as mean of ATP/ADP ratio per
islet from at least 20 islets per mouse. For the experiments
using IGF1, islets were serum deprived for an hour fol-
lowed by stimulation with IGF1 (100 nmol/1) for 15 min.
Immunofluorescence staining. Pancreatic tissues were
fixed overnight in 3.7% formalin and embedded in paraffin
using standard techniques. The following antibodies were
used: guinea pig anti-insulin (Dako), mouse anti-HA.11
(Covance), rabbit anti-glucagon (Chemicon), rabbit anti-
pancreatic polypeptide (Chemicon), rabbit antisomatosta-
tin (Dako), rabbit anti-Glut2 (a gift from Bernard Thorens),
rabbit anti-Ki67 (Vector), rabbit anti-cleaved caspase 3
(Cell Signaling), rabbit anti-phospho-GSK3a/f (Ser21/9)
(Cell Signaling), mouse anti-BrdU (Amersham), and mouse
anti-p275P! (BD Transduction). TUNEL assays were per-
formed using the ApopTag Plus fluorescein in situ apopto-
sis detection kit (Chemicon). The fluorescent secondary
antibodies were from Jackson Laboratories. DAPI (Vec-
tor) was used to counterstain nuclei.

Western blotting. Protein from islet lysates were run in
polyacrylamide gels and transferred to polyvinylidene
fluoride membranes. Protein-band densitometry was de-
termined using the same membrane by pixel intensity
using NIH Image J software (v1.42 freely available at http:/
rsb.info.nih. gov/ij/index.html) (43) and normalized against
that of actin or tubulin. Antibodies used for immunoblot-
ting are included in supplementary Table 1.

Islet morphometry. The B-cell mass was calculated by
point-counting morphometry from 5 insulin-stained sec-
tions (b pm) separated by 200 pm using the BQ Classic98
MR software package (BIOQUANT) as described (28). Cell
size was determined in immunofluorescence-stained sec-
tions for Glut2 and HA. Sectioned areas of individual B-
cells from wild-type and transgenic mice that were HA
positive were measured using NIH Image J software
(v1.42) (43). The number of B-cells per islet was calculated
by dividing the number of B-cells in at least 80 islets per
animal. Proliferation was assessed in sections stained with
insulin and Ki67, BrdU, and phospho-Histone-3. At least
3,000 insulin-stained cells were counted for each animal.
Apoptotic rates were determined using cleaved caspase 3
and TUNEL assay (ApopTag Red In Situ Apoptosis Detec-
tion Kit, Chemicon) in insulin-stained sections. At least
2,000 B-cells were counted in a blinded fashion.
Statistical analysis. All values are expressed as mean *
SEM. For all other comparisons, paired Student ¢ test was
used. Differences were considered statistically significant
at P < 0.05.
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