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ABSTRACT

Background and Objectives: Although members of the Lactobacillus casei group are known to survive under acidic 
conditions, the underlying mechanisms of growth at acidic condition and the impact of low pH on the relative level of protein 
expression  at the cell surface remain poorly studied. 
Material and Methods: After confirming the taxonomy of L. casei strain GCRL 12 which was originally isolated from 
cheese and confirmed by 16S rRNA sequence analysis, the impact of acidic pH on growth rate was determined. 
Results: Late log-phase cells cultured at pH 4.0 showed obvious changes in Gram staining properties while transmission 
electron microscopy analysis revealed evidence of structural distortions of the cell surface relative to the controls cultured at 
pH 6.5. When comparing cytosolic or whole cell preparations on SDS-PAGE, few changes in protein profiles were observed 
under the two growth conditions.  However, analysis of surface protein extracted by 5M LiCl demonstrated changes in the 
proportions of proteins present in the molecular weight range of 10 to 80 kDa, with some proteins more dominant at pH 6.5 
and other at pH 4. 
Conclusion: These data suggest that surface proteins of this strain are associated with growth and survival at low pH. The 
function of these proteins is subject to further investigation.
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INTRODUCTION

Lactobacillus casei is amongst the most common 
isolates of nonstarter lactic acid bacteria (NSLAB) 
which has applications as acid-producing cultures for 
milk fermentation and in acceleration or intensification 
of flavor in certain bacterial ripened cheese varieties. 
These bacteria have been detected in the human 
gastrointestinal tract by molecular approaches and 
have the potential to function as probiotics with several 

health benefits. The applications imply that L. casei 
are exposed to various environmental sub-optimal 
conditions. In nature, the ability to respond quickly 
to stress is essential for these bacteria to survive, but 
in food manufacturing, for example, during starter 
handling and storage, bacterial resistance to adverse 
conditions often provides practical advantages to the 
food manufacturer. 

During Cheddar cheese maturation, the nutritional 
environment available to sustain growth and viability 
of the microflora varies considerably, thus NSLAB 
grow under sub-optimal growth conditions, including 
low temperature and a pH below that required for 
maximum growth (1). Like other LAB, when faced 
with an acidic environment, L. casei appear to have 
evolved some approaches that permit them to survive 
and grow in such adverse conditions. Although the 
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molecular analysis of lactic acid bacteria in response 
to pH downshifts are currently largely specified, the 
majority of interactions between L. casei and the 
environment/s when the growth starts at low pH are 
uncharacterized. The general aim of this research was 
to investigate the characterization and morphological 
changes of one typical strain of L. casei occurring 
when the bacterial inoculums is cultured at low pH 
with emphasis on the cell surface, together with 
assessing the protein profile of these bacteria during 
growth in an acidic environment with constant pH. 

MATERIALS AND METHODS

Bacterial strains and growth conditions. The 
bacteria L. casei strain GCRL 46, a typical strain 
of the L. casei group was isolated from cheddar 
cheese, originally obtained from CSIRO. Bacteria 
were routinely cultured using MRS (Oxoid, West 
Heidelberg, Australia) broth or plates at 37°C, under 
anaerobic conditions (Oxoid jars with Gas Generating 
Kit BR038B). Stock cultures were transferred into 
glycerol  broths (50% glycerol in MRS) and stored in 
cryo-vials under oxygen-free nitrogen at −80°C.  

DNA extraction, PCR and partial 16S rRNA 
gene sequencing. Chromosomal DNA from 
L. casei strain 46 was isolated according to the 
instructions of the “UltraClean Microbial DNA 
Isolation Kit” (MoBio). The genomic DNA was 
amplified using the primer combination 27F (5’-
AGAGTTTGATCCTGGCTCAG-3’) and 519R (5’-
GWATTACCGCGGCKGCTG-3’) targeting the 16S 
rRNA gene (2). A long template PCR kit (Cat# 28104, 
QIAGEN) was used and amplification of genomic 
DNA was performed in the automated thermal cycler 
(PTC-200, Perkin-Elmer-Cetus) using the protocol 
described by the manufacturer. The PCR condition 
of the primer pair was as follows: initial denaturation 
at 95°C for 10 min, followed by 30 cycles of 
denaturation at 94°C for 10 s, annealing for 30 sec 
at 55°C, extension at 68°C for 30 sec, followed by a 
final extension at 68°C for seven min. Preparation of 
templates was performed using the Beckman Coulter 
CEQ 2000 Dye terminator sequencing protocol 
according to manufacturer’s instructions and automated 
sequencing was done at The University of Melbourne, 
Gilbert Chandler Research Laboratories (GCRL) .

Experimental design and determination of growth. 

To determine the initial pH values that limited growth, 
starter cultures of L. casei strain 46 were prepared by 
inoculating directly from glycerol storage broth into 
20 mL of MRS broth and incubating anaerobically 
(37°C) for 16 h. Aliquots of starter culture were 
transferred into 200 mL of buffered MRS to give an 
initial OD600 of 0.15. Buffered MRS was prepared 
by aseptically mixing the sterile double strength MRS 
broth and sterile 0.4 M sodium citrate phosphate 
buffers with the desired pH values. The headspace of 
cultures was sparged with sterile oxygen-free nitrogen 
(in-line 0.22 μm filter) for 5 min, the bottles sealed 
and incubated at 37°C in anaerobic jars. Samples 
were removed at one hour intervals under nitrogen 
gas flow and the headspace replaced before resealing 
the bottles. OD600 was recorded hourly to determine 
the specific growth rate of the cultures at various 
pH values (3, 4). The maximum growth rate values 
(µmax) were calculated from three independent 
experiments.

Acidic growth conditions. Following initial culture 
in MRS broth overnight, L. casei strain 46 was sub-
cultured into 0.2 M Na-citrate phosphate buffered 
MRS initially adjusted to pH 4.0 for acidic conditions, 
and incubated at 37ºC anaerobically. A control culture 
was also prepared at pH 6.5. Cultures from late 
exponential phase were harvested by centrifugation 
at 5,000 g, 4ºC, before the pH of control dropped to 
less than 6.0 (OD600 1).

Morphological tests using Transmission electron 
microscopy. Samples were prepared for transmission 
electron microscopy (TEM) by standard procedures 
(5). Briefly, bacterial cells from acidic or control pH 
were fixed with 3% glutaraldehyde (ProSciTech) 
fixative (in 0.2 M Na-citrate phosphate buffer pH 
6.5). After fixation for one hour at room temperature, 
cells were washed with buffer, then postfixed in 
osmium tetroxide, followed by uranyl acetate. The 
cells were dehydrated in increasing concentrations of 
ethanol (50, 70, and 90%) and acetone (90 and 100%) 
and subsequently embedded in Spurr’s epoxy resin. 
Ultrathin sections (50 to 100 nm in thickness) were 
prepared and collected onto 200-mesh copper grids, 
contrasted with 1% uranyl acetate and Reynolds lead 
citrate before being examined and photographed using 
a JEOL 1200EX transmission electron microscope, 
operating at 80 kV. Sections were photographed onto 
Kodak 4489 electron image film, which was processed 
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according to the manufacturer’s instructions.

Sample preparation for protein analysis. Cells 
grown under acidic or control conditions were collected 
at the late exponential phase by centrifugation at 
8,000 g for 15 min at 4ºC after determining the OD600 
and pH, then washed twice with 40 mM Tris-HCl 
buffer pH 7.0 followed by sub-cellular fractionation 
or extraction with LiCl.

Cell fractionation procedure for whole cell 
extracts and cytosolic proteins. Cells from acidic 
or control pH were suspended in 40 mM Tris-HCl 
buffer, pH 7.0 and placed in 2 mL capacity screw-top 
plastic tubes with 0.5 g of 0.1 mm glass beads. Cell 
lysis was performed by bead beating in a Mini Bead 
Beater-8 (Biospecs Products Inc) six bursts of 1 min 
at maximum speed with 2-min intervals on ice. The 
tubes were brief centrifuged (5000 g, 15 min, 4ºC) 
to settle the beads and unbroken cells. The cytosolic 
fraction was obtained by high speed centrifugation at 
22,000 g for 30 min, 4ºC. 

Extraction of cell surface associated proteins 
with LiCl. Cell surface associated proteins from L. 
casei strain 46 were isolated using LiCl based on a 
method developed by Lortal et al. (1992) (6). Cells 
from late exponential phase were washed twice with 
deionized water and resuspended in 0.1-0.15 w/v 5 
M LiCl, then incubated with gentle shaking at 4 ºC 
for one hour. Bacterial cell suspensions were then 
pelleted at 22,000 g for 30 min. Soluble LiCl extracts 
were filtered through 0.2 µm pore size nitrocellulose 
membranes, then dialyzed against deionized water 
(4°C) for at least 24 h, to remove any LiCl from the 
liquid. The cell surface associated proteins were then 
concentrated for 100 times by laying the dialysis tubes 
on spectra/gelTM absorbent (Spectrum Laboratories, 
Inc., rancho Dominguez, CA, USA). 

The protein concentration in each sample was 
determined using the Bio-Rad protein assay kit (Bio-
Rad Laboratories Ltd,. Hemel Hempstead, United 
Kingdom). 

SDS-PAGE analysis. Proteins were separated 
based on molecular weight by 12% sodium dodecyl 
sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE) according to the method of Laemmli (1970) 
(7). Electrophoresis was performed using a vertical 
slab system (SBS Scientific, USA) at a constant 

voltage until the bromophenol blue dye reached the 
bottom of the gel sandwich. After electrophoresis, the 
protein bands were visualized by Coomassie brilliant 
blue. The amount protein loaded onto the gels was 
20 µg.

RESULTS

Identification and characterization of L. casei 
strains. Partial 16S rRNA gene sequencing was used 
to confirm the identity of strain 46. Submitting the 
sequences obtained from the primer combination 27F 
and 519R to ANGIS using Blast similarity search 
tool confirmed the bacterial isolate used in this 
study showed 99% homology to the L. casei species 
included in the Gene bank database. 

Growth characterization of L. casei strain 46 
under acidic conditions. The impact of pH on the 
extent of growth was measured from optical density 
readings (3, 4). The optimum pH of growth was 
determined by calculating µmax values from triplicate 
measurements of OD600 at hourly intervals and used 
to determine acidic and optimal growth responses 
(Fig. 1). 

The initial pH of the culture had an impact on the 
specific growth rates. From Fig. 1, the pH 6.5 culture 
achieved the highest extent of growth, while the 
overall growth rate declined by either elevating or 
decreasing the pH of the culture medium. The reduced 
rates of growth were noted at pH below or above 6.5. 
The maximum OD600 at the end of the incubation 
time was more than 3.0 at pH 6.5 (viable count 4.3 
× 108 CFU/ml), while it was less than one at pH 4.0 
(viable count 1.3 × 108 CFU/ml), demonstrating that 
growth was slowed and reduced at the lower pH. OD 
measurement is an acceptable surrogate for microbial 
biomass (4) but the relationship between viable count 
and OD can be influenced by cell characteristics 
(filament formation, cell shape change due to growth 
conditions or other changed that may influence 
the optical properties of cells). It was also noticed 
that growth was too sparse at pH 3.0 for reliable 
microbiological and proteomic analysis.   Thus, from 
these results, the best pH for growth of this strain was 
at 6.5 and pH 4.0. This represented an environment 
where cells were still able to grow but at a highly 
reduced rate. The arithmetic growth curves obtained 
for low-pH cultures are typical of those resulting from 
partial inhibition by a stress factor (8).
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Morphological changes of L. casei strain 46 at 
low pH.  TEM analysis revealed some morphological 
differences between the cells at two growth 
conditions (Fig. 2) in that the cells grown at acidic 
pH (4.0) showed some granular material at the cell 
envelope-environment interface. TEM examination 
of cells grown at pH 6.5 showed a typical bacterial 
surface structure, i.e., a clearly defined cell wall and 
cell membrane (Figure 2 A, B) with a more electron-
dense innermost layer. In contrast, cells under acid 
stress displayed some alterations in the cell surface 
structure (Figure 2 C, D). There was a graded increase 
in electron density from the inside to the outside 
with a distinctly different cell wall interface with the 
environment compared to optimal conditions. 

Change in 1-D SDS-PAGE profiles of sytosolic 
and surface-associated proteins at low pH growth 
conditions. The protein profiles of L. casei strain 46 
grown in low or optimal pH were analyzed by SDS-
PAGE for supernatant fluids and LiCl cell extracts 
(Figure 3). The protein banding patterns observed for 
cytosolic fractions showed some differences in the 
relative level of expressions. Over-expression of a 
number of proteins with estimated molecular weights 
of approximately 29, 38, 47 and 64 kDa during growth 
at low pH suggests that the up regulated proteins were 
related to the cell response during growth under acidic 
pH. These differences were much more obvious in 
the protein profile obtained for LiCl cell extracts 
compared to the cytosolic fraction. In general, the 
protein profile of LiCl extracts showed that 5 M LiCl 
removed proteins other than those of the surface 
layer, presumably those attached to the cell wall.  It 
was obvious that the LiCl extracts contained proteins 

of similar MW to proteins in the cytosolic fraction.
Although each growth condition was tested in 

duplicate within each experiment and each set of 
experimental conditions was tested at least twice, 
analysis was made to examine the reproducibility of the 
extraction method of surface-associated proteins using 
5 M LiCl treatment. Reproducibility of the extraction 
methods was high, which was indicated by almost 
similar 1-D SDS-PAGE protein profile of samples 
individually prepared, including up-regulation of three 
bands with molecular weights of 38, 47 and 57 kDa 
and down-regulation of a band of 34 kDa (Fig. 3). 

DISCUSSION

Although members of the L. casei group are known 
to grow and survive under acidic conditions, the 
underlying mechanisms remain poorly studies. In 
this work the cell surface properties of L. casei strain 
46 was studied to provide an insight into molecular 
responses of the tested strain during growth at acidic 
condition. This strain had been isolated from Cheddar 
cheese as a member of the L. casei group and further 
identified by sequencing. Partial 16S rRNA gene 
sequencing which was used to identify this strain is 
considered as the fastest and most unambiguous way 
to identify lactobacilli, and bacteria in general (9, 10). 
The primers 27F and 519R utilized in this study have 
been also used for 16S rRNA gene amplification and 
sequencing for many years, and they have been proven 
to be useful in species differentiation in lactobacilli 
strains (2). However, L. casei and L. paracasei and L. 
zeae form a closely related taxonomic group within 
the lactobacilli and identification based on 16S rRNA 
gene is not able to reveal significant differences 
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Figure 1. A: Typical growth curves of Lb. casei strain 46 in 0.2 M Na-citrate 

phosphate buffered MRS adjusted to initial values of pH 3 ( ), pH 4 ( ), pH 5 
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rates (µmax) were plotted against the pH of culture medium.  
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were plotted against the pH of culture medium.
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between these recently diverged species; so, in this 
case, 16S-rRNA gene sequence analysis can indicate 
only that strain 46 belongs to this group.

The effect of growth phase on cellular responses 
has been reported for many bacteria including 
lactobacilli after environmental stresses (11). The 
trials conducted and all of analyses were principally 
performed on cells from late-exponential growth 
stage to avoid other influences such as adaptation 
to accumulation metabolites, acidification of the 
medium by accumulation of lactic acid or induction 

of a stress response due to starvation. Previous studies 
mostly used the rich medium MRS while the pH of 
such a medium is altered during growth of lactic acid 
bacteria due to acid accumulation. In this work Na-
citrate phosphate buffer at a concentration of 0.2 M 
was chosen to adjust the pH of MRS broth on the basis 
of the results obtained from optimizing conditions 
(results are not shown). Buffer concentrations of 0.2 
M or higher were found to maintain pH of the culture 
medium at greater than pH 6.0 during exponential 
growth phase; however, growth rate was reduced 
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figure 2. Transmission electron micrographs of bacterial cells from an overnight 

culture grown in MRS broth buffered at pH 6.5 (A and B) or acidic pH 4.0 (C and D).

Lower magnification images (original magnification x25000) show larger cells in 

culture at pH 6.5 (A), compared to pH 4.0 (C).  Higher magnification images (original 

magnification x100,000) show details of the cell wall structure, with a more electron 

dense interface with the environment seen on the cells grown at pH 4.0 (indicated by 

arrows). Scale bar indicates 200 nm in A and C; 50 nm in B and D. 
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Fig. 2. Transmission electron micrographs of bacterial cells from an overnight culture grown in MRS broth buffered at pH 
6.5 (A and B) or acidic pH 4.0 (C and D). 
Lower magnification images (original magnification x25000) show larger cells in culture at pH 6.5 (A), compared to pH 
4.0 (C).  Higher magnification images (original magnification x100,000) show details of the cell wall structure, with a more 
electron dense interface with the environment seen on the cells grown at pH 4.0 (indicated by arrows). Scale bar indicates 
200 nm in A and C; 50 nm in B and D.
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considerably by increasing in the buffer concentration 
above 0.2 M. This was probably because the change 
in osmotic conditions exerts a severe osmotic stress 
on the bacterial cells. Literature presenting the effects 
of osmotic stress on bacterial growth behavior show 
similar effects (12, 13). 

Although the growth was limited, L. casei adapted 
in acidic pH while a consistent set of proteins was up- 
or down-regulated at low pH. Analysis of these protein 
samples allowed detection of differentially expressed 
bands that were related to either cytosolic fractions 
or were found in cell surface proteins. Single step 
procedure with 5 M LiCl could be used exclusively to 
extract surface proteins, as this appeared to give the 
best chance of removing all proteins exterior to the 
cell wall, and thus give a more complete picture of this 
subset of the proteome. A diverse body of literature 
supports this methodological decision for the removal 
of surface proteins using 5 M LiCl (14, 15, 16). Up-

regulated protein bands of approximately 29, 38, 
47, 57 and 64 kDa in 5 M LiCl were extracted from 
culture of low pH which either were not expressed, 
or were present in a lower quantity, in the cytosolic 
fraction. These were assumed to be surface-associated 
proteins, according to the methodology. A similar 
assumption was derived for the down-regulated 
band of ~34 kDa. However, it has to be considered 
that while the surface located proteins are the most 
abundant molecules in the LiCl extracts, many other 
proteins are present as minor ones. Some bands 
presented at higher densities in 5 M LiCl extracts 
may represent cell wall binding proteins intimately 
attached to the underlying peptigoglycan. However,  
a number of proteins extracted by this method are 
expected to arise from the cytoplasm as a result of cell 
lysis during the extraction method. The LiCl extracts 
were concentrated about 100-fold, so that even small 
levels of cell lysis would result in high representation 
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figure 3. SDS-PAGE profile of surface-associated proteins obtained by three 

completely different sets of experiments from Lb. casei strain 46 compared to 

cytosolic fraction. Full circles, the bands up-regulated and dashed circles, the 

bands down-regulated under the acidic pH compared to the optimal growth 

condition. Lanes: M, protein ladder marker; 1 and 2, cytosolic fraction of 

growth at pH 6.5 or 4.0 respectively; 3, 5 and 7, 5 M LiCl cell extracts from 

growth at pH 6.5; 4, 6 and 8, 5 M LiCl cell extracts from growth at pH 4.0. 

Fig. 3. SDS-PAGE profile of surface-associated proteins obtained by three completely different sets of experiments from 
Lb. casei strain 46 compared to cytosolic fraction. Full circles, the bands up-regulated and dashed circles, the bands down-
regulated under the acidic pH compared to the optimal growth condition. Lanes: M, protein ladder marker; 1 and 2, cytosolic 
fraction of growth at pH 6.5 or 4.0 respectively; 3, 5 and 7, 5 M LiCl cell extracts from growth at pH 6.5; 4, 6 and 8, 5 M 
LiCl cell extracts from growth at pH 4.0.
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of cytosolic proteins in those extracts. 
Transmission electron microscopy observations 

also provided evidence of structural distortions under 
acidic condition. The alterations at low pH were mostly 
related to the cell surface compared to a clearly defined 
cell wall and cell membrane (Figure 2 A and B) which 
has been observed in other lactobacilli grown under 
normal growth condition (17). Changes occurred to 
the cell surface indicating that the cell membrane 
plays a role in adaptation of L. casei strain 46 when 
it was grown at acidic condition. The cell envelope 
of bacteria is a shield against sub- environmental 
conditions and there is growing evidence showing 
that changes in membranes occur during stress 
responses. Morphological changes (revealed by EM 
analysis) have been reported for L. acidophilus under 
freeze-thawing stress (18) and some other lactic 
acid bacteria in response to bile acid (11); therefore, 
growth at acidic environment with initial low pH 
may have morphologically similar impact on the cell 
surface compared to sharp environmental changes. It 
also has been documented that L. casei shifts the fatty 
acid composition of the membrane in response to low 
pH (19). Up-regulation of genes involved in cell wall 
biogenesis and lipid metabolism in L. reuteri have 
confirmed that cell envelope alterations are important 
for the stress response in this bacterium, and similar 
responses are likely to occur in other closely related 
bacterial species (20). 

In conclusion, analysis of microscopic changes 
and examination of the cell morphology following 
growth at low pH together with the initial proteomic 
observations at the cell surface area indicate that the 
cell surface alterations are important for adapting 
to conditions that are normally faced during 
manufacturing and environmental conditions. The 
tested strain of L. casei group appeared to change the 
composition of the cell surface in order to cope with 
the growth environment. Further analysis by 2-DE 
and MALDI-TOF-TOF would be needed for a better 
separation of proteins and more accurate estimation 
of sizes, which are being undergoing. Biochemical 
characterization and detailed studies of the molecular 
mechanism and cellular roles of these proteins are 
required to elucidate their role in bacterial response 
to acidic environments.  
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