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Abstract
In the traditional approach to evolutionary game theory, the individuals of a population meet each
other at random, and they have no control over the frequency or duration of interactions. Here we
remove these simplifying assumptions. We introduce a new model, where individuals differ in the
rate at which they seek new interactions. Once a link between two individuals has formed, the
productivity of this link is evaluated. Links can be broken off at different rates. In a limiting case,
the linking dynamics introduces a simple transformation of the payoff matrix. We outline
conditions for evolutionary stability. As a specific example, we study the interaction between
cooperators and defectors. We find a simple relationship that characterizes those linking dynamics
which allow natural selection to favor cooperation over defection.
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1 Introduction
Game theoretic ideas were first introduced to biology by Hamilton (1964) and Trivers
(1971), but the field of evolutionary game theory was founded by Maynard Smith and Price
(1973) and Maynard Smith (1982). The mathematical foundation of evolutionary game
dynamics is the replicator equation (Taylor and Jonker, 1978; Hofbauer et al., 1979;
Zeeman, 1980), which is a system of ordinary differential equations describing how the
relative abundances (frequencies) of strategies change over time as a consequence of
frequency dependent selection. The payoff from the game is interpreted as biological fitness.
Individuals reproduce proportional to their fitness. The expected payoff of an individual is a
linear function of the frequencies of all strategies; the coefficients of this function are the
entries of the payoff matrix. For detailed reviews of the replicator equation and other
approaches to evolutionary game dynamics, see Fudenberg and Tirole (1991), Weibull
(1995), Samuelson (1997), Cressman (2003), Hofbauer and Sigmund (1998, 2003), Gintis
(2000) and Nowak and Sigmund (2004).

A typical assumption of evolutionary game dynamics is that individuals meet each other at
random either in infinitely large, well-mixed populations (which is the standard approach),
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in finite populations (Nowak et al., 2004; Imhof and Nowak, 2006; Taylor et al., 2004;
Fudenberg et al., 2006; Traulsen et al., 2006a,b), in spatially extended systems (Nowak and
May, 1992; Nakamaru et al., 1998; Killingback and Doebeli, 1996; van Baalen and Rand,
1998; Irwin and Taylor, 2001; Hauert and Doebeli, 2004; Ifti et al., 2004; Nakamaru and
Iwasa, 2005; Jansen and van Baalen, 2006) or on graphs (Lieberman et al., 2005; Santos and
Pacheco, 2005; Santos et al., 2005, 2006a,b; Ohtsuki et al., 2006). Taylor and Nowak (2006)
analyze a scenario where the interaction rate does depend on the strategies. In all these
cases, however, individuals cannot influence how often they will interact and how long
particular interactions will last. On the other hand, other studies have explored the
possibility of individuals meeting assortatively, by means of selective partner choice (Eshel
and Cavalli-Sforza, 1982; Noë and Hammerstein, 1994; Skyrms and Pemantle, 2000; Bala
and Goyal, 2001; Ebel and Bornholdt, 2002; Eguiluz et al., 2005; Biely et al., 2005) or by
means of volunteering participation (Peck and Feld-man, 1986; Hauert et al., 2002; Szabó
and Hauert, 2002; Hauert and Szabó, 2003; Aktipis, 2004).

Let us therefore consider a simple model where the members of a population seek new
interactions at different rates. Moreover, established interactions last for different amounts
of time. The basic idea is that interactions which benefit both partners are more durable than
interactions where one partner is exploited by the other. Also the optimum rate at which new
interaction partners are being sought may differ for the different strategies of an
evolutionary game.

In Section 2, we introduce the basic model, together with numerical examples. In Section 3
we analyze the evolutionary dynamics adopting, as a particular example, the favorite game
in town: the competition between cooperators and defectors. Section 4 offers conclusions.
Different limits associated with variable selection pressures and population sizes are
discussed in the appendix.

2 The basic model of linking dynamics
Consider a game between two strategies, A and B. The total population size is constant and
given by N. There are NA individuals who use strategy A and NB individuals who use
strategy B. We have N = NA + NB.

An interaction between two players occurs if there is link between these players. Links are
formed at certain rates and have specific life-times. Denote by X(t) the number of AA links at
time t. Similarly, Y (t) and Z(t) denote the number of AB and BB links at time t. The
maximum possible number of AA, AB and BB links is respectively given by

Suppose A and B players have a propensity to form new links denoted by αA and αB, such

that AA links are formed at a rate , AB links are formed at a rate αAαB and BB links are

formed at a rate . The death rates of AA, AB and BB links are given by βAA, βAB and βBB,
respectively. Thus, the average life-times of links are given by τAA = 1/βAA, τAB = 1/βAB and
τBB = 1/βBB.

Linking dynamics can be described by a system of three ordinary differential equations for
the number of links
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In the steady state, the number of links of the three different types is given by

The fractions of active links in the steady state are given by

Examples of population structures attained under steady-state dynamics for three different
combinations of (NA, NB) are shown in figure 1.

Let us now consider a game between A and B given by the payoff matrix

where we assume that entries are positive. At the steady state of the linking dynamics, the
average fitness of A and B individuals is respectively given by

(1)

and

(2)

Here f0 denotes the baseline fitness that is independent of the game under consideration.
Eqs. (1) and (2) suggest that the linking dynamics introduces a simple transformation of the
payoff matrix. We can study standard evolutionary game dynamics using the modified
payoff matrix

Pacheco et al. Page 3

J Theor Biol. Author manuscript; available in PMC 2012 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

3 Evolutionary dynamics
Let us now study how the frequencies of strategies A and B change under evolutionary
dynamics. We assume that the linking dynamics occurs on a fast time scale (τa). On a slower
time scale (τe), evolutionary updating occurs. Reproduction can be genetic or cultural. When
τa ≪ τe, the steady state of the linking dynamics determines the average payoff and fitness of
individuals. Moreover, since we are dealing with a finite population size, we may consider
different update processes, such as a frequency dependent Moran process (Nowak et al.,
2004; Taylor et al., 2004) or a frequency dependent Wright-Fisher process (Imhof and
Nowak, 2006) (see also the appendix). In the first case, at each time step, an individual is
chosen for reproduction proportional to fitness; the offspring replaces a randomly chosen
neighbor. In the second case, each individual produces a number of offspring proportional to
fitness; the next generation is sampled from this pool of offspring. In both cases, the total
population size is constant and given by N. We can calculate the fixation probabilities of
strategies A and B. Let ρA denote the probability that a single A player introduced into a
population of B players will generate a lineage that takes over the entire population. For
neutral selection, a = b = c = d, we have ρA = ρB = 1/N. In the limit of weak selection (large
baseline fitness, f0) we find that ρA > 1/N if

(4)

This condition is known as the 1/3-rule (Nowak et al., 2004; Imhof and Nowak, 2006); if the
fitness of A is greater than the fitness of B at a frequency of xA = 1/3 then the fixation
probability of A is greater than 1/N. This relationship also holds for modified stochastic
processes that use pairwise comparison rules for updating (see Traulsen et al. (2006a) and
appendix) and for games on graphs (Ohtsuki and Nowak, 2006a,b).

Let us introduce the quantity

(5)

If χ > 0 then condition (4) is fulfilled and a single mutant is advantageous, that is, ρA > 1/N
for weak selection. In terms of the α and β parameters describing the birth and death rates of
links, we obtain

For non-negative payoff values we observe that χ is always a decreasing function of βAA and
an increasing function of βBB. For maximizing the evolutionary success of strategy A it is
best that AA links are long-lived and BB links are short-lived. If 2b > c then χ is a decreasing
function of βAB, which means long-lived AB links favor A. If 2b < c then short-lived AB
links favor A. It is possible to find payoff values, where χ exhibits an intermediate extremum
(maximum or minimum) as function of αA or αB. This leads to the interesting situation
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where the chances of A are maximized at intermediate rates of forming new links (see
below).

For large, well-mixed populations (see appendix), the relative ordering of the payoff-matrix
elements is important in determining the dynamical behaviour of the system. Whenever c >
a > d > b the system evolves into the absorbing state characterized by 100 % B-players. For
c > a > b > d the system exhibits an interior stable fixed-point at a fraction of A-players
given by NA/N ≈ (b − d)/(b + c − a −s d), whereas this point becomes an unstable fixed
point whenever a > c > b > d. The rescaling of the payoff matrix induced by active linking
dynamics may lead to a radically different dynamical evolution of the system, since it acts to
change the ranking of the elements in the payoff matrix, and hence the effective nature of
the game under study.

3.1 Evolution of cooperation
As a specific example, we want to investigate the interaction between cooperators and
defectors (Axelrod and Hamilton, 1981; Nowak and Sigmund, 1992, 1993; Doebeli et al.,
2004). A cooperator, C, pays a cost c for every link, and the partner of this link receives a
benefit b. Defectors, D, pay no cost and distribute no benefits. We assume b > c otherwise
cooperation has no net benefit. Therefore, the payoff matrix becomes

(6)

Cooperators and defectors seek to establish links at rates αC and αD, respectively. The death
rates of links are given by βCC, βCD and βDD. From Eq. (5) we have

If χ > 0 then the fixation probability of a cooperator, ρC, is greater than 1/N. The condition χ
> 0 can be written as

(7)

If the frequency of CC links exceeds the frequency of CD links, cooperators can be favored
given that the benefit to cost ratio fulfills inequality (7). We can also introduce a parameter,
s > 0, which quantifies how much more frequent CC links are compared to CD links. Let

We obtain the simple relationship
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In terms of the birth and death rates of links, the crucial condition becomes

(8)

The critical benefit-to-cost ratio is a decreasing function of βCD and an increasing function
of αD and βCC. Obviously, the evolution of cooperation is easier if CC links are long-lived
while CD links are short-lived. Furthermore, if defectors are slow to form new links, then
cooperators have better chances. More interestingly, the critical benefit-to-cost ratio assumes
a minimum value for an intermediate value of αC. Thus, there is an optimum rate at which
cooperators should try to establish new links. This optimum is given by

(9)

We note that inequality (8) also implies that the fixation probability of defectors, ρD, is less
than 1/N and that a single defector in a large population of cooperators has a lower fitness
than the resident cooperators. Thus, inequality (8) is the crucial condition for ‘active linking’
to facilitate the natural selection of cooperation. For the parameters used in connection with
figure 1 (note that αC was obtained from Eq. (9)), and for a prisoner’s dilemma game in
which b = 2 and c = 1, the primed payoff matrix leads to a coordination game favouring
cooperation whenever NA > 58% (cf. Fig. 1). Hence, fast active linking dynamics paves the
way for cooperation to thrive.

Up to now, we have assumed that the parameters α and β remain constant throughout
evolution.

Here, we discuss the case that also these parameters are under selection. If different
cooperators have different values of αC and βCC, those that have the longest interactions
with other cooperators will be most successful and selection decreases βCC. On the other
hand, successful cooperators end their interaction with defectors fast, leading to selection for
high values of βCD. Among the defectors, selection will favor those that have small values of
βCD and a high propensity to form new links, i.e., high αD.

A further possibility including such a selection mechanism is to introduce a payoff
dependent active linking dynamics. For instance, we may associate the propensity to form
new links, as well as the lifetime of different types of links with the productivity of those
links assessed in terms of entries in the payoff-matrix. Here, we explore the case in which
cooperators and defectors share the same propensity to form new links αC = αD = α, whereas
the lifetimes of different types of links are directly related to the average profit expected
from that link.

Assuming that
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then we may write, for the prisoner’s dilemma, τCC = 2τCD and τDD = 0, as a result of the
entries in the payoff matrix. Eq. (8) now reads

Clearly, the larger the lifetime of the non-assortative CD-links, the more difficult it gets for
cooperators to thrive under active linking dynamics.

Note finally, that whenever φAA = φAB = φBB, then the rescaling of the payoff matrix
amounts to multiply all terms by a positive constant. Such a rescaling of the payoff matrix
will not change the nature of dilemma at stake, but it might lead to a different intensity of
selection, depending on the update mechanism.

4 Conclusions
By equipping individuals with the capacity to control the nature and duration of their
interactions with others, we introduce a linking dynamics which, in the limit when it takes
place faster than evolutionary dynamics, leads to simple transformation of the payoff matrix.
The rescaling may effectively lead to an evolutionary dynamics involving a different type of
game, now played in a finite, well-mixed population. This equivalence allows one to utilize
many of the methods recently developed for finite, well-mixed populations, employing them
in this a-priori more complicated setting. In particular, one can write down the conditions
which ultimately allow natural selection to favor cooperation over defection.
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5 Appendix

5.1 The Pairwise comparison rule, τa ≪ τe

Assuming τa ≪ τe, links will have time to readjust before a new strategy update takes place.
We shall adopt here the paiwrise comparison rule, which has been recently shown to provide
a unifying framework to discuss strategy dynamics at all levels of selection, from weak
selection to imitation dynamics (Traulsen et al., 2006a). According to this rule, two
individuals from the population, A and B are randomly chosen for update. The strategy of A
will replace that of B with a probability given by

whereas the reverse will happen with probability 1 − p. We can calculate the fixa-tion
probabilities of strategies A and B. Let ρA(k) denote the probability that k A players
introduced into a population of B players will generate a lineage that takes over the entire
population. For the pairwise comparison rule we find (Traulsen et al., 2006a)
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(10)

where  is the error function, , 2u = a′ − b′ − c′ + d′ and 2v =
−a′ + b′ N − c′ N + c′, which simplifies to

whenever u = 0. The quantity β, which in physics corresponds to an inverse temperature,
here controls the intensity of selection, namely, β → ∞ leads to cultural update via imitation
dynamics, whereas in the limit β ≪ 1 one recovers the weak selection limit of the frequency
dependent Moran process (Nowak et al., 2004) discussed below.

5.2 Large population size, τa ≪ τe

Given that the number of A players in the population is k, one instance of the pairwise
comparison process introduced above leads to either the maintenance of the total fraction k/
N on the population, its increase to (k + 1)/N or its decrease to (k − 1)/N. The transition
probabilities can be written as (Traulsen et al., 2006a)

When the population size N is large, this process can be approximated by a Langevin
equation for the fraction x = k/N of A players in the population (Traulsen et al., 2005)

(11)

with a drift term a(x) = T+(k)−T− (k), a diffusion term  and where ζ
is uncorrelated Gaussian noise with unit variance. Since, for the pairwise comparison rule,
and for large N,

and

we obtain the following differential equation describing the evolution of the fraction of A
players under active linking dynamics at all levels of selection intensity
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5.3 Infinite population size and weak selection, τa ≪ τe

When N → ∞ the second term in Eq. (11) vanishes as . On the other hand, for weak
selection (β ≪ 1) tanh(x) = x + O(x3) and we encounter again the replicator dynamics of
infinite, well-mixed populations

except for a rescaling of time which, intuitively, scales with the intensity of selection β.
Notice, however, that now the payoffs are to be evaluated with the rescaled payoff matrix
resulting from the active-linking dynamics introduced here.

5.4 The limit τa ≫ τe

Whenever τa ≫ τe the active-linking plays no role, and strategy evolution will proceed on a
static graph. In other words, the graph topology at the start of the evolutionary process,
together with the initial number of A players will ultimately dictate the most likely fate of
evolution. Assuming we start from a well-mixed population of size N (complete graph), in
which we have k A players at start, Eq. (10) provides us with the exact expression for the
fixation probability of strategy A. Notice, however, that unlike the previous limit, now the
coefficients are to be computed making use of the original (unprimed) payoff matrix
elements.

In the limit of weak selection, we recover again the 1/3 rule for the original (unprimed)
payoff matrix. Whenever the starting graph is not complete, there is little we can say for
arbitratry intensity of selection. However, for weak selection and large population sizes, the
following limit applies.

5.5 Infinite population size and weak selection τa ≫ τe

In the limit of infinite population and weak selection, describable by a graph in which, on
average, every vertex has K links, the strategy dynamics will again converge to a replicator
like equation with an additional term reflecting the local structure of the population (Ohtsuki
and Nowak, 2006b)

where, as usual, πA(x) = ax + b(1 − x), πB(x) = cx + d(1 − x) and 〈π〉 = xπA(x) + (1 − x)πB(x).
The local competition terms gi are given by gi = Σj xjbij (i, j = A, B), where the matrix bij
reads (for the pairwise comparison rule)
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with η = (a + b − c − d)/(K − 2) (Ohtsuki and Nowak, 2006b). In other words, under weak
selection strategy evolution will depend on the graph topology: For large, well mixed
populations the conventional replicator dynamics is expected to apply, whereas for graphs
with an average number of links per vertex K, a modified replicator dynamics will dictate
strategy evolution.
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Figure 1.
Left panels Results of active linking dynamics for a population size of N = 40 individuals.
A-players are located in the “inner-circle”, and are represented by blue circles. Links
between A-players are drawn with solid cyan lines. B-players are represented by red-circles
on the outer rim, and BB-links are drawn with solid grey lines. AB-links are drawn with solid
red lines. Three different steady state scenarios are shown, corresponding to different
number of NA players: NA = 10 (top), NA = 20 (middle), and NA = 30 (bottom). The resulting
plots provide a snapshot of a configuration after each graph has attained a steady state
condition. We started from complete graphs, links being created and destroyed at rates
determined by the following parameter choice: αD = 0.4, βCC = 0.2, βCD = 0.8 and βDD =
0.3, which lead to αC ≈ 0.56 by solving Eq. (9). The fractions of active links become φCC ≈
0.61, φCD ≈ 0.22 and φDD ≈ 0.35, respectively. Right panels: Degree distributions
associated with steady state configurations reached via active linking dynamics. Results
shown correspond to an average over 1000 steady-state configurations for each value of NA.
The red-spikes show the degree-distribution associated with B-players only, the blue-spikes
show the degree-distribution associated with A-players only, whereas the grey-spikes show
the sum of the blue and red distributions. As NA increases, the average connectivity
associated with A-players increases, as expected, the relative proportion of AA and AB links
being dictated by the parameter choice. For the parameters quoted, and for a prisoner’s
dilemma game with b = 2 and c = 1 (cf. Eq. (6)), the rescaled payoff matrix reads a′ = 0.60,
b′ = −0.22, c′ = 0.44, d′ = 0. In other words, active linking dynamics changes the game from
a prisoner’s dilemma into a coordination game which favours cooperation whenever NA/N >
58%.
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