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OBJECTIVE—Obesity is an increasingly common disorder that
predisposes to several medical conditions, including type 2
diabetes. We investigated whether large and rare copy-number
variations (CNVs) differentiate moderate to extreme obesity from
never-overweight control subjects.

RESEARCH DESIGN AND METHODS—Using single nucleo-
tide polymorphism (SNP) arrays, we performed a genome-wide
CNV survey on 430 obese case subjects (BMI �35 kg/m2) and 379
never-overweight control subjects (BMI �25 kg/m2). All subjects
were of European ancestry and were genotyped on the Illumina
HumanHap550 arrays with �550,000 SNP markers. The CNV
calls were generated by PennCNV software.

RESULTS—CNVs �1 Mb were found to be overrepresented in
case versus control subjects (odds ratio [OR] � 1.5 [95% CI
0.5–5]), and CNVs �2 Mb were present in 1.3% of the case
subjects but were absent in control subjects (OR � infinity [95%
CI 1.2–infinity]). When focusing on rare deletions that disrupt
genes, even more pronounced effect sizes are observed (OR � 2.7
[95% CI 0.5–27.1] for CNVs �1 Mb). Interestingly, obese case
subjects who carry these large CNVs have moderately high BMI
and do not appear to be extreme cases. Several CNVs disrupt
known candidate genes for obesity, such as a 3.3-Mb deletion
disrupting NAP1L5 and a 2.1-Mb deletion disrupting UCP1 and
IL15.

CONCLUSIONS—Our results suggest that large CNVs, espe-
cially rare deletions, confer risk of obesity in patients with
moderate obesity and that genes impacted by large CNVs repre-
sent intriguing candidates for obesity that warrant further study.
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O
besity has become the most common health
disorder worldwide. Obesity predisposes to
multiple diseases, particularly diabetes, and it
has been estimated that life expectancy may

diminish in the next generation as a result (1). Numerous
studies have shown that body weight and obesity are
strongly influenced by genetic factors, with heritability
estimates in the range of 65–80% (2). However, single gene
mutations are quite rare, and common variation (e.g., in

FTO [3] and MC4R [4]) account for a small percentage of
familial risk. Recent large-scale meta-analysis of genome-
wide association studies (GWASs) identified six additional
genes that associate with BMI, but all eight genes collec-
tively explain merely 0.84% of the BMI variation in human
populations (5). Therefore, it is unlikely that expansion of
sample sizes in GWASs will identify common variants with
major effect sizes.

The examination of copy-number variations (CNVs)
offers novel insights into the genetic architecture of com-
mon and complex human diseases. CNVs are defined as a
chromosomal segment whose copy number varies across
individuals in the population (6). Recurrent CNVs such as
16p11.2 deletions were reported to account for 0.7% of
morbid obesity cases (7). In addition, several reports
demonstrated that large and rare CNVs collectively asso-
ciate with schizophrenia (8–10), extreme early-onset obe-
sity (11), and variation in BMI (12).

In the current study, we investigated the potential role
of rare variants in obesity, by performing comparative
CNV analysis on obese case and control subjects who
were genotyped by Illumina single nucleotide polymor-
phism (SNP) arrays. Case subjects had moderate to ex-
treme obesity, and control subjects had never been
overweight. Although our sample size precludes the defin-
itive identification of specific CNVs/genes that associate
with obesity, we demonstrate that large, yet rare, CNVs, as
a group, are collectively associated with obesity. Further-
more, we identified previously implicated obesity candi-
date genes in some of these large and rare CNVs, making
them especially attractive for additional follow-up studies
and functional assays.

RESEARCH DESIGN AND METHODS

Obese case and control subjects. The case subjects were obese (BMI �35
kg/m2) with a lifetime BMI �40 kg/m2. Independent control subjects were
selected who had a current and lifetime BMI �25 kg/m2. All the case and
control subjects who participated in the current study were part of a previous
candidate gene study (13). Sample characteristics are summarized in Table 1
for 430 case and 379 control subjects passing quality control. The median age
at obesity onset was 12 years, and 90% had an onset prior to age 26 years. All
subjects gave informed consent, and the protocol was approved by the
committee on studies involving human beings at the University of
Pennsylvania.
SNP genotyping. DNA was extracted from whole blood or lymphoblastoid
cell lines using a high-salt method and genotyped on the Illumina Human-
Hap550 SNP arrays (Illumina, San Diego, CA). Standard Illumina data normal-
ization procedures and canonical genotype clustering files were used to
process the genotyping signals. All case and control subjects passed call-rate
(�95%) measures and were genetically inferred to be of European ancestry,
based on multidimensional scaling analysis (supplementary Fig. 1 in the
online appendix, available at http://diabetes.diabetesjournals.org/cgi/content/
full/db10-0192/DC1).
CNV calling. Using log R ratio and B allele frequency measures for
all markers, the CNV calls were generated by PennCNV software (Version
2009Aug27) (14). The quality-control procedure was described in detail in
supplementary Fig. 2. We removed samples with low quality of signal intensity

From the 1Center for Applied Genomics, Children’s Hospital of Philadelphia,
Philadelphia, Pennsylvania; the 2Center for Neurobiology and Behavior,
Department of Psychiatry, University of Pennsylvania, Philadelphia, Penn-
sylvania; and the 3Department of Pediatrics, University of Pennsylvania,
Philadelphia, Pennsylvania.

Corresponding author: R. Arlen Price, arlen@mail.med.upenn.edu.
Received 8 February 2010 and accepted 27 June 2010. Published ahead

of print at http://diabetes.diabetesjournals.org on 9 July 2010. DOI:
10.2337/db10-0192.

© 2010 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

BRIEF REPORT

2690 DIABETES, VOL. 59, OCTOBER 2010 diabetes.diabetesjournals.org



values, so that the remaining samples have log R ratio �0.3, B allele
frequency_drift �0.01, wave factor �0.05, and that the number of calls is �50.
We removed CNV calls with �10 SNPs or with a confidence score �10, sparse
calls (average intermarker distance �50 kb), calls in the immunoglobulin
regions, and calls in centromeric regions and telomeric regions (100 kb within
the start or end of the chromosomes). The overlapping genes or exons for
CNV calls were annotated using the scan_region.pl program, based on RefSeq
gene annotation (15). We compiled a set of common CNV regions (cCNVRs),
which occur at �1% frequency, and then classified the CNV call as common or
rare by the scan_region.pl program: if �50% of a CNV call overlaps with a
cCNVR, it is referred to as a common CNV. The comparison of number of CNV
calls in case versus control subjects was performed by t test, while the
comparison of fraction samples with large CNVs was performed by the Fisher
exact test.

RESULTS

CNV calling and quality control. To examine whether
CNVs represent genetic risk factors for obesity, we ana-
lyzed CNV calls on 430 obese case and 379 control subjects
who were genotyped by Illumina SNP arrays and passed
quality-control measures for CNV analysis. The sample
characteristics were described in Table 1. We first com-
pared the general characteristics of CNV calls between
case and control subjects. The number of CNVs per
subject did not differ between case and control subjects
(5.8 � 3.3 vs. 6.0 � 3.1, P � 0.35). The number of
gene-disrupting CNVs per subject is similar in case versus
control subjects (3.8 � 3.1 vs. 4.2 � 2.7, P � 0.07).
Similarly, the number of exonic CNVs per subject is
similar in case versus control subjects (3.2 � 2.9 vs. 3.6 �
2.6, P � 0.06). We compiled a list of common CNV regions
and found that 38.2% of CNV calls can be classified as rare
CNVs. The number of rare CNVs per subject did not differ
between obese case and control subjects (2.3 � 2.4 vs.
2.2 � 1.8, P � 0.41).
Large CNVs are overrepresented in obese case sub-
jects. We next performed comparative analysis on CNV
calls stratified by their sizes, common/rare status, and
deletion/duplication status. Interestingly, with the increas-
ing size thresholds, we observe a stronger trend of asso-

ciation (odds ratio [OR]) between CNVs and obesity
(Table 2). Similar to previous reports in schizophrenia
cases (8), we found that 5/427 (1.2%) of the case subjects
but none of the control subjects carry CNVs �2 Mb (OR �
infinity [95% CI 1.16 to infinity]), P � 0.04). The frequency
of obese case subjects carrying CNVs �2 Mb in our study
are similar to the Kirov et al. study (16) (6 of 471, 1.3%) and
the Need et al. study (8) (14 of 1,013, 1.4%) on schizophre-
nia cases. Among five CNVs �2 Mb observed in our study,
three are deletions and two are duplications. We listed all
16 CNVs �1 Mb in case and control subjects in Table 2,
and the signal intensity patterns are provided in supple-
mentary Fig. 3 as a visual means of validation. We also
assessed whether large and rare gene-disrupting deletion
CNVs tend to be enriched in case versus control subjects.
Not surprisingly, the ORs for conferring risk of obesity are
even higher for this group of CNVs (2.7 [0.47–27.1] for �1
Mb CNVs, infinity for �2 Mb CNVs) (Table 2), though this
does not reach statistical significance due to the rare
nature of the events.
Multiple large and rare CNVs disrupt obesity candi-

date genes. We next examined CNVs �1 Mb and found
several genes that are a priori candidates for obesity. Two
of the strongest candidates are UCP1 and IL15, which are
located within the same 2.1-Mb deletion on chromosome
4q31 (Fig. 1). The case carrying this CNV has moderate
obesity (BMI 46.2 kg/m2). Numerous studies relate UCP1

to obesity in animal models (17), and associations have
been reported in humans (18). We validated this CNV by a
CNV-typing platform, the Affymetrix Cytogenetic arrays
(supplementary Fig. 4). Since parental DNA is also avail-
able, we assessed both parents and found that the CNV is
inherited from the father. Another large CNV on chromo-
some 4q22.1 contains two potential candidate genes
(NAP1L5 and SNCA), and it is present in a subject with
moderate obesity (BMI 49.0 kg/m2) (Fig. 2). NAP1L5 is an
imprinted gene, which is of interest because of associa-
tions of body weight and obesity with genomic imprinting
(19). Differences in paternal and maternal copies of this
gene have been related to body weight at birth and in
adulthood in mice (20). We validated this CNV by the
Affymetrix Cytogenetic platform (supplementary Fig. 4)
and also found that the CNV is inherited from the father.
SNCA is another gene within this CNV that has been
reported to have interactive effects on response to a
high-fat diet in dietary obesity (21), yet SNCA duplication
is a well-known risk factor for Parkinson’s disease. Several
other candidate genes, such as CTSC, NOX4, DLG2, ME3,
and MIPEP, are also found within the collection of rare
CNVs in case subjects (Table 3). We acknowledge that this
list is relatively small and that none of them occur twice in
case subjects; as a result, we detected the collective

TABLE 1
Sample characteristics of the study subjects in the CNV study

n Minimum Maximum Mean SD

Control subjects
Age 379 16 65 42.80 8.92
BMI 379 16 25 20.72 1.82
Percent fat 369 7 40 23.77 5.43

Case subjects
Age 430 18 64 40.88 9.34
BMI 430 35 97 49.24 8.79
Percent fat 388 31 71 49.85 5.89
Onset age 344 0 55 13.72 9.00

TABLE 2
Frequency of case and control subjects carrying CNVs exceeding certain size thresholds

Size
n (case subjects

with CNVs)
n (controls
with CNVs) OR (95% CI)

n (case
subjects with

gene-disrupting
deletion)

n (control
subjects with

gene-disrupting
deletion) OR (95% CI)

�100 kb 352 313 0.99 (0.65–1.39) 88 66 1.22 (0.84–1.77)
�500 kb 34 30 1.01 (0.46–1.37) 9 6 1.33 (0.42–4.58)
�1 Mb 10 6 1.49 (0.48–5.00) 6 2 2.67 (0.47–27.1)
�2 Mb 5 0 Infinity (1.16 to infinity) 3 0 Infinity (0.69 to infinity)
�5 Mb 1 0 Infinity (0 to infinity) 0 0 Infinity
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association with obesity but cannot identify specific CNVs/
genes that are more penetrant than others. Finally, we also
did an exploratory examination to determine whether
some CNVs are unique to the extremely obese case
subjects. We chose a BMI threshold of 70 kg/m2, which
doubles the minimum entry criteria for case subjects.
However, compared with case subjects with moderate
obesity, the extremely obese case subjects do not appear
to have larger CNVs or more well-characterized candidate
genes.
Examination of previously reported obesity-associ-
ated CNVs. An association between BMI and a chromo-
some 10q11 CNV was recently reported in a Chinese
cohort (12). We observed three case subjects carrying this
CNV (BMI 36, 41, and 43 kg/m2, respectively), but it is not
present in control subjects. Two genes in this region are
GPRIN2 and PPYR1, which are worthy of follow-up stud-
ies in larger sample sets. Additionally, a highly penetrant
deletion on 16p11.2 was recently reported to be associated
with obesity (7,11). In our data, one obese subject (BMI
44.9 kg/m2) carries this deletion and one control subject
(BMI 19.1 kg/m2) carries the reciprocal duplication. There-
fore, our data are consistent with the possibility that the
16p11.2 deletion is associated with obesity.

DISCUSSION

In the current study, we assayed a sample collection of
obese case subjects and never-overweight control subjects
and found strong support that large and rare CNVs con-
tribute to obesity. Collectively, the OR for large CNVs
observed in our study is higher than common SNPs
identified in GWASs (for example, the OR for FTO is 1.3 [3]
and for MC4R in severe childhood obesity is 1.3 [4]),
suggesting that rare CNVs may represent more penetrant
risk factors for obesity.

One interesting implication of our study relates to the

hypothesized genetic architecture of obesity. Although it is
well known that obesity results from multiple genetic risk
factors as well as environmental factors, it is not clear
what and how many genetic risk factors are involved.
Recent GWASs identified a few obesity genes, but they
collectively only explain a minor fraction of interindividual
differences in obesity (5). Therefore, even though more
common susceptibility variants may be identified by in-
creasing sample size, they will be very unlikely to account
for a significant proportion of genetic risk. On the other
hand, our study suggests that rare variants with much
higher ORs may also contribute to risk of obesity. Given
the rare nature of the CNVs, we could not discern which
one of these large CNVs are truly causal for obesity, so
some less penetrant or noncausal large CNVs will dilute
the effect sizes. Therefore, the observed effect sizes for
large CNVs may represent underestimation of the true
effect size of causal CNVs for obesity.

Another interesting implication is how quantitative ge-
netics relates to disease phenotypes. How distinct alleles,
including modest-effect alleles and major-effect alleles,
may interact to shape disease presentation is not well
studied. For obesity, although FTO represents consistently
the strongest gene in many association studies, it has
never been implicated from studies of monogenic forms of
obesity. Similarly, although MC4R has been implicated in
monogenic forms of obesity, analysis of common variants
have been highly inconsistent until large-scale GWASs are
conducted (4). Therefore, it is likely that rare alleles work
together with common alleles to shape the onset of obesity
in human populations and that some genes with rare
causal alleles may never show up from studies on common
variants.

In conclusion, we have identified large, yet rare, CNVs
representing major risk factors for obesity. Some of these
large CNVs encompass known obesity genes or potential
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FIG. 1. Candidate genes impacted by large CNVs unique to obese case subjects. A: CNV on chromosome 4 is a 3.3-Mb deletion that disrupts the
imprinted gene NAP1L5, which has been shown to affect birth and adult body weight. B: CNV on chromosome 4 is a 2.1-Mb deletion of a region
containing two candidate genes, UCP1 and IL15. For each CNV, the corresponding log R ratio and B allele frequency for all markers (as blue dots)
were shown. Deletions are verified by decreased log R ratio and the lack of heterozygous SNPs in B allele frequency values.
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candidate genes for follow-up studies. Our results further
suggested that studies of monogenic forms of complex
disorders, studies of common variants in GWASs, and
studies of CNVs represent three complementary ap-
proaches to research the genetic basis of complex
diseases.
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