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Allowing for missing outcome data and
incomplete uptake of randomised
interventions, with application to an
Internet-based alcohol trial
Ian R. White,a*† Eleftheria Kalaitzakib and Simon G. Thompsona

Missing outcome data and incomplete uptake of randomised interventions are common problems, which compli-
cate the analysis and interpretation of randomised controlled trials, and are rarely addressed well in practice. To
promote the implementation of recent methodological developments, we describe sequences of randomisation-
based analyses that can be used to explore both issues. We illustrate these in an Internet-based trial evaluating
the use of a new interactive website for those seeking help to reduce their alcohol consumption, in which the
primary outcome was available for less than half of the participants and uptake of the intervention was limited.

For missing outcome data, we first employ data on intermediate outcomes and intervention use to make a
missing at random assumption more plausible, with analyses based on general estimating equations, mixed mod-
els and multiple imputation. We then use data on the ease of obtaining outcome data and sensitivity analyses to
explore departures from the missing at random assumption. For incomplete uptake of randomised interventions,
we estimate structural mean models by using instrumental variable methods.

In the alcohol trial, there is no evidence of benefit unless rather extreme assumptions are made about the
missing data nor an important benefit in more extensive users of the intervention. These findings considerably
aid the interpretation of the trial’s results. More generally, the analyses proposed are applicable to many trials
with missing outcome data or incomplete intervention uptake. To facilitate use by others, Stata code is provided
for all methods. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Missing outcome data and incomplete uptake of trial interventions are common problems in randomised
controlled trials. A key consideration in handling both issues is the intention-to-treat (ITT) principle
[1], which states that all individuals randomised in a clinical trial should be included in the analysis,
in the groups to which they were randomised, regardless of any departures from randomised treatment.
Following this principle preserves the benefit of randomisation, that the treatment groups cannot differ
systematically on any factors except those assigned in the trial, and avoids selection bias. However, it
is not universally agreed how the ITT principle applies when some outcomes are missing [2]. Further,
the ITT principle does not tell us how to estimate the effects that might have been observed with better
uptake of trial interventions.

Missing outcome data are problematic because they cause a loss of power and can lead to biased esti-
mates of intervention effects. Once data are missing, the loss of power cannot be reversed, but it can be
minimised by appropriate analysis choices, in particular by including all observed data in the analysis [3].
Estimates of intervention effects are typically biased if the analysis makes the wrong assumption about
the missing data. However, any analysis with missing data must make partly or completely untestable
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assumptions, so we can rarely be sure that we have the correct analysis. For this reason, sensitivity
analysis is recommended [4–6].

The assumptions of many (but not all) statistical methods for handling missing data can be expressed
using the framework of Little and Rubin [7]. Data are missing completely at random (MCAR) if the
probability of data being missing does not depend on any missing or observed values. Data are missing
at random (MAR) if the probability of a particular set of values being missing for an individual does not
depend on the values themselves, conditional on the observed values of other variables. Otherwise, data
are missing not at random (MNAR).

Incomplete uptake of trial interventions often means that randomised groups have more similar expe-
rience than the investigators had intended, which usually causes the difference in outcomes to be smaller
than it would have been with better uptake [8]. However, bias in the estimated intervention effect is
not always towards zero: incomplete uptake in equivalence or non-inferiority trials, or in trials where
non-trial interventions are available, can inflate differences between randomised groups [9]. Estimating
the effect of allocating an intervention does not require adjustment for incomplete uptake, in contrast
to estimating the effect of a particular level of intervention uptake. The latter is commonly carried out
by per-protocol analysis, which excludes data observed when participants had poor intervention uptake.
However, per-protocol analysis is undesirable because it is subject to selection bias. Randomisation-
respecting alternatives achieve the same aim by using only comparisons of groups as randomised [8].
One such method is principal stratification [10], which leads to estimation of the complier-average causal
effect (CACE) [11] in problems where intervention uptake is dichotomous. An alternative, suitable for
quantitative intervention uptake, is the structural mean model (SMM) [12].

This paper aims to promote the implementation of recent methodological developments by describing
a sequence of analyses that explores both issues and to illustrate the methods using data from an Internet-
based trial. This trial is a good example because the issues are particularly acute, but they arise in a wide
range of other trials. The Internet-based trial is described in Section 2. Methods for tackling missing
data are described in Section 3, with results in Section 4. Methods for tackling incomplete uptake of
interventions are described in Section 5, with results in Section 6. We conclude with a discussion in
Section 7.

2. The Down Your Drink trial

Hazardous drinking in the general population is an important public health problem [13]. Brief inter-
ventions are effective [14] but hard to implement. The Internet is increasingly used to deliver behaviour
change interventions [15], and a new ‘Down Your Drink’ (DYD) website was developed, building on
psychological theories and aiming to engage users by providing interactive tools [16].

The DYD trial was a randomised evaluation of the DYD website compared with a non-interactive
control website providing information only [17]. All stages of the trial—recruitment, randomisation,
intervention and data collection—were conducted online. This presented a number of challenges [18].
The key challenge relevant to the present paper was whether the numbers of participants using the
intervention website and providing follow-up data would be sufficient.

The primary trial outcome was alcohol consumption in the previous week, which was recorded by
the TOT-AL, a specially developed online questionnaire [19]. When an outcome assessment was due,
participants received an email with a link to the trial website where they could complete the outcome
questionnaires. Alcohol consumption was transformed in all analyses to log(number of units in the last
week plus 1).

This paper uses data, summarised in Table I, from the pilot trial, which recruited 3746 individuals
from 16 February to 16 October 2007. Outcome data were collected at 1 and 3 months; we focus on
estimating the intervention effect at 3 months. The correlation between baseline and 3-month alcohol
consumption was 0.41 (0.45 for baseline and 1 month; 0.53 for 1 month and 3 months).

Although baseline data were complete, poor follow-up response rates were anticipated because there
was no personal contact with participants. To increase response rates, all participants who did not com-
plete the outcome questionnaires within 7 days of the first email invitation received second and (if
necessary) third invitations at weekly intervals. A fourth email inviting participants to provide their
outcome data directly by email to the investigators yielded no further responses. Offline follow-up was
attempted for users who had provided a telephone number or address, but was not successful [18].
Incentives were also trialled [20]. Participants were additionally randomised to complete only one of
four secondary outcome measures in order to reduce the assessment burden and improve response rates
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Table I. Down Your Drink trial: data description.

Intervention Control
(nD 1880) (nD 1866)

Baseline variables
Age (years) 37.5 (10.9) 37.5 (10.9)
Male 45% 44%
Has degree 51% 50%
AUDIT-C score (0 to 12) 8.4 (2.1) 8.4 (2.1)
EQ-5D score (�0:6 to 1) 0.85 (0.18) 0.85 (0.18)
Confidence score (1 to 5) 2.8 (1.2) 2.8 (1.2)
TOT-AL (units/week) 56.0 (36.8) 54.7 (37.3)
log(TOT-AL C 1) 3.80 (0.82) 3.77 (0.84)

Compliance variables
No. of logins in the first month: 0 5% 5%

1 59% 72%
�2 36% 23%

No. of pages hit in the first month 64.9 (78.6) 12.7 (12.8)
Complier at 1 month 78% —
No. of logins in the first 3 months: 0 4% 5%

1 51% 60%
�2 45% 35%

No. of pages hit in the first 3 months 70.4 (89.7) 13.7 (13.9)
1-month outcome variables
Responded 50% 60%
TOT-AL (units/week) 39.8 (34.0) 39.5 (32.8)
log(TOT-AL C 1) 3.30 (1.10) 3.30 (1.10)

3-month outcome variables
Responded 38% 46%
TOT-AL (units/week) 38.6 (32.6) 37.0 (32.5)
log(TOT-AL C 1) 3.25 (1.12) 3.18 (1.18)

Values are arithmetic mean (SD) or %. AUDIT-C, Alcohol Use Disorders Identification Test-C; EQ-5D, EuroQol Five
Dimensional.

Table II. Down Your Drink trial: outcome data at 3 months by number of emails sent.

Intervention Control

log(TOT-ALC 1) log(TOT-ALC 1)

Responded after email n % Mean SD n % Mean SD

1 348 19 3.16 1.16 441 24 3.17 1.19
2 194 10 3.28 1.04 236 13 3.18 1.19
3 174 9 3.41 1.11 178 10 3.22 1.17
Never 1164 62 — — 1011 54 — —
Total 1880 100 3.25 1.12 1866 100 3.18 1.18

[21]. The number of emails sent to each participant is summarised in Table II and is used in the analysis
in Section 4. In the intervention arm, the mean log(TOT-ALC 1) is larger in later respondents than ear-
lier respondents, suggesting a MNAR mechanism, with non-respondents perhaps having an even higher
mean log(TOT-ALC 1).

Similarly, low use of the website was a concern. It is hard to define and measure website use [22]; in
particular, although each page download was recorded, the length of time that participants spent actually
using the website is unknown. We summarised website use by the number of login sessions and the
total number of pages downloaded in the first month; in calculating the latter, multiple downloads of the
same page were counted only if they occurred in different login sessions. Individuals were automatically
logged in to the intervention or control websites after randomisation, but a few who immediately left the
trial website had no logins.

The main findings of the trial were that alcohol consumption in responders dropped substantially from
baseline to 1 month, and again slightly from 1 to 3 months, but that the drops were very similar across
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randomised groups [23]. The ratio of (geometric mean) 3-month alcohol consumption in the intervention
group compared with the control group was 1.04 (95% confidence interval 0.94 to 1.16). However, miss-
ing data were substantial and more common in the intervention group (Table I). Use of the intervention
website was greater than use of the control website, but the majority of participants in both arms had
only one login session.

The outstanding questions that this paper aims to answer are whether the results are robust to differ-
ent assumptions about the missing data and whether interpretation is affected by incomplete use of the
website.

3. Missing outcome data: methods

We propose a modelling strategy that starts with simple data on baseline and outcome and then
progressively adds in intermediate outcomes, website use and ease-of-contact data.

For the i th participant, let ´i denote their randomised group, xi a vector of baseline covariates
(assumed complete), yi1, yi2 the outcomes at two follow-up times and ri1, ri2 whether each outcome
was observed (1) or missing (0). Our methods generalise easily to more than two follow-up times. If the
data were complete, then an adjusted analysis for the outcome at follow-up time 2 would estimate ˇ in
the model

yi2j´i ;xi �N.˛C ˇ´i C �
0xi ; �

2/: (1)

An unadjusted analysis is the same without the � 0xi term.

3.1. Complete cases

A first analysis fits model (1) in the subset with ri2 D 1, the ‘complete cases’. This analysis is inefficient
because it does not make use of individuals with yi2 missing but yi1 observed. It is valid if the model is
correctly specified and the data are ‘covariate-dependent missing completely at random’ [24]: that is, if
the missing data mechanism depends only on the baseline covariates included in the model. If the model
is incorrectly specified (e.g. if it should contain a nonlinear function of xi ), then the analysis is in general
valid only if the data are MCAR within randomised groups [25].

3.2. Using repeated outcome measures

We now consider three methods that jointly model both yi1 and yi2. These are valid if the data .yi1; yi2/
are MAR given .´i ;xi /: in particular, for participants with yi1 observed, dropout at follow-up time 2 is
now allowed to depend on yi1.

A generalised estimating equations (GEE) approach [26] fits the model:

E

��
yi1
yi2

�
j´i ;xi

�
D

�
�i1
�i2

�
D

�
˛1C ˇ1´i C �10xi
˛2C ˇ2´i C �

0
2xi

�
(2)

var

��
yi1
yi2

�
j´i ;xi

�
D†D �2

�
1 �

� 1

�
: (3)

Normality is not assumed, but the residual variance �2 is assumed to be equal at the two times. Esti-
mation uses the standard estimating equations [26]; the parameter of main interest is ˇ2. If the model
is misspecified (in particular, if the residual variance is different at the two times), then valid standard
errors can still be obtained by the robust (sandwich) method. With incomplete data, point estimates for a
correctly specified model are valid if the data are MAR, whereas point estimates for an incorrectly spec-
ified model are valid if the data are MCAR; weighted estimating equations can relax the latter condition
to MAR [27]. We allow the coefficients in the two components of (2) to be different: this amounts to
allowing interactions between time and the baseline variables x and ´. In general, it is best to use an
unstructured working correlation matrix; with only two time points, this is the same as an exchangeable
working correlation matrix.
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A mixed models approach [28] modifies the model defined by (2) and (3) by adding the distributional
assumption �

yi1
yi2

�
j´i ;xi �N

��
�i1
�i2

�
; †

�
(4)

and replacing (3) with an unconstrained variance–covariance matrix †. The model is estimated using
restricted maximum likelihood. It may be appropriate to allow † to differ by randomised group.

In multiple imputation (MI), several completed data sets are produced by drawing the missing val-
ues from their posterior predictive distribution thus acknowledging the uncertainty due to missing data
under a MAR assumption [29, 30]. This can be carried out using model (4). It is often sensible to draw
imputations separately for each trial arm, because interactions between randomised group and baseline
covariates may be of interest [31]. It is sometimes considered that MI offers a way to include all ran-
domised individuals in the analysis (e.g. [32]). However, if the imputation model is the same as the
analysis model, then MI is expected to give approximately the same results as a mixed model analysis
[33].

3.3. Using compliance

One way to make the MAR assumption more plausible is to introduce other post-randomisation variables
vi into the analysis. Specifically, we now assume that .yi1; yi2; vi / are MAR given .´i ;xi /, or if vi is
complete that .yi1; yi2/ are MAR given .´i ;xi ; vi ), so that observed values of vi are allowed to explain
missingness of .yi1; yi2/. Here, we take vi as the amount of intervention received (compliance), because
this is likely to predict both outcomes .yi1; yi2/ and responses .ri1; ri2/, but vi could also include trial
outcomes that are more observed than yi2.

In the mixed model approach, vi can be included using the extended model [5]0
@ yi1
yi2
vi

1
A j´i D ´;xi �N

0
@
0
@ �i1
�i2
�i3

1
A ; †

1
A (5)

where �i1 and �i2 are still as defined in (2) and �i3 D ˛3 C ˇ3´i C �
0
3xi . † is modelled completely

flexibly. The GEE approach is similar but without the normality assumption; † is modelled with an
unstructured working correlation and equal variances, so it is advisable to scale the compliance vari-
ables to have variances similar to the outcome variables. Including vi is easiest under the MI approach,
because it can simply be included in the imputation model and excluded from the analysis model.

In many trials, compliance has a very different distribution across the two arms and may have differ-
ent meaning. In this case, it is important to allow the association between vi and .yi1; yi2/ to vary by
randomised group. This is most conveniently carried out in MI, by imputing separately by arm; it cannot
be carried out using standard GEE implementations, but a mixed model could allow † in (5) to depend
on ´i .

3.4. Sensitivity analyses

The aforementioned models attempt to make a MAR assumption more plausible by including more data
in the analysis [34]. However, MAR often remains at least questionable, if not implausible [35]. We
now consider sensitivity analyses to departures from MAR. Following Kenward et al. [4], we embed the
MAR model in a wider family of MNAR models indexed by one or more ‘informative missing param-
eters’ that express the magnitude of departures from MAR. We then use subject-matter knowledge to
specify possible values of the informative missing parameters and re-estimate the intervention effect in
each case.

We use a pattern-mixture model [36] that extends Equation (1) by allowing a term ıY that controls
departures from MAR:

yi2j´i ;xi ; ri2 �N.˛CC C ˇCC´i C �
0
CCxi C ı

Y .1� ri2/; �
2/: (6)

The regression parameters subscripted CC can be estimated by fitting Equation (1) to the complete cases
(ri2 D 1), but ıY is not identified by the data. An important extension allows the informative missing
parameter ıY to differ between randomised groups:

yi2j´i ;xi ; ri2 �N.˛CC C ˇCC´i C �
0
CCxi C ı

Y
´i
.1� ri2/; �

2/ (7)

3196

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 3192–3207



I. R. WHITE, E. KALAITZAKI AND S. G. THOMPSON

where ıY´i .1 � ri2/ can also be written as ıY1 ´i .1 � ri2/ C ı
Y
0 .1 � ´i /.1 � ri2/. This model is plau-

sible because, for example, missing data may well be more informative among individuals who have
been encouraged to change their behaviour than among controls, and is important because treatment
effects are most affected when departures from MAR behave differently in the two arms [37]. Parame-
ters .ıY0 ; ı

Y
1 / are not identified by the data: ıY0 is the mean difference between unobserved and observed

outcomes in the control arm, adjusted for x, and ıY1 is the corresponding difference in the intervention
arm.

This model has previously been used with an informative prior distribution for .ıY0 ; ı
Y
1 / that was

elicited from investigators [37]. In the present paper, investigators’ views are used to define plausible
values of .ıY0 ; ı

Y
1 / for sensitivity analysis, rather than tackling a fully Bayesian analysis. It is useful to

consider three sensitivity analyses: first, to values of ıY0 D ı
Y
1 , then to values of ıY0 fixing ıY1 D 0 and,

finally, to values of ıY1 fixing ıY0 D 0.
Once .ıY0 ; ı

Y
1 / has been specified, estimation is straightforward. Write w0i D .1; ´i ;x

0
i / and � 0CC D

.˛CC ; ˇCC ;�
0
CC / so the mean part of model (6) is E Œyi2jwi ; ri2�D �

0
CCwi C ı

Y
´i
.1� ri2/. The model

of interest is E Œyi2jwi � D �
0wi where � 0 D .˛; ˇ;� 0/. It follows that � D �CC C �ADD where �ADD

are the coefficients from a regression of ıY´i .1�ri2/ onwi . It is easy to estimate �CC and �ADD . Finally,

the estimated parameters are independent, so we can estimate var
�
O�
�

as cvar
�
O�CC

�
Ccvar

�
O�ADD

�
.

3.5. Using the number of attempts

Instead of specifying the informative missing parameter(s) based on subject-matter knowledge, it may
be possible to estimate them using data on the number of attempts made to observe outcome yi2. Let
ri2k be the outcome of the kth attempt to observe the primary outcome yi2, where ri2k D 1 indicates
that the outcome was observed, ri2k D 0 indicates that it was not observed and ri2k D � indicates that the
kth attempt was not made (either because a previous attempt was successful or because the participant
had refused or withdrawn from the trial). The association between ri2k and yi2 can be identified using
Alho’s model, which assumes that this association is the same for all k [38]:

logit P.ri2k D 1jri2k ¤ �; ´i ;xi ; yi2/D ˛
R
k C ˇ

R´i C �
R 0xi C ı

Ryi2: (8)

Here, we allow the probability of responding to vary between attempts, but we assume that the associ-
ation between fully observed covariates and responding is the same at all attempts, although the latter
assumption could easily be relaxed. ıR is an informative missing parameter, and ıR D 0 corresponds to
MAR.

Estimation of model (8) uses data on individuals with observed outcomes together with the numbers
and baseline covariates of individuals with unobserved outcomes. The model may be fitted using a condi-
tional likelihood supplemented by a set of estimating equations [38], but this algorithm is not guaranteed
to converge. Alternative estimation methods are based on the full likelihood for model (8) jointly with
model (4). A Bayesian approach has been used [39], and a likelihood-based approach is also possible;
the likelihood involves integrating out the unobserved values of yi2. Fitting the model by using the full
likelihood directly estimates the parameters of (4); an alternative is to use the inverse of the response
probability as a weight for analysis of complete cases [38], but care must be taken to obtain standard
errors that allow for the often large uncertainty in the weights [39].

As in the previous section, an important extension to model (8) allows the informative missing
parameter ıR to differ between randomised groups:

logitP.ri2k D 1jri2k ¤ �; ´i ;xi ; yi2/D ˛
R
k C ˇ

R´i C �
R 0xi C ı

R
´i
yi2 (9)

where ıR´iyi2 can also be written as ıR1 ´iyi2C ı
R
0 .1� ´i /yi2.

4. Missing outcome data: analysis of the Down Your Drink trial

4.1. Implementation

In the DYD trial, ´i D 1 for individuals randomised to the interactive website and 0 for the control web-
site, and .yi1; yi2/ are the 1-month and 3-month alcohol consumption outcomes (log(TOT-ALC 1)). All
analyses were performed both unadjusted and adjusted for xi , which comprises the baseline variables
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listed in Table I; in general, we prefer the analysis adjusted for baseline covariates, especially the baseline
value of the outcome. For GEEs, robust standard errors were used. For mixed models, the unstructured
variance–covariance matrix was allowed to differ between randomised groups, although results with a
common variance–covariance matrix (not shown) were very similar.

Multiple imputations were drawn separately for each arm by using the chained equations approach
[40] implemented in Stata [41, 42]. For method MI1, the imputation model for the outcome at each time
was a linear regression including the outcome at the other time and the baseline variables. For method
MI2, the imputation models additionally included the log of one plus the numbers of pages hit at 1 and
3 months and the log of one plus the numbers of login sessions at 1 and 3 months. The distribution of the
incomplete variables was not fully Normal, even after log transformation, so predictive mean matching
was used to improve the imputations [31]. In each case, model (1) was fitted to each of 50 imputed data
sets, and the results were combined using Rubin’s rules [29]. Covariates were used in the imputation
model even when unadjusted analyses were performed.

For sensitivity analyses, the views of five DYD investigators were quantified before the trial results
were known, and these views were used to choose values of the informative missing parameters .ıY0 ; ı

Y
1 /

in Equation (7). When the informative missing parameters were assumed the same in both arms, the
investigators believed that the mean of the unobserved responses for alcohol consumption at 3 months
could be as much as 75% more or 50% less than the mean of the observed responses: these suggest
the sensitivity analyses ıY0 D ıY1 D log 1:75 and ıY0 D ıY1 D log 0:5. When the data were assumed to
be informatively missing only in the control arm, the investigators believed that the mean of the unob-
served responses could be as much as 50% more or 50% less than the mean of the observed responses:
these suggest the sensitivity analyses .ıY0 ; ı

Y
1 /D .log 1:5; 0/ and .log 0:5; 0/. We also choose the corre-

sponding cases with the data informatively missing only in the intervention arm: .ıY0 ; ı
Y
1 /D .0; log 1:5/

and .0; log 0:5/. In addition to these rather extreme sensitivity analyses, we also used more moderate
sensitivity analyses with .ıY0 ; ı

Y
1 /D .log 1:5; log 1:5/, .log 1:25; 0/ and .0; log 1:25/.

Analysis of number of attempts used the number of email reminders that were sent to each partici-
pant. The conditional likelihood algorithm diverged in some cases, so we used the maximum likelihood
approach. ‘Alho 1’ and ‘Alho 2’ refer to models (8) and (9), respectively.

Stata code for these analyses is given in Appendix A.1.

4.2. Results

We summarise the results in Table III and display the covariate-adjusted results in Figure 1. The inter-
vention effect is expressed as the ratio of the geometric mean alcohol consumption (plus 1 unit/week)
at 3 months in the intervention group to the corresponding geometric mean in the control group. In the
following text, we interpret these figures as percentage increases or decreases.

All methods based on MAR, as well as complete-cases analysis, give very similar results: the point
estimate represents a non-significant increase of between 4% and 12% due to the intervention, with a
95% confidence interval that does not extend below a 6% reduction.

Sensitivity analyses show that the estimated intervention effect is not very sensitive to departures from
MAR when the informative missing parameter is assumed to be equal across randomised groups, but is
very sensitive to departures from MAR that occur differently in the randomised groups. Moderate sen-
sitivity analyses (indicated by * in Table III and Figure 1) yield estimates ranging from an 8% reduction
to a 23% increase in alcohol consumption, whereas more extreme sensitivity analyses range from a 32%
reduction to a 56% increase. This suggests that the trial’s results are only robust to departures from MAR
that are similar in both randomised groups.

Using the number of email reminders and the MNAR models (8) and (9) gives the estimates of the
informative missing parameters in Table IV. For model (8), where the informative missing parameter
is assumed equal across the two groups, the negative estimate of the informative missing parameter ıR

suggests that heavier drinkers are more likely to be non-responders. However, the informative missing
parameter is not significantly different from zero so that the data are consistent with a MAR assump-
tion. For model (9), where the informative missing parameter is allowed to differ between groups,
both estimates are again negative and that for the intervention group is larger in magnitude, suggest-
ing that the tendency for heavier drinkers to be non-responders may be greater in the intervention group.
Although the informative missing parameter in the intervention group is significantly different from
zero (P D 0:03), a test for a difference between the arm-specific informative missing parameters is not
significant (P D 0:26) nor is a test on 2 degrees of freedom for departure from MAR (P D 0:09).
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Table III. Down Your Drink trial: analysis of alcohol consumption at 3 months, using various assumptions
and methods to handle missing outcome data.

Approach Assumption Method Unadjusted Adjusted

Complete cases
CD-MCAR1 1.073 (0.956 to 1.203) 1.043 (0.939 to 1.157)

Using repeated outcome measures
MAR2 GEE 1.095 (0.982 to 1.222) 1.058 (0.957 to 1.171)

Mixed model 1.097 (0.983 to 1.223) 1.063 (0.960 to 1.176)
MI1 1.072 (0.960 to 1.196) 1.050 (0.945 to 1.167)

Using website use
MAR3 MI2 1.115 (0.991 to 1.255) 1.092 (0.974 to 1.225)

Sensitivity analysis using (7) exp .ı/
MNAR, ıY0 D ı

Y
1 D ı 0.5 1.017 (0.905 to 1.142) 0.990 (0.890 to 1.101)

1.5* 1.107 (0.986 to 1.242) 1.074 (0.967 to 1.193)
1.75 1.120 (0.997 to 1.258) 1.087 (0.978 to 1.208)

MNAR, ıY0 D 0; ı
Y
1 D ı 0.5 0.698 (0.622 to 0.784) 0.680 (0.612 to 0.755)

1.25* 1.232 (1.098 to 1.381) 1.197 (1.078 to 1.328)
1.5 1.379 (1.229 to 1.547) 1.339 (1.206 to 1.487)

MNAR, ıY0 D ı; ı
Y
1 D 0 0.5 1.562 (1.391 to 1.753) 1.519 (1.367 to 1.688)

1.25* 0.951 (0.847 to 1.066) 0.924 (0.832 to 1.025)
1.5 0.861 (0.768 to 0.966) 0.837 (0.753 to 0.929)

Using the number of attempts and (9)
MNAR, ıR0 D ı

R
1 Alho 1 1.086 (0.967 to 1.220) 1.050 (0.945 to 1.167)

MNAR, ıR0 ¤ ı
R
1 Alho 2 1.328 (0.926 to 1.904) 1.057 (0.872 to 1.281)

Figures are ratio of geometric means, intervention/control, with 95% confidence interval.
*Moderate sensitivity analyses.
1yi2 is covariate-dependent MCAR given .´i ;xi /.
2.yi1; yi2/ are MAR given .´i ;xi /.
3.yi1; yi2/ are MAR given .´i ;xi ; vi ).

CC
GEE

Mixed model 2
MI 1
MI 2

Sens both 0.5
Sens both (1.5*)
Sens both 1.75
Sens interv 0.5

Sens interv (1.25*)
Sens interv 1.5

Sens control 0.5
Sens control (1.25*)

Sens control 1.5
Alho 1
Alho 2

0.6 0.8 1 1.2 1.4 1.6
Ratio of geometric means, intervention/control

Figure 1. Down Your Drink trial: estimates (95% confidence intervals) of the intervention effect on weekly
alcohol consumption, adjusted for baseline covariates, using different methods for handling the missing data.

*Denotes moderate sensitivity analyses.
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Table IV. Down Your Drink trial: informative missing parameters ıR (standard errors),
defined as the log odds ratio for response per 1-unit increase in 3-month log(TOT-AL C 1),
estimated using the Alho model and maximum likelihood.

Model Arm Unadjusted Adjusted

Alho 1 Both �0:15 (0.10) �0:10 (0.13)
Alho 2 Intervention �0:28 (0.13) �0:11 (0.16)

Control �0:06 (0.15) �0:10 (0.13)

Alho 1: MNAR, common ıR across attempts and arms (model (8)).
Alho 2: MNAR, common ıR across attempts (model (9)).

These results do not provide good evidence against a MAR assumption, but they change the esti-
mated intervention effects in Table III when the informative missing parameter is allowed to differ
across randomised groups as in model (9). This MNAR analysis indicates a much larger increase due
to intervention in the unadjusted analysis, and much wider confidence intervals in both unadjusted and
adjusted analyses. We attribute these findings to the great sensitivity of estimated intervention effects to
differences in informative missing parameter ıR between randomised groups, along with the difficulty
of estimating this parameter.

5. Incomplete uptake of interventions: methods

Intervention receipt in some randomised trials can be summarised as a binary variable [43], whereas
other trials have complex intervention receipt that may be summarised as one or more quantitative
variables. We present a SMM that is applicable to both binary and quantitative cases, provided that
intervention receipt is univariate.

5.1. Structural mean model

Structural mean models describe the relationship between the observed data and the counterfactual data
that would have been observed with a different random allocation [12, 44]. For the i th individual, we
define yi .1/ as the outcome that would be observed if they were randomised to intervention and yi .0/ as
the corresponding outcome if they were randomised to control. Exactly one of these potential outcomes
is observed for each individual. Define di .1/ as the i th individual’s compliance (binary or quantitative)
with the intervention, if they were allocated to intervention. We initially ignore compliance with the
control. We now assume that the causal effect of the intervention is proportional to the compliance. This
implies that individuals who would be complete non-compliers if allocated to intervention have no effect
of allocation, the ‘exclusion restriction’ assumption. We then have the SMM

yi .1/� yi .0/D  di .1/C ei (10)

where ei is a zero-mean error term whose presence allows treatment effects to vary between individuals.
Model (10) implies that

E Œyi .1/� di .1/�D E Œyi .0/� : (11)

Estimation proceeds by noting that randomised group ´i is independent of the potential outcomes yi .1/,
yi .0/ and di .1/, so each expectation in (11) can be computed in one arm of the trial. This leads to the
estimating equation

P
i .´i � Ń/.yi �  di / D 0 where di D di .1/ or 0 for individuals randomised to

intervention or control, respectively.
Baseline covariates xi that are uncorrelated with ´i and ei may be used in two ways to improve the

efficiency of the estimation procedure. First, we can condition on xi in (11) and model E Œyi .0/jxi � D
˛C �xi , yielding the alternative estimating equation

P
i .´i � Ń/.yi � di � ˛ � �

0xi /D 0, to which
we add standard estimating equations for ˛ and � [45], giving

X
i

0
@ 1

xi
´i

1
A .yi � di � ˛ � � 0xi /D 0: (12)
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Equation (12) is easy to estimate because it is a standard instrumental variables (IV) model [46], in
which ´i is the instrument, di is the ‘endogenous’ variable and xi is the ‘exogenous’ variable. A second
approach, not adopted here, makes use of baseline covariateswi that predict di in the intervention group.
In this case, precision can be gained by using the interactions ´iwi as additional instruments, but at the
cost of further assumptions [47]. Again, this can be fitted using standard IV software.

5.2. Interpretation

Interpreting the estimated parameter  is easiest when compliance is binary. In the aforementioned
model, this means that di .1/ is 0 or 1. In the statistical literature, the two groups formed are often known
as ‘compliers’ (di .1/ D 1) and ‘non-compliers’ (di .1/ D 0), referring to an individual’s compliance
status if they were randomised to the intervention. In this setting, the ‘exclusion restriction’ assumption,
which identifies the model, states that randomised allocation has no effect on non-compliers. The param-
eter  can be interpreted without further assumptions as the CACE, the average of yi .1/ � yi .0/ over
the subgroup with di .1/D 1 [48].

If compliance is not naturally binary, it is tempting to dichotomise it. Clearly, a good definition of
‘compliers’ is needed. It is not necessary to assume that compliers all receive the same benefit of
intervention, because the CACE represents an average overall compliers. However, it is essential to
assume that non-compliers receive no benefit from intervention. It is therefore typically necessary to use
a restrictive definition of non-compliance, classing any individual whose moderate compliance could
have brought him or her benefit with the compliers.

An alternative approach is to express compliance di .1/ quantitatively. This typically makes the
exclusion restriction more plausible, because the zero level can be chosen to represent no use of the
intervention. However, without further assumptions, no simple interpretation of generalises the CACE.
The further assumption usually made is E Œei jdi � D 0 so that model (10) is correctly specified. In this
case,  d can be interpreted as the average causal effect of allocation to intervention in the subgroup who
would comply to an extent d : that is, E Œyi .1/� yi .0/jdi .1/D d�D  d .

5.3. Using control group compliance

When the control group also receives some intervention, such as a placebo or a standard treatment,
control-group compliance di .0/ is also available. The SMM could then be extended as

yi .1/� yi .0/D  1di .1/� 0di .0/C ei (13)

which allows for a causal effect of the control intervention. The original approach to this problem
assumed that di .1/ is a monotonic function of di .0/ [49], but the method is very sensitive to depar-
tures from this assumption [50]. More recent causal estimation methods for models such as (13) use
either an assumption that di .0/� di .1/ for all i and Bayesian modelling with slightly informative priors
[51], or informative priors for one of the treatment effects [52], or covariates that predict di .0/ and di .1/
differently but that do not modify the causal effect of treatment [45]. Because of the complexities of all
these approaches, we would prefer to ignore di .0/ when it is plausible that the control intervention has
no causal effect (i.e. that  0 D 0 in (13)).

5.4. Missing data

Missing outcome data complicate estimation of the IV model. Standard implementations of IV are
restricted to using complete cases only and are thus valid only under MCAR. Three approaches can
be used to make them valid under MAR.

First, inverse probability weighting (IPW) can be used [53, 54]. Models are constructed for
p.ri jxi ; ´i D 1; di / and p.ri jxi ; ´i D 1/, and the ‘stabilised weights’ [55] in group 1 are formed as
the ratio of the fitted values, Op.ri jxi ; ´i D 1/= Op.ri jxi ; ´i D 1; di /. The stabilised weights in group 0 are
all 1, because di does not vary. Weighted IV regression is then performed with robust standard errors.

Second, the ‘adjusted treatment received’ (ATR) method [56, 57] is equivalent to IV regression for
complete data and is valid when outcomes are MAR [54]. In this method, a linear regression model
is first constructed for actual treatment receipt on randomised group and covariates (using all obser-
vations including those with missing yi ), and the residuals are estimated. The causal effect of actual
treatment receipt is then estimated by linear regression of yi on actual treatment receipt, adjusting for

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 3192–3207
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the previously estimated residuals and the covariates. The standard errors from this second stage may be
underestimated because they ignore uncertainty in the residuals [54].

Third, MI can be used.

6. Incomplete uptake of interventions: analysis of the Down Your Drink trial

6.1. Implementation

The DYD trial has complex intervention receipt: individuals could use the website on different numbers
of occasions, for different lengths of time, and in different ways. Any attempt to estimate the effect of
intervention receipt in such data relies on a plausible causal model describing how intervention receipt
may affect outcomes. We describe one approach with dichotomised compliance and one with quantitative
compliance.

For dichotomised compliance, a non-zero cut-off was chosen, because almost all randomised indi-
viduals had at least one login (Table I). Section 5.2 argues for a relatively low cut-off, and we defined
compliers as individuals who logged in more than once or accessed more than 10 pages of the website
within the first 1 month from randomisation. Our analyses therefore rest on the assumption that an indi-
vidual who accessed fewer than 10 pages on only one occasion received no benefit, and they estimate
the average benefit of the intervention website over a wide range of use.

For quantitative compliance, we defined di .1/ in Equation (10) as the number of pages downloaded
over the first month of the trial, but with an upper limit of 300 pages because we did not believe that
use above this level would have further benefit. We did not use website uptake in the control group in
the model, because the control website is unlikely to be effective. For the MI approach, we used the
imputations constructed using compliance variables as in MI2 of Section 4.

Stata code for these analyses is given in Appendix A.2.

6.2. Results

Of 1880 individuals allocated to intervention, 1461 (78%) were classed as compliers. As a result, the
estimated CACE (Table V) was not very different from the ITT MAR estimate (Table III). IPW and ATR
methods behaved very similarly. MI gave somewhat different results: although this is unexpected, it is
consistent with the differences between MI1 and MI2 in Table III.

Estimates of the causal effect per 100 pages downloaded were somewhat larger than the ITT estimates.
This appears to be because the mean number of pages downloaded in the intervention group was 65, so
the estimated effect of downloading 100 pages was approximately one and a half (100/65) times the ITT
effect. The confidence interval for the intervention effect in these analyses does not extend below an 11%
reduction.

7. Discussion

7.1. Conclusions for the Down Your Drink trial

A concern with the DYD trial, and many other online trials, is that high rates of non-response and
low intervention uptake makes it hard to draw conclusions about the intervention’s effectiveness. Our

Table V. Down Your Drink trial: analysis of alcohol consumption at 3 months, allowing for incomplete use
of website.

Missing data method Unadjusted Adjusted

Binary compliance: compliers versus non-compliers
IPW 1.100 (0.950 to 1.273) 1.053 (0.921 to 1.203)
ATR 1.100 (0.949 to 1.275) 1.052 (0.920 to 1.204)
Multiple imputation 1.150 (0.986 to 1.342) 1.121 (0.965 to 1.301)

Continuous compliance: per 100 pages downloaded
IPW 1.124 (0.937 to 1.349) 1.079 (0.917 to 1.269)
ATR 1.123 (0.935 to 1.348) 1.082 (0.916 to 1.277)
Multiple imputation 1.189 (0.982 to 1.440) 1.151 (0.956 to 1.386)

Figures are ratio of geometric means, intervention/control, with 95% confidence interval. ATR, adjusted treatment
received; IPW, inverse probability weighting.
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analyses in this paper show that the conclusions were not substantially affected under a range of
assumptions about the missing data mechanism, except when we assumed that the informative missing
parameter differed between randomised groups. To the extent that the latter assumption may be implau-
sible, our results appear reasonably robust. Similarly, conclusions were not substantially affected when
we used causal models to consider the impact of downloading 100 website pages. The latter conclusion
depends on a judgement that 100 website pages was a reasonable target for moderately conscientious
website use.

Our results therefore provide some support for the use of online trials in general, with two cautions: it
is essential to consider the informative missingness parameters differing between randomised groups and
to consider how much the observed intervention uptake falls short of what might be hoped for. Analyses
allowing for non-response and low intervention uptake are best specified in advance and included in the
analysis plan.

7.2. Methodological conclusions

These methods are of potential use in all trials and not just online trials. When rates of missing data
are low, sensitivity analysis may be enough to demonstrate that missing data are not a problem. In other
cases, including intermediate or other outcomes and/or compliance variables in MAR analyses is a use-
ful strategy, although treatment effect estimates may only be changed when the auxiliary variables are
strongly associated with outcome [58]. Sensitivity analyses are always helpful but depend on expert con-
sideration of the plausible degree of departure from MAR. Data on number of attempts to obtain data, or
more generally ease of contact, are often recorded and should be more widely used in analysis: results
from the Alho model (8) or (9) can be a useful way to allow for extra uncertainty due to the possibility
of MNAR data without the need to rely on expert opinion. With pressure on journal space, it may be
convenient for all these alternative analyses to be included in web appendices. In the primary publica-
tion of the DYD trial [23], which was based on more data than those used here, the primary analysis was
the adjusted complete-cases analysis, and web appendices presented alternative analyses for the miss-
ing data—a partial last observation carried forward (LOCF; see in the next section), MI and sensitivity
analyses using (7)—and analyses adjusting for non-compliance.

A particularly relevant question in a trial with a ‘negative’ result is whether this negative result is
attributable to incomplete intervention uptake. In this context, it is important to formulate the causal
question carefully, defining a parameter such as the CACE or the causal effect of a particular amount of
intervention, and then consider the limits of the confidence interval for the parameter.

7.3. Other methods

We have not reported here an analysis using LOCF, one of the most widely used techniques [3], which
simply replaces missing outcomes with the last observed value. LOCF rests on an assumption that out-
comes do not change (on average in each arm) after participants drop out of the study, which is often
implausible. In the DYD trial, with its large change in outcome after baseline, LOCF would yield implau-
sibly different imputations for individuals with no post-baseline measurement and those with a 1-month
measurement. Because LOCF is widely used, the primary DYD trial publication [23] reported a partial
LOCF analysis that carried only post-baseline measurements forward. Unfortunately, usual justifica-
tions for LOCF rest not on the plausibility of its assumption but on approximate constancy of observed
outcomes, or on an appeal to the ITT principle, or on conservatism: none of these are valid [2].

Our sensitivity analyses were based on data from baseline and follow-up time 2 only. Basing the sen-
sitivity analyses on the mixed model (4) might be preferable but is technically more complicated and is
unlikely to make much difference in view of the small differences between complete-cases and MAR-
based analyses (Table III). The Alho method could also be extended to allow for the repeated measures:
for example, better estimating the informative missing parameter ıR by assuming it to be constant across
follow-up times. Another possible assumption about the missing data is that they are ‘latent ignorable’,
meaning that they would be MAR if the potential compliance di .1/ were observed for everyone [59].

7.4. Extensions

For binary outcomes, mixed models become more complex, and GEE or MI methods might be pre-
ferred. The MNAR methods can be applied equally well, and the exp .ı/ parameters can be interpreted
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as informatively missing odds ratios [60, 61]. The SMMs described may still be used to estimate causal
risk differences, but if causal odds ratios are wanted then generalised SMMs are needed [62].

Methods used for survival outcomes are typically very different from those that we have described.
Here, missing data take the form of censoring, and the non-informative censoring assumption takes the
place of the MAR assumption: departures from the non-informative censoring assumption are rarely
considered but should be. SMMs are not suitable for survival outcomes, but the structural accelerated
failure time model is a general alternative for handling incomplete intervention uptake [63, 64], and
hazard-based methods are available for handling all-or-nothing uptake [65].

In the DYD trial, all baseline covariates were complete. Incomplete baseline covariates are simply
and efficiently handled by single imputation methods such as imputing the overall or centre-specific
mean of the covariate [31]. Such simple methods would be inappropriate for missing outcomes: they are
appropriate for missing baselines because baseline covariates are independent of randomised group, and
adjustment for baseline covariates is not required for unbiased estimation [66].

Stata do-files to implement the analyses presented in this paper are given in Appendix A.

APPENDIX A. Stata code

A.1. Missing data

The succeeding code uses four user-written commands. ice [67] and mim [68] implement MI and
are available from the Statistical Software Components (SSC) archive. alho and rctmiss imple-
ment the ‘number of attempts’ model and sensitivity analyses, respectively, and are available from the
first author’s website by typing net from http://www.mrc-bsu.cam.ac.uk/IW_Stata/
in Stata.

The code shows adjusted analyses; for unadjusted analyses, delete the global xvars and global
time_xvars commands. The data are assumed to be in a file DYDwide.dta with one record per
randomised individual.
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A.2. Allowing for incomplete intervention uptake

The following code is for quantitative compliance: results with binary compliance are obtained by
redefining treat.
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