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CD161 DEFINES EFFECTOR T CELLS THAT EXPRESS LIGHT
AND RESPOND TO TL1A-DR3 SIGNALING
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Expression of NK cell markers identifies pro-inflammatory T cell subsets in the liver and intestinal immune compartments. Specifically,
CD161 is expressed on Th17 cells which play an important role in the regulation of mucosal inflammation. In this study, we charac-
terized human peripheral blood CD161+ T cells as an effector population partially resembling a gut T cell phenotype. CD161+ CD4+
T cells express the gut-associated TNF family member, LIGHT, and respond to crosslinking of DR3, a receptor to another gut-associ-
ated cytokine, TL1A. Robust IFN-y production in response to DR3 signaling correlated with enhanced expression of surface DR3 on
CD161+ T cells and co-stimulation with IL12 and IL18. CD161+ T cell effector function was directly demonstrated by activation of
responder monocytes in co-culture leading to CD40 upregulation and CD14 downregulation. CD161+ T cells reciprocally responded
to activated monocytes, inducing expression of activation marker, CD69, and production of IL2 and IFN-v, further demonstrating ef-
fective CD161+ T cell cross-talk with monocytes. Finally, CD161 defined a subset of T cells that co-express CD56, a second NK
marker. Our findings implicate human CD161+ T cells in gut-associated signaling mechanisms, and suggest a monocyte mediated ef-

fector function in mucosal inflammation.
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Introduction

Immune responses in the intestinal compartment are tightly
regulated to tolerate the heavy antigenic load characteristic
of the gut [1]. Studies in human and mouse demonstrated
that perturbations of both the innate and adaptive immune
system can result in mucosal inflammation [1], and pointed
to a complex, multi-gene pathology [2]. Contrary to the pe-
riphery, most intestinal T cells express CD45RO, which re-
flects antigen-driven differentiation [3]. However, TCR
response to antigen-mediated stimulation is attenuated, sug-
gesting gut specific mechanisms of T cell signaling and
activation, which may be antigen independent [3]. In in-
flammatory bowel disease (IBD), tolerance to intestinal
antigens is breached [1], and an aberrant Thl and Th17 T
cell response was implicated [1], specifically in Crohn’s
Disease (CD) [1].

Signaling via the TNF family of cytokines plays a crit-
ical role in mammalian biology and mediates pro-inflam-
matory T cell responses [4]. Targeting soluble TNF and
TNF expressing T cells can benefit a subset of CD [5], and
ulcerative colitis (UC) patients [6]. However, the partial
success of blocking TNF in IBD emphasizes the complex-
ity of mucosal immune regulatory mechanisms, and
prompted investigation of other ligands in the TNF family
including LIGHT and TL1A [4, 7]. LIGHT, TNF and LTa8
form an integrated signaling network mediating multiple

immune functions and regulating inflammation [7, 8].
LIGHT signals via two members of the TNF receptor fam-
ily, herpesvirus entry mediator (HVEM, TNFRSF14), and
lymphotoxin (LT)-f receptor (LTBR; TNFRSF3) [9, 10],
which also binds the LTo} heterotrimer involved in the de-
velopment and organization of peripheral lymphoid tissue
[11]. LTBR is broadly expressed on stromal and myeloid
cells, whereas HVEM is expressed on lymphocytes [10]
and epithelial cells [12]. While HVEM serves as a pro-in-
flammatory receptor mediating LIGHT signaling, it also
triggers an anti-inflammatory signal likely acting as a lig-
and for the B- and T-Lymphocyte Attenuator (BTLA,
CD272) [13]. Similar to LIGHT, TL1A is a TNF super-
family member, linked to mucosal immune regulation.
TL1A signals via death domain receptor 3 (DR3, TN-
FRSF25), which is expressed on T cells following activa-
tion by anti-CD3 or by IL-12 and IL-18 [14]. DR3 mediates
a pro-inflammatory T cell signal leading to NF-kB and
cIAP-2 activation, and inducing IFN-y production and cell
proliferation [15]. Both LIGHT and TL1A are bound by
decoy receptor 3 (DcR3, TNFRSF6B), a soluble decoy re-
ceptor with an inhibitory function [8, 14], which was im-
plicated in mucosal inflammation [16].

Transgenic expression of LIGHT (TNFSF14) by T cells
induced severe intestinal inflammation [17, 18], and inhi-
bition of LIGHT signaling with a chimeric LTbR-Fc decoy
receptor ameliorated inflammation in the CD4* CD45R"e"
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T cell transfer model of colitis [19]. In humans, LIGHT is
constitutively expressed on gut associated T cells, and ex-
pression levels are enhanced in inflamed intestinal mucosa
[7,20], thus implicating mucosal T cells in LIGHT pro-in-
flammatory function. Similarly, TL1A and DR3 expression
is elevated on macrophages and T cells in the inflamed mu-
cosa [21, 22], TL1A-DR3 signaling was implicated in the
pathology of two murine models of ileal inflammation [23],
neutralizing antibodies to TL1A inhibited 2 murine models
of chronic colitis [24], and constitutive expression of TL1A
in mice lead to ileal inflammation and gut fibrosis [25, 26].
Genetic analysis mapped the human LIGHT locus within
the MHC paralogous region [27], which is contains a can-
didate susceptibility locus for CD [28]. Genome-wide as-
sociation studies linked genetic variants of the TL/A gene
with CD in Japanese patients, in several European cohorts,
in Jewish patients, and in pediatric patients [26].

T cells are pivotal in mucosal immune mechanisms me-
diated by LIGHT and TL1A. Pro-inflammatory and regula-
tory T cells, in particular T cells expressing NK markers, have
been described in the human gut [29]. While traditional NKT
cells are scarce in humans [30], expression of NK markers on
mature T cells is intriguing since CD56 and CD161 expres-
sion is primarily limited to early stages of T cell ontogeny and
lost during thymic maturation. Our analysis [31], as well as
others [32] demonstrated that mature T cells expressing NK
markers constitute a significant subset, both in the periphery,
and in the mucosal compartment. Mucosal CD161" T cells
express pro-inflammatory cytokines [33], and effector T cells
can express CD56 in the gut [31], and liver [34]. Moreover,
CD161 expression was reported on CD4* Th17 T cells, which
play an important role in the regulation of gut inflammation
[35]. A functionally distinct, polyclonal and not CD1 re-
stricted phenotype [36], thus suggest a role for T cells ex-
pressing NK markers in adaptive immunity.

In this study, we examined gut-associated T cells ex-
pressing CD56 and CD161 in the peripheral blood and linked
CD161 expression with enhanced LIGHT expression and re-
sponsiveness to a TL1A-DR3 signal as molecular mecha-
nisms that could mediate effector function in the gut mucosa.
We directly demonstrated enhanced CD161" T cell activa-
tion of monocytes and a reciprocal response of CD161* T
cells to activation by monocytes, suggesting effective mono-
cyte-T cell cross-talk. Robust effector function and enhanced
signaling via LIGHT and TL1A-DR3 suggests a role for
CDI161" T cells in the pathology of intestinal inflammation.

Materials and methods
Human subjects and specimen procurement

Blood leukocytes were obtained by venipuncture from
healthy adult volunteers. Procedures for subject recruit-
ment, informed consent, and specimen procurement were in
accordance with protocols approved by the Institutional Re-
view Board (IRB 3358) for Human Subject Protection of
the Cedars-Sinai Medical Center.

PBMC isolation and cell subset purification

Peripheral blood mononuclear cells (PBMC) were isolated
from uncoagulated blood by standard Ficoll-Hypaque den-
sity gradient centrifugation. Monocytes were enriched by
negative selection on a magnetic bead column using the
Monocyte Isolation Kit II (Miltenyi Biotec) and prepara-
tions were routinely >90% pure as determined by esterase
stain (Sigma-Aldrich). Monocytes were cultured in RPMI
1640 containing 2 mM glutamine and 25 mM HEPES buffer
(Mediatech) supplemented with 10% FBS, and antibiotics.
CD3" T cell subsets (CD56"~ and/or CD161"") and NK
cells were purified or depleted from PBMC by flow cytom-
etry (MoFlow, Dakocytomation, Fort Collins, CO) gating
on viable CD3", lymphocyte size cell subsets. Purity of en-
riched populations was consistently greater than 99% for the
gated markers with less than 0.5% of depleted lymphocyte
subsets remaining when reanalyzed by flow cytometry
(FACScan, Becton Dickinson, or Cyan, Dakocytomation).

Cell culture

Lymphocytes were cultured at 0.25—1 x 10° cells/ml in RPMI
1640 containing 2 mM L-glutamine and 25 mM HEPES
buffer (Mediatech, Inc., Herndon, VA), supplemented with
10% heat inactivated fetal bovine serum (Atlanta Biologi-
cals, Norcross, GA), 50 mg/ml gentamycin (Omega Scien-
tific, Tarzana, CA), with additional 0.25 mg/ml amphotericin
B (Gemini Bio-products, Woodland, CA). Where indicated,
lymphocytes were stimulated by 40 ng/ml Phorbol 12-Myris-
tate 13-Acetate (PMA) and 1 mg/ml Ionomycin (Sigma); or
by antibody crosslinking of cell surface CD2 used at 0.4
pg/ml. In order to permit sensitive evaluation of monocyte
responses and to avoid the significant monocyte activation
and limited survival that is associated with standard culture
methods, we excluded charged culture platforms and em-
ployed opaque polypropylene flat bottom culture tubes
(Corning Incorporated, Corning, NY) for monocyte cultures.
Where indicated, monocytes were stimulated by 40 ng/ml
PMA in the absence of Ionomycin, or by LPS (InvivoGen,
100 ng/ml) for 6 hours. For co-culture experiments, effector
T cells or monocytes were washed thrice in culture media to
deplete the stimulant prior to co-culture with responder cells
and a total of 10° cells/ml of media were co-cultured at 1:1
Effector to responder cell ratio.

Antibody reagents

Anti-DR3 mAb (clone FO5) was generated at Teva Biophar-
maceuticals (Rockville, MD) ([19]. Isotype- or species-spe-
cific control antibodies were from Jackson ImmunoResearch
Laboratories (West Grove, PA). Gem1A.1 is an anti-human
LIGHT combinatorial Ab containing V;and V chains gen-
erated from a BALB/c mouse immunized with soluble r
LIGHT by Gemini Biolabs (La Jolla, CA) [27]. Anti-CD40
mADb EAS clone was a gift of Dr. C. D. Benjamin, Biogen,
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Inc., Cambridge, MA. The ascites was purified over a pro-
tein G column and quantified by ELISA. Additional chro-
mophore-conjugated antibodies specific for human CD3,
CD4, and CD8, CD14, CD161, IL2 and IFN-y were from
Caltag (Burlingame, CA), and anti-human CD56 was from
Beckman-Coulter (Fullerton, CA).

Cell staining and flow cytometry

For intracellular cytokine analysis, cells were incubated in
the presence of Golgi inhibitor, Brefeldin A (Calbiochem,
LaJolla, CA), for the last 5-6 hours of culturing. Cells were
then washed and stained for surface markers as above, fol-
lowed by light fixation and permeablization in the presence
of anti-cytokine, or isotype control antibodies using the Fix
and Perm, intracellular staining kit (Caltag, Burlingame,
CA). Cells were then washed, fixed in 1% paraformalde-
hyde and stabilized at 4°C for 16-20 hours prior to flowcy-
tomeric analysis. Non-specific staining by control isotypes
or staining of unstimulated cells was subtracted from per-
centage staining for each cell subset to determine specific
mean fluorescence.

Flow cytometric analysis included at least 2 x 10* events
on a FACScan (Becton Dickinson) or Cyan (Dakocytoma-
tion) and analyzed with the respective CellQuest or Summit
software. Percentages of cytokine producing or surface
marker expressing cells represent the fraction of total the
total cell subset defined

Statistical analysis

The Student #-test was applied when comparing frequen-
cies of cytokine producing cells.

Results

CDI61 defines T cells consistently expressing CD56
in culture

NK cell surface markers, CD161 and CD56, can be ex-
pressed on T cell subsets that express pro-inflammtory
cytokines in the intestinal mucosa or liver immune compart-
ments [29, 33, 34]. CD56" T cells activate responder T cell
proliferation and cytokine production in vitro [31], and sev-
eral studies proposed extrathymic selection of this cell pop-
ulation [37-39]. However, possible changes in temporal
CD161 or CD56 expression have not been analyzed when
using these markers to define primary T cell subsets [29, 31,
33, 34]. We used flow cytometry sorting to isolate primary
CD3*/CD56%/CD161*, CD3"/CD56/CD161*, CD3*/CD56"/
CD1617, and CD3"/CD56/CD161™ T cells from PBMC
preparations, and assessed variation in CD56 and CD161
protein expression over time (Figure 1). Surface CD161 and
CD56 protein expression was ascertained over 3 days by a re-
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peat surface immunostain and flow cytometric analysis. We
observed significant downregulation of CD56 expression on
CD161 T cells by day 3, while expression persisted almost
exclusively on CD161" T cells (Fig. IB). In contrast, ex-
pression of CD161 was constant on sorted T cells over time,
and expression levels of both CD56 or CD161 as well as cell
survival rates did not significantly differ following short-term
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Fig. 1. DC56 is persistently expressed only on

T cells co-expressing CD161. Lymphocytes were isolated from
human peripheral blood and surface stained with fluorescent
conjugated anti-CD3, anti-CD161 and anti-CD56 antibodies,
followed by flow cytometric analysis. A. Human CD3* T cell
subsets were purified from PBL preparations by flow cytometry
sorting based on CD3, CD56 and CD161 staining
characteristics. Gated viable, lymphocyte size, scatter plots are
shown for representative samples, indicating staining profiles
and sort gates. B. Sorted CD1617/CD56%, CD1617/CD56",
CD161%/CD56 and CD1617/CD56 were cultured separately
and CDS56 staining histograms are shown for the CD56"
(Shaded) and CD56™ (unshaded) staining in sorted populations
prior to culture (top) or upon re-staining on day 3 (Bottom).
Data are representative of at least five experiments
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activation (6—18 h) of these T cell subsets (data not shown).
These data validated CD161 as a constitutive cell marker for
a subset of T cells and demonstrated that CD161* T cells co-
expressing CD56 are more likely to express CD56 for several
days, a critical consideration for studies investigating CD56*
T cell effector function in vitro [31].

CDI61" T cells preferentially express the gut-associated
TNF family member, LIGHT

CD161" T cells are frequently found in the intestinal mucosa
and release pro-inflammatory cytokines [29]. LIGHT, a cy-
tokine in the TNF family, mediates inflammation specifically
in the gut compartment when expressed on T cells [17, 18],
and enhanced LIGHT expression was reported on human
lamina propria T cells and on gut-associated T cells in the
periphery [20]. Hence, we tested whether CD161 expression
on peripheral blood (PB) T cells defines a gut-associated sub-
population of cells that preferentially express LIGHT. We
compared surface LIGHT protein expression on CD161" and
CD161" primary human T cells by immunostaining and flow
cytometry, following in vitro activation with phorbol ester
(PMA) and an ionophor (Ionomycin). LIGHT was predom-
inantly expressed on CD4" T cells coexpressing CD161
when compared with CD4*/CD161” T cells (Fig. 2). By con-
trast, although CD8" T cells express higher levels of LIGHT
[7], surface LIGHT protein expression did not differ between
the CD8/CD161" and CD8*/CD161™ T cell populations
(Fig. 2). In contrast to peripheral small bowel homing CCR9*
T cells where LIGHT is constitutively expressed [20], we
did not detect significant levels of membrane LIGHT pro-
tein on resting CD161* T cells, suggesting that CD161 may
define a population of CD4" T cells with enhanced poten-
tial for LIGHT expression following activation, and that
LIGHT expression is not secondary to an activated state in
this cell subset.

CDI6I" T cells preferentially respond to signaling through
the gut-associated TNF receptor family member, DR3

To further assess the role of peripheral CD161" T cells in
molecular immunoregulatory mechanisms specific to the
gut compartment, we evaluated T cell responses to signal-
ing through DR3, a receptor for the gut-associated cytokine,
TL1A. T cell signaling via TL1A-DR3 requires co-treat-
ment with IL12 and IL18 [4, 40], hence, varying require-
ment for these cytokines in the CD161" and CD161™ T cell
subsets were also ascertained. T cells were cultured in the
presence of varying concentrations of IL12 and IL18, and
then stimulated by DR3 crosslinking using agonistic anti-
DR3 antibodies. T cell response was measured as a function
of IFN-y production by intracellular immunostaining and
flow cytometry. CD161" T cells were the primary subset
producing IFNg following DR3 crosslinking, and a signif-
icant fraction of CD161* T cells produced IFNY even at rel-
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Fig. 2. LIGHT is preferentially expressed on CD4" T cells
co-expressing CD161. PBL were isolated from

a healthy donor blood and cultured for 18 hours

in the presence of PMA and Ionomycin.

Cells were surface stained with anti-CD3,

anti-CD4/8, anti-CD161 and anti-LIGHT antibodies

and analyzed by flowcytometry.

Stimulated (shaded) and unstimulated (unshaded) histogram
plots are shown for live CD3" cells gated for CD161,

and CD4/8 expression as indicated. Data are representative
of at least five experiments

atively low concentrations of IL12 and IL18 (Fig. 3). Se-
lective IFNYy production suggested that CD161 expression
marks a specific T cell subset that are characterized by en-
hanced responsiveness to DR3 signaling at lower levels of
co-stimulation with IL12 and IL18. The fact that CD161~
CD56" T cells were not induced to produce IFNY following
DR3 stimulation indicated that enhanced CD161* T cell re-
sponse is DR3 specific and not a reflection of preferential
THI1 like character or a mature phenotype, since we previ-
ously showed that a similar fraction of CD56" T cells can
produce IFNy as CD161" T cells [31].

IL12 and IL18 facilitate TL1A-DR3 signaling by up-
regulating DR3 expression on the cell membrane of T and
NK cells [41]. To determine whether enhanced expression of
DR3 on CD161" T cells reduces the requirement for IL.12
and IL18 costimulation, we stimulated PB T cells with vary-
ing concentrations of IL12 and IL18, and measured surface
DR3 protein expression on T cell subsets by immunostain-
ing and flow cytometry. CD161" T cells induced surface
DR3 expression at lower concentrations of IL12 and IL18
than CD161™ T cells, with up to 80% of CD161" T cells
staining positive for DR3 (Fig. 4). Enhanced expression of
DR3 on CD161" T cells was consistent with enhanced re-
sponse to DR3 stimulation at low concentrations of 1L12
and IL18 (Fig. 3). Interestingly, compared to CD4" T cells,
higher frequency of DR3 expression was detected on CD8*
T cells regardless of CD161 expression, suggesting that
CD161 better associates a CD4" T cell population with DR3
signaling, in agreement with enhanced LIGHT expression
on CD4*/CD161" T cells (Figs 2 and 4).
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Fig. 3. CD161 defines a T cell population responsive to TL1A-DR3 signal. Isolated PBL were stimulated

with anti-DR3 antibodies for 18 hours followed by 6 hours in the presence of Golgi inhibitor, Brefeldin

A. Cells were then surface stained with anti-CD3, anti-CD56 and anti-CD161 antibodies and intracellularly immunostained
for IFNY. Plots show percent of viable CD3* gated T cells expressing INFy following activation with anti-DR3 (top)

or isotype control (bottom) antibodies in the presence of titrated exogenous IL18 and IL12. Spontaneous cytokine production
by unstimulated cells was consistently less than 2%. Data are representative of at least five experiments

Effector CD161" T cells stimulate monocyte activation

DR3 mediated induction of cytokine expression suggested
an effector function for CD161" T cells. To determine
whether DR3 signaling potentiates effector function in
CDI161" T cells, we used a recently established in vitro co-
culture system to evaluate effector-responder T cell inter-
actions (Fig. 5) [31]. Candidate effector T cell subsets were
purified by flow sorting from human PBL preparation and
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Fig. 4. Surface DR3 protein expression is preferentially
induced on CD161* T cells at low IL12/IL.18 concentrations.
Isolated PBL were cultured for 24 hours in the presence

of varying concentrations of exogenous IL.12 and IL18,

and then immunostained for surface CD3, CD8/4, CD161

and DR3 expression. Plots show percent of viable CD3" gated
CD161" () and CD161™ (0) T cells expressing DR3,

which did not bind the DR3 isotype control.

Data are representative of at least three experiments
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stimulated using agonistic anti-DR3 antibodies or isotype
control in the presence of IL12 and IL18 for 18 hours. Fol-
lowing rigorous washing of stimulants, activated effector
cells were co-culture with responder autologous monocyte
preparations at an optimal 1:1 ratio for 24-48 hours [31]. To
ascertain responder cell activation, co-cultured cells were
surface immunostained and analyzed by flowcytometry gat-
ing on a CD3™ and a non-apoptotic monocyte size/density
profile [42]. CD40 expression was measured as a sensitive
indicator of monocyte activation [43]. We observed signif-
icant CD40 upregulation on monocytes co-cultured with
DR3 activated CD161* T cells, but only marginal change in
CDA40 levels on monocytes co-cultured with similarly acti-
vated CD1617 T cells (Fig. 6). In addition, CD14 down reg-
ulation was assessed as surrogate marker of monocyte cell
membrane fluidity and active shedding of CD14 protein,
which provide early measures of monocyte activation [44].
CD14 surface staining was significantly compromised on
monocytes following co-culture with DR3 activated
CD161" T cells, while no changes in CD14 expression were
detected following co-culture with CD161™ T cells (Fig. 6).
Loss of CD14 expression can also be associated with apop-
tosis [42], however no significant differences were detected
in survival or the frequency of apoptotic monocytes in co-
culture with either CD161" or CD161™ T cells (<25% by
Annexin V and 7AAD staining).

CDI61" T cells preferentially respond to stimulation
by activated monocyte

CD161" T cell mediated activation of monocytes suggested
effective T cell-monocyte cross-talk favoring the CD161* T
cell subset. We examined whether CD161* T cells are also
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Fig. 5. Experimental setup for the analysis

of effector—responder interaction in monocyte-T cell
co-cultures. Monocytes were isolated

from human leukocyte preparations

by negative selection using magnetic beads and T cell
subsets were purified by flow sorting (>99% pure

by flow cytometric reanalysis). Effector cells

were then activated as indicated, washed and co-cultured
with responder cells at 1:1 ratio for 24 hours.
Responder T cell or monocyte activation

was determinedas a function of cytokine and surface
protein expression profiles evaluated

by flow cytometric analysis gating

on the responder cell subset

preferentially responsive to a reciprocal antigen independent
activation by monocytes in the same co-culture system (Fig.
5). Following co-culture with PMA activated monocytes, T
cells were analyzed by immunostaining and flow cytometry
gating on CD3", viable lymphocyte size/density cells. We
measured activation of responder CD161" or CD161™ T cells
as a function of activation marker upregulation on the cell
surface (CD69), or cytokine expression by intracellular im-
munostaining (IL2 and IFNY). Co-cultured CD161" T cells
up-regulated CD69 expression (Fig. 7A), and expressed pro-
inflammatory cytokines, IL2 and IFNy more frequently than
CD161" T cells (Fig. 7B). Monocytes activated with PMA
induced responder T cell expression of CD69 more effica-
ciously in both CD4" and CD8" T cells CD161 subsets (Fig.
7A), in agreement with enhanced DR3 expression requiring
lower concentrations of IL12 and IL18 in both CD4*/CD161*
and CD8'/CD161" T cells (Fig. 4).

Discussion

Human T cells expressing CD161 are present in the intes-
tinal immune compartment and express pro-inflammatory
cytokines, thus suggesting an effector function [29], likely
in the Th17 context [35, 45]. Our findings link the CD161*
T cell population to the LIGHT and TL1A signaling cir-
cuits as potential molecular mechanisms that mediate gut
mucosal inflammation. We previously reported enhanced
LIGHT expression in lamina propria T cells [7], as well as
constitutive expression and elevated levels in inflamed mu-
cosal tissue [20]. Interestingly, our data indicated that on
peripheral CD4" T cells, LIGHT is primarily expressed on
the CD161" subset, whereas LIGHT was detected on CD8"*
cells irrespective of CD161 status (Fig. 2). Enhanced
LIGHT expression on CD4"/CD161" T cells suggests a gut
associated phenotype and is in agreement with enhanced
LIGHT expression on a second peripheral CD4" T cell sub-
set which expresses the small bowel homing chemokine re-
ceptor, CCR9 [20]. Cell type specific gene transfer studies
indicate that LIGHT expressed on T cells can induce intes-
tinal inflammation [17, 18], a function mediated either di-
rectly via a pro-inflammary LIGHT-HVEM signal [10, 46],
or via a LIGHT-LTPR apoptotic signal compromising ep-
ithelial barrier function [12]. Hence, enhanced LIGHT ex-
pression on CD161* T cells and the high frequency of these
cells in the intestinal mucosa could lead to higher levels of
LIGHT protein in the gut and mediate inflammation pref-
erentially in the mucosal immune compartment.

TL1A is produced by activated monocytes and DC [40,
47, 48], and induces Th1-like cytokine expression on some
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CD40
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> >
CD40 CD40
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Fig. 6. DR3 stimulated CD161" T cells activate

primary autologous monocytes. Flow sorted CD3*/CD161",
or CD3*/CD1617 T cells to be tested as effectors cells

were activated with anti-DR3 antibodies (shaded) or isotype
control (unshaded) in the presence of IL12 (0.2 ng/ml)

and IL18 (10 ng/ml) for 24 hours, washed and co-cultured
with monocytes as responder cells for an additional 24 hours.
Co-cultured cells were analyzed by flow cytometry

and histograms show gated monocytes stained for CD40 (top)
or CD14 (bottom). Data are representative

of at least three experiments
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Fig. 7. CD161" T cells are preferentially activated

by monocytes. PBL were co-cultured with activated monocytes
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of IL12 and IL18. A. CD4" and CD8" T cell activation

was analyzed as a function of surface staining for CD69
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activated monocytes. B. T cells were co-cultured

with monocytes pre-stimulated by PMA, and T cell activation
measured as a function intracellular staining for IFNy

and IL2 following 5 hours of culture in the presence

of Golgi maturation inhibitor, Brefeldin A.

Bar graphs represent percent positive cells

in CD3*/CD1617 (closed), and CD3*/CD161" (open) gates.
Data are representative of a minimum of three experiments

T cells by signaling through its receptor, DR3 [41]. Our
data indicate that peripheral CD161" T cells are a predom-
inant subset producing IFNY in response to a TL1A-DR3
signal (Fig. 3). Although, CD161" T cells share mature phe-
notypic characteristics with the CD45RO including en-
hanced IFNYy production [29], our data suggests that CD161
marks a unique and independent cell population. TL1A re-
sponsiveness cannot just be attributed to a mature pheno-
type (i.e. CD45RO expression), since CD161™ T cells do
not respond to TL1A mediated stimulation despite frequent
CD45RO expression in this subset. Additionally, CD56" T
cells, a mature population composed predominantly of
IFNY producing cells, failed to respond to DR3 signaling
(Fig. 3). Failure of CD56" T cells to respond to a TL1A-
DR3 signal is consistent with the absence of CD56 expres-
sion on small bowel homing CD4*/CCR9* T cells [49], a
population that does respond to DR3 signaling [50].
Interestingly, CD161* T cell response to DR3 stimula-
tion was potentiated by significantly lower levels of 1L12
and IL18 when compared to non-enriched T cell prepara-
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tions (40 and 4 fold lower concentrations for IL12 and
IL18, respectively) [41]. Dependence on lower IL12 and
IL18 concentrations suggests that CD161" T cells could
mediate TL1A-DR3 signaling function early in a mucosal
inflammatory response prior to substantial increase in cy-
tokine levels. Enhanced DR3 expression may explain a
lower requirement for IL12 and IL18, since priming with
these cytokines has been suggested to induce T cell ex-
pression of DR3 [14, 41]. We demonstrated enhanced DR3
expression specifically on CD161" T cells, with up to 80%
of CD161" T cells expressing DR3 at lower IL12 and IL18
concentration than required for CD161" cells, while some
CDI161* T cells expressed DR3 even in the complete ab-
sence of IL12 and IL18. These observations suggest that
TL1A-DR3 signal efficacy is plausibly enhanced on
CD161" T cells via mechanisms regulating DR3 protein ex-
pression at the cell surface. By contrast, the LIGHT recep-
tor, HVEM, is constitutively expressed on all T cells, and
induced expression of LIGHT appears pivotal in regulating
the LIGHT-HVEM signaling circuit [7, 20, 31]. Taken to-
gether, our data indicate that CD161" T cells define a pre-
dominant subset expressing LIGHT and responding to DR3
signal, suggesting a central role for these cells in inflam-
matory mechanisms mediated by the LIGHT-HVEM and
TL1A-DR3 signaling circuits. Consequently, elevated
CDI161" T cell frequency in the intestine may explain the
tissue specificity of LIGHT and TL1A signaling in the mu-
cosal compartment.

T cells expressing NK markers, CD161* and CD56"
produce an array of cytokines implicating a pro-inflamma-
tory effector function [29, 34, 35]. We directly demonstrate
that CD161%, but not CD161™ T cells, pre-stimulated via
TL1A-DR3 signaling, can activate monocytes in vitro (Figs
6 and 7). Increased expression of activation marker CD40
suggested monocyte induction of transcriptional mecha-
nisms [51], and decreased cell surface CD14 is consistent
with increased membrane fluidity and rates of receptor
internalization or shading [44]. However, monocyte activa-
tion by the CD161" subset is intriguing since a comple-
mentary population of T cells expressing CD56 did not
activate monocytes, but were more efficacious at activating
responder T cells via T-T interaction [31]. Thus, CD161
and CD56 expression may identify T cells subsets with dif-
ferent effector functions.

Efficacious monocyte-T cell cross-talk mechanisms
were further illustrated by the reciprocal activation of
CDI161* T cells in co-culture with monocytes, which in-
duced cytokine production and activation marker expression
primarily on CD161* T cells. Our autologous monocyte-T
cell co-culture experiments do not include saturated anti-
gen mediated TCR stimulation following T cell priming and
expansion in vivo, and hence, observed monocyte-T cell
cross-talk likely reflects antigen independent mechanisms
of T cell activation such as LIGHT-HVEM or TL1A-DR3
signaling. Antigen independent T cell activation is consis-
tent with attenuation of TCR signaling, a characteristics
unique to the mucosal compartment [52]. Both, LIGHT and
TL1A are primarily expressed by monocytes, thus, en-
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hanced LIGHT-HVEM or TL1A-DR3 signal under low IL12
and IL18 concentrations may augment monocyte-CD161* T
cell cross-talk. Although, additional mechanisms likely con-
tribute to monocyte-T cell interactions, since blocking
LIGHT or TL1A in co-culture did not selectively inhibit
monocyte activation (data not shown).

NK markers such as CD161 or CD56 are expressed
early in lymphoid cell development prior to the T-NK split,
but lost during T cell selection and maturation in the thy-
mus. Expression on T cell subsets associated with the mu-
cosal immune compartment is noteworthy and may provide
clues to T cell differentiation and trafficking in the intes-
tines. Notably, effector Th17 T cells were suggested to orig-
inate from a CD4*/CD161" T cell subset [45], and CD161
can directly induce T cell expansion when bound by the
Proliferation-Induced Lymphocyte-Associated Receptor
(PILAR) [51]. Extensive exposure to antigen at the intes-
tinal mucosa is consistent with the mature (CD45RO) and
non-proliferative phenotypes, which are primary hallmarks
of intestinal T cells [3, 52], shared by CD161* [29] and
CD56" T cells [31, 34]. Antigen specificity repertoires
unique to the gut compartment have been described, which
suggested mucosal T cell differentiation and selection in-
dependent of the thymus as a mechanism likely to play a
role in the pathology of IBD [53]. A study reported “leak-
age” of T cell progenitors from the thymus to the gut as a
novel mechanism for thymus independent T cell selection
[54]. More specifically, CD56 expression was reported on
CD7*/CD3™T cell progenitors in the gut which are capable
of differentiating into mature T cells [37], and a second
study proposed extra thymic development of CD56" T cells
in studies of human neonate cord blood [38]. Hence, the
occurrence of fully differentiated T cells expressing CD161
or CD56 in association with the gut is consistent with the
concept of thymus independent differentiation and an in-
dependent mucosal T cell repertoire [39].

Non-exclusive co-expression of CD161 and CD56, and
loss of CD56 only from the CD161" T cell subset suggest
that these markers define overlapping, yet possibly distinct
subsets of T cells (Fig. 1). Functional analysis further sup-
ports a distinct immunoregulatory role for T cells express-
ing either CD161 or CD56. For instance, CD56" T cells
more effectively activate responder T cells via T-T inter-
actions [31], while our data demonstrate efficacious recip-
rocal activation between CD161* T cell and monocytes
(Figs 6 and 7). Likewise, CD1617, but not CD56" T cells,
expressed higher levels of surface LIGHT and responded
to TL1A-DR3 mediated signaling at low IL12 and IL18
concentrations (Fig. 2). In addition, we have previously
shown that CD56" T cells exhibit compromised prolifera-
tion potential compared to CD161" T cells [31]. Although
likely defining functionally distinct populations, both
CD161* and CD56" T cells are localized to the intestinal
immune compartment and express pro-inflammatory cy-
tokines [29, 31, 34]. Similarly either CD161* or CD56*
T cells were sufficient in mediating CD2 induction of a pe-
ripheral T cell proliferative response [31], thus linking both
subsets with the gut associate CD2 signaling pathway [3].

In conclusion, our work links CD161* T cells with the
gut associated LIGHT and TL1A signaling circuits, thus
implicating this T cell population in the mucosal immune
compartment. Our data suggests regulation of DR3 expres-
sion as a determinant of enhanced TL1A responsiveness in
CD161* T cells, and we demonstrate efficient activation of
monocytes by CD161* T cells. These findings suggest that
CDI161" T cells may play an important role in pathologic
gut inflammation. Further analysis of CD161* T cells, in
particular with TL1A and LIGHT signaling mechanisms,
will better our understanding of mucosal immune regula-
tion and may lead to novel therapeutic approaches in the
treatment of IBD.
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