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Abstract

Background: Surgical site infections (SSIs), the second most common healthcare-associated infections, increase
hospital stay and healthcare costs significantly. Traditional surveillance of SSIs is labor-intensive. Mandatory
reporting and new non-payment policies for some SSIs increase the need for efficient and standardized sur-
veillance methods. Computer algorithms using administrative, clinical, and laboratory data collected routinely
have shown promise for complementing traditional surveillance.
Methods: Two computer algorithms were created to identify SSIs in inpatient admissions to an urban, academic
tertiary-care hospital in 2007 using the International Classification of Diseases, Ninth Revision, Clinical Mod-
ification (ICD-9-CM) diagnosis codes (Rule A) and laboratory culture data (Rule B). We calculated the number of
SSIs identified by each rule and both rules combined and the percent agreement between the rules. In a subset
analysis, the results of the rules were compared with those of traditional surveillance in patients who had
undergone coronary artery bypass graft surgery (CABG).
Results: Of the 28,956 index hospital admissions, 5,918 patients (20.4%) had at least one major surgical proce-
dure. Among those and readmissions within 30 days, the ICD-9-CM-only rule identified 235 SSIs, the culture-
only rule identified 287 SSIs; combined, the rules identified 426 SSIs, of which 96 were identified by both rules.
Positive and negative agreement between the rules was 36.8% and 97.1%, respectively, with a kappa of 0.34 (95%
confidence interval [CI] 0.27–0.41). In the subset analysis of patients who underwent CABG, of the 22 SSIs
identified by traditional surveillance, Rule A identified 19 (86.4%) and Rule B identified 13 (59.1%) cases. Positive
and negative agreement between Rules A and B within these ‘‘positive controls’’ was 81.3% and 50.0% with a
kappa of 0.37 (95% CI 0.04–0.70).
Conclusion: Differences in the rates of SSI identified by computer algorithms depend on sources and inherent
biases in electronic data. Different algorithms may be appropriate, depending on the purpose of case identifi-
cation. Further research on the reliability and validity of these algorithms and the impact of changes in reim-
bursement on clinician practices and electronic reporting is suggested.

Surgical site infections (SSIs) are the second most
common healthcare-associated infections (HAI). An esti-

mated 2–5% of inpatient surgical procedures are complicated
with an SSI, adding 7–10 days to the hospital stay and $10
billion in direct and indirect health care expenditure [1].
Surveillance of SSIs and feedback of rates to surgeons reduces
the incidence of these infections [2].

The Centers for Disease Control and Prevention’s (CDC)
National Healthcare Safety Network (NHSN) has developed
detailed guidelines for the surveillance and definition of HAIs,
including SSIs [3]; however, traditional surveillance using these
methods tends to be time-consuming and labor-intensive, re-
quiring a large expenditure of time by infection prevention and
control department staff [4]. Computer algorithms to identify
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SSIs using administrative, clinical, laboratory, and pharmacy
data collected routinely have shown promise in enhancing and
complementing traditional surveillance of SSIs [5–8]; however,
these methods have had various degrees of success [9,10].

Certain algorithms and approaches to using electronic data
may be more suitable than others, depending on the purpose
of case identification. In this paper, we explore the perfor-
mance characteristics and underlying principles of two com-
puter algorithms for the identification of SSIs using
retrospective data that are collected routinely. We also com-
pare the results of these algorithms with the results of tradi-
tional surveillance in patients who underwent coronary artery
bypass graft (CABG) surgery.

Materials and Methods

The study was conducted at a 745-bed urban tertiary-care
teaching hospital. After approval from the Columbia Uni-
versity Medical Center Institutional Review Board (Federal-
wide Assurance No. 00002636), we extracted data for all
inpatient discharges for the year 2007 from three sources.
Administrative data, including admission and discharge data;
International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) diagnosis; and procedure
codes recorded by hospital-based coders, were obtained from
the cost accounting and billing system. Microbiology culture
results were extracted from the University’s Clinical Data
Warehouse, which acts as a repository of laboratory, admin-
istrative, and clinical data for research and administrative
tasks. Finally, a list of all SSIs in patients who underwent
CABG in 2007 was obtained from the Department of Infection
Prevention & Control, which performs quarterly surveillance
for SSIs after CABG procedures using the CDC-NHSN defi-
nitions and methods [3]. Infection preventionists review all
positive incision cultures and all re-admissions for up to one
year for infections at the surgical site, as required by NHSN
because of the presence of sternal wires, which are considered
implants.

All patient identifiers were replaced by a unique study
identification number. Data extraction and analysis were
performed with TOAD for DB2 version 3.1.1 (Quest Soft-
ware, Aliso Viejo, CA) and SAS version 9.1.3 (SAS Institute,
Cary, NC).

Administrative data were screened to identify hospital
stays that included a major surgical procedure. Surgical pro-
cedures from the list of ICD-9-CM codes of procedures from
the Patient Safety Protocol of the NHSN Manual were con-
sidered major [11]. Re-admissions within 30 days of discharge
were linked to the original hospital stay, and the two stays
were considered a single hospital episode. Administrative
data were screened for ICD-9-CM codes for post-operative
infection not elsewhere classified (998.5), infected post-oper-
ative seroma (998.51), and other post-operative infection
(998.59) after a major procedure and in subsequent qualifying
re-admissions.

Microbiology cultures were identified with key words such
as ‘‘wound,’’ ‘‘abscess,’’ ‘‘surgical,’’ ‘‘drainage,’’ ‘‘body fluid,’’
or ‘‘surgical specimen’’ in the specimen source, indicative of a
culture taken from a relevant site. Because colony-forming
units are not reported routinely for cultures taken from these
sites, growth of any organism was considered a positive cul-
ture. Two of the co-authors (YF, SH) derived a rule dividing

organisms implicated commonly in SSIs into commensals or
pathogens, which was applied to the culture results to label
them potential colonization or potential infection. In cultures
that yielded common skin contaminants, those with at least
two positive cultures on separate occasions were considered
potential infections.

Using these data, two decision rules were formulated and
applied independently and together to these hospital stays to
identify SSIs. The first rule identified SSIs in linked hospital
stays with a major surgical procedure that had ICD-9-CM
codes for post-operative infection (Rule A). The second rule
identified SSIs in hospital stays with a positive microbiologic
culture suggestive of infection from a relevant specimen source
within 30 days of a major surgical procedure (Rule B) (Fig. 1).

Analysis was conducted in two parts. First, we determined
the number of SSIs identified and the percent agreement for
the two rules in all patient discharges. Second, we compared
the results of these rules with SSIs identified by traditional
surveillance in the subset of patients who underwent CABG.
For this analysis, discharges were screened for ICD-9-CM
codes for CABG only rather than any major surgical proce-
dure. We chose SSIs after CABG to test the validity of the
algorithms, as this operation represents a major procedure
under surveillance during the study period for which com-
plete data were available. Two of the clinician co-authors
conducted a chart review of these data to evaluate the dif-
ferences between the results of the computer algorithms and
surveillance. For discrepant results (SSI identified by tradi-
tional surveillance but not by Rule A or B, or vice versa), the
electronic medical record was reviewed in detail to identify
possible reasons for the discrepancies.

Results

The data set consisted of 33,834 inpatient hospital admis-
sions in 2007 with 28,956 first admissions and 4,878 re-
admissions within 30 days. Of these, 5,918 patients (20.4%)
had at least one major surgical procedure performed.

In the first part of our analysis, among the 5,918 patients,
the ICD-9-CM rule (Rule A) identified 235 SSIs (3.97 per 100
procedures). With regard to Rule B, cultures were sent from a
relevant specimen source within 30 days of the procedure in
617 patients (10.43%), 338 (5.71%) of whom had at least one
positive culture (Fig. 2). Patients who had undergone heart
transplants had the highest rate of cultures obtained within 30
days (40%), followed by those having re-fusion of the spine
(20%) or non-transplant cardiac procedures (13.49%). In cul-
tures that grew common skin contaminants, eight patients
had at least two separate positive cultures, seven of whom
had concurrent growth of pathogenic organisms (data not
shown). Of the 338 patients with positive cultures, 287 satis-
fied the culture-based definition (Rule B) for SSI (4.85 per 100
procedures) (Table 1).

Surgical site infections were identified in 416 patients by the
application of either Rule A or Rule B; 96 patients (1.62 per
100 procedures) satisfied both Rule A and Rule B. Positive
agreement between Rules A and B was 36.8% and negative
agreement was 97.1% with a kappa of 0.34 (95% confidence
interval [CI] 0.27–0.41).

In a subset analysis, we compared the results of traditional
surveillance with the results of the computer algorithms in
patients who underwent CABG surgery in 2007. Of the 22
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ICD-9-CM coded administrative data 
for all patients discharged in 2007

Merge eligible culture results 

Link re-admissions within 30 days 

Identify admissions with major surgical 
procedure 

Admissions with positive culture 
results within 30 days of surgical 

procedures from relevant specimen 
source suggestive of infection 

(Rule B) 

Admissions with ICD-9-CM code for 
post operative infection 

(Rule A) 

Rule A OR Rule B Rule A AND Rule B 

FIG. 1. Algorithm to identify surgical site infections using International Classification of Diseases, Ninth Revision, Clinical
Modification codes for post-operative infection (Rule A) and culture results (Rule B).

* ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification. 

Hospital stays 
28,956 

ICD-9-CM* code for 
post-operative 

infection 
235 

Major operative 
procedure during stay or 
in past 30 days of stay 

5,918 

Cultures 
performed within 

30 days of 
procedure 

671 

No cultures 
performed within 

30 days of 
procedure 

5,247 

Culture negative 
333 

Culture Positive 
338 

A 

Cultures 
performed within 

30 days of 
procedure 

143 

No cultures 
performed within 

30 days of 
procedure 

92 

Culture negative 
36 

Culture positive 
107 

Potential infection 
287 

Potential colonization 
51 

B 

Potential infection 
96 

Potential colonization 
11 

A+B 

FIG. 2. Surgical site infections identified using two computer algorithms independently and together.
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cases identified by traditional surveillance, Rule A identified
19 (86.4%) (3.29 per 100 procedures), and Rule B identified 13
cases (59.1%), all of which were also Rule A-positive (Table 2).
Positive and negative agreement between Rules A and B
within these ‘‘positive controls’’ was 81.3% and 50.0% with a
kappa of 0.37 (95% CI 0.04–0.70). Rule A and Rule B identified
15 and seven cases, respectively, that were not identified as
SSI by traditional surveillance.

Three cases were missed by both rules. One patient was
found to have an SSI in the physician’s private office on
follow-up and had no matching admission record in the
data set. In a second patient, SSI was diagnosed after the
study followup period of 30 days. In the third case, the SSI
was diagnosed after the study period of 2007 ended. The
culture-based rule missed an additional six cases. Three
patients had a single culture with a common skin contami-
nant, which did not satisfy the positive culture definition of
the algorithm, two had no positive cultures, and one patient
had positive cultures obtained more than 30 days after the
procedure. Of the 22 cases identified by traditional surveil-
lance, only two were diagnosed more than 30 days after the
procedure.

Discussion

Identification of SSIs using electronic data collected rou-
tinely has several potential uses, including supplementing or
aiding traditional surveillance, directing and monitoring
quality improvement activities, mandatory reporting, and
health services research. Each of these purposes has specific

requirements that must be met if SSI identification using
electronic data is to prove useful. Use of multiple sources of
data in formulating rules to identify infections improves the
performance of algorithms [12]. Thus, we augmented ICD-9-
CM diagnosis codes with microbiologic culture data and data
on surgical procedures in an attempt to increase the utility of
these rules for as many purposes as possible.

Short stays and earlier discharges of patients having sur-
gical procedures mean that SSIs are not always diagnosed in
the same admission as the procedure. In our dataset, 16/22
SSIs after CABG were diagnosed after discharge, in a subse-
quent encounter. Most patients with SSIs following CABG at
our institution are re-admitted to our hospital (either directly
or by transfer from other institutions) for further manage-
ment. If a patient is admitted to another institution within
New York State for SSI management, the institution is re-
quired to report the infection to our Department. However, if
a patient is managed at a hospital outside the state or as an
outpatient, those cases may not be captured, and this is a
recognized limitation, as is true at most institutions. Our
study was limited further by the fact that we were able to
compare rates obtained by electronic surveillance and tradi-
tional surveillance by clinicians for only one surgical proce-
dure—CABG. It is possible that there would be variations in
the rates of SSI with different procedures. However, even
traditional surveillance methods (the gold standard) may
yield inaccurate results.

In an earlier version of the rules that did not account for re-
admissions, 37% of the admissions with an ICD-9-CM code
for post-operative infection did not have a procedure in the

Table 1. Surgical Site Infections in Patients Undergoing Major Surgical Procedures Identified

Using International Classification of Diseases, Ninth Revision, Clinical Modification Code

for Post-Operative Infection (Rule A) or Positive Cultures from Relevant

Specimen Sources (Rule B) within 30 Days of Procedure

Culture-based rule (Rule B)

Positive (% of total) Negative (% of total) Total

ICD-9-CM-based rule (Rule A) positive 96 139 235
ICD-9-CM-based rule (Rule A) negative 191 5,492 5,683

287 5,631 5,918
Kappa = 0.34 (95% confidence interval 0.27-0.41)

Positive agreement 36.8%
Negative agreement 97.1%

ICD-9-CM = International Classification of Diseases, Ninth Revision, Clinical Modification.

Table 2. Results of Two Computer Algorithms in Patients Identified by Traditional Surveillance

as Having Surgical Site Infections after Coronary Artery Bypass Grafting

Culture-based rule (Rule B)

Positive (% of total) Negative (% of total) Total

ICD-9-CM-based rule (Rule A) positive 13 6 19
ICD-9-CM-based rule (Rule A) negative 0 3 3

13 9 22
Kappa = 0.37 (95% confidence interval 0.04–0.70)

Positive agreement 81.3%
Negative agreement 50.0%

ICD-9-CM = International Classification of Diseases, Ninth Revision, Clinical Modification.
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same admission, and Rule A and Rule B identified 88 and 41
fewer cases, respectively. Accounting for re-admissions in the
final rules allowed us to identify patients with an NHSN
operative procedure from a prior admission, aligned our
electronic definitions with the NHSN SSI definitions, and
prevented over-counting of SSIs in patients with multiple
follow-up admissions for post-operative infection. Although
ICD-9-CM diagnosis codes are associated with a ‘‘present on
admission’’ (POA) indicator [13], this indicator has not been
adopted reliably. Improved POA coding is crucial to improve
the reliability of electronic data use for the identification of
SSIs. Inclusion of microbiologic data, which have precise
date–time stamps, made it possible to estimate the time of
infection within an encounter, an especially desirable pa-
rameter for research into the costs of HAI.

The quality of algorithms to identify SSIs is dependent
largely on the availability and accuracy of the data used. The
ICD-9-CM codes are assigned for each hospital discharge by
expert, trained coders after scrutiny of medical records. In
addition, documentation improvement specialists review re-
cords to ensure complete and accurate documentation of pa-
tients’ conditions, including, where indicated, querying
physicians for clarification to ensure that the most appropriate
ICD-9-CM code is selected. Because ICD-9-CM codes are
easily available, they are used widely in health services and
health economics research. However, as they are designed
primarily for reimbursement purposes, use of ICD-9-CM
representations of clinical conditions is prone to misclassifi-
cation [9,14]. In particular, ICD-9-CM codes for post-operative
infection are not always specific to infections at the surgical
site. Any algorithms depending solely on ICD-9-CM codes for
identification of infection will suffer from these limitations.
The newer ICD-10 coding system, scheduled to be rolled out
in the U.S. in 2013, has more than five times as many codes as
the ICD-9-CM system and thus offers more granularity in
describing the etiology and site of infection. However, the
single code category for ‘‘infection following a procedure’’
(T81.4) exposes it to some of the same limitations as the ICD-9-
CM [15,16].

Microbiologic data are a reliable source for organism
identification and date–time stamps. However, specimen
sources are not always labeled precisely, leading to the pos-
sibility that positive cultures are not related to the surgical
site. In creating Rule B, the assumption was made that cul-
tures collected more than 30 days after a procedure were less
likely to be related to the surgical site, and hence, these were
not included in the algorithm. Nonetheless, we recognize that
when an implant is in place, NHSN defines SSIs as occurring
as late as one year post-procedure, an event that seemed to be
rare according to traditional surveillance of CABG proce-
dures, but which we are missing with our algorithm.

On a more basic level, not all SSIs are identified by cultures;
some may be diagnosed on the basis of clinical examination of
the surgical site or other signs and symptoms. In institutions
in which cultures are obtained more frequently, culture-based
Rule B may be the preferable algorithm, but when cultures are
obtained less frequently, the ICD-9-CM codes may identify a
higher proportion of SSIs. Using either (or both) rules still will
result in some misclassification, however.

These advantages and limitations are reflected in our
findings. Our ICD-9-CM-based Rule A identified more cases
of surveillance-confirmed SSI in CABG patients than did the

culture-only Rule B, which did not identify any cases beyond
those found by Rule A. However, it also mis-classified more
cases as SSI than the more restrictive culture-based rule. To
obtain the most accurate SSI rates, prospective in-patient and
out-patient surveillance of all surgical patients for the entire
at-risk period by expert infection control staff would be re-
quired. However, this is neither feasible nor cost effective, nor
does it assure that standardized assessments will be used.
Hence, the use of electronic data and algorithms such as those
we propose here can be helpful and practical for monitoring
trends over time and as a supplement to traditional surveil-
lance.

West et al. recently reported similar results; they used the
same criteria we did to determine the population at risk; i.e.,
assignment of ICD-9-CM procedure codes for procedures
from the NHSN operative procedures list [17]. However, they
used only procedures that were under surveillance by infec-
tion control staff during the study period, whereas our list
included all NHSN procedures. The secondary ICD-9-CM
codes they used were the 140 codes from the Pennsylvania
Health Care Cost Containment Councils (PHC4) set for public
reporting of HAIs. It is interesting that code 998.59 was im-
portant in their analysis. We included this code as the basis for
our ICD-9-CM definition of post-operative infection because it
was one of the few that were used consistently and reliably.
This is similar to the approach of West et al. to include only
eight of the 140 most frequently used codes in their models.
Hence, our findings are consistent. Their approach using re-
gression models suggested that 998.59 is the best code pre-
dictor for SSI, but it did not specifically identify how good. In
their previous paper using the same dataset [9] and all PHC4
140 codes, they reported a positive predictive value of 0.42
and a negative predictive value of 0.96 for identifying SSI after
CABG surgery. The paper by West et al. also mentioned as a
limitation (and suggestion) that post-operative infection
codes should be counted only after the procedure. We have
done that in this study; that is, our ICD-9-CM rule counts
post-operative infection codes only if they were not present on
admission in the encounter with the procedure or if they oc-
curred at a subsequent encounter.

Changes in reimbursement policies of the Centers for
Medicare and Medicaid Services may provide negative in-
centives for reporting of untoward events such as SSI. In ad-
dition, SSI rates are used as a quality measure, which also
provides a disincentive to report all potential SSIs. Un-
anticipated consequences of these incentives include modifi-
cations in ICD-9-CM coding practices or Diagnosis-Related
Groups, changes in provider practices regarding the fre-
quency of obtaining microbiologic cultures or prescribing
antimicrobial agents, or changes in patterns of surveillance.
Monitoring the unintended consequences of payment and
reporting incentives has been identified as an important area
for future research [18]. Such changes would have unpre-
dictable effects on the reliability and validity of SSI diagnosis,
regardless of the surveillance method(s) used.

Because different surveillance strategies are employed and
the utility of electronic surveillance differs among institutions,
caution is necessary when using SSI rates to compare health-
care quality between institutions. Our results reinforce this
caution, because the accuracy of electronic surveillance
is highly dependent on the quality of data, the decision rules
applied, and local clinical practices. However, as a supplement

COMPUTER ALGORITHMS FOR SSI 463



to traditional surveillance, electronic databases and adminis-
trative data show promise for enhancing our ability to identify
SSIs accurately.

Conclusions and Recommendations

We found differences in SSI rates employing two algorithms
based on electronic data sources. Algorithms using only ICD-
9-CM codes may perform better at identifying surveillance-
confirmed SSIs in CABG than do culture-only algorithms or a
combined algorithm. Despite their limitations, electronic da-
tabases and administrative data will be used increasingly to
identify adverse events such as SSI. Hence, it is essential to
assess how rates of SSI differ depending on the selection of
data to be used and the type of procedure and to measure the
biases inherent in various datasets. We recommend that each
hospital clearly define how SSIs are being identified. We also
suggest that further research be conducted on the reliability
and validity of various electronic algorithms to identify SSIs
and the impact of changes in reimbursement on clinician
practices and electronic reporting/recording of SSI data.
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