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Abstract
An image reconstruction formula is presented for photoacoustic computed tomography that
accounts for conversion between longitudinal and shear waves in a planar-layered acoustic
medium. We assume the optical absorber that produces the photoacoustic wave field is embedded
in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers.
The measurement aperture is assumed to be planar. Computer simulation studies are conducted to
demonstrate and investigate the proposed reconstruction formula.

1. INTRODUCTION
Photoacoustic computed tomography (PCT) is a rapidly emerging imaging technique that
combines optical image contrast with ultrasound detection principles [1–4]. In PCT, the
object of interest is illuminated with an optical or microwave field, and acoustic wave fields
are generated via the photoacoustic effect [2,3]. These wave fields are measured outside the
object by use of wideband ultrasonic transducers and employed to numerically reconstruct
an image that depicts the spatially variant optical absorption properties of the object.
Because the optical absorption properties of tissue are highly related to its molecular
constitution, biomedical applications of PCT can reveal the pathological condition of the
tissue [5,6] and therefore facilitate a wide range of diagnostic tasks [2,7–12].

The image reconstruction problem in PCT can be interpreted as an inverse source problem
[13]. A variety of analytic image reconstruction algorithms have been developed for three-
dimensional (3D) PCT assuming canonical measurement apertures [2,14–20]. Most existing
PCT image reconstruction algorithms assume the object of interest is embedded in an
infinite, homogeneous, dispersion-free medium. Significant distortions and artifacts can
appear in the reconstructions when the object’s speed of sound and density distributions are
spatially variant [21,22], posses dispersive or absorptive properties [23,24], or are embedded
in a finite medium for which acoustic boundary conditions need to be incorporated [25,26].
Compensating for these variations in the acoustical properties of an object and the medium
in which it is embedded remain an important area of current research [27–32].

All PCT image reconstruction algorithms developed to date assume that the to-be-imaged
optical absorber is embedded in a fluid acoustic medium that supports only pressure waves.
However, elastic solids support generation and propagation of a second type of ultrasonic
waves, shear waves, whose effects have not yet been accounted for in PCT image
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reconstruction algorithms. The modeling of solids in PCT is an important step toward
quantitative transcranial PCT [33,34]. Previous studies in PCT through the skull using
algorithms that do not account for shear waves or the strong acoustic heterogeneities
inherent in transcranial imaging exhibit obvious distortions [34]. The acoustic properties of
the skull have been well modeled for transcranial ultrasound imaging applications [35–38].

In this work, we develop a PCT reconstruction formula for applications in which a planar
detection surface is employed and the to-be-imaged optical absorber is embedded in a
planar-layered acoustic medium in which one or more of the layers can be an elastic solid.
The optical absorber that produces the photoacoustic wave field is assumed to be embedded
in a single fluid layer and any elastic solid layers present are separated by one or more fluid
layers. The speed of sound, density, and thickness of each layer, and number of layers are
assumed to be known. The reconstruction formula is mathematically exact and accounts for
multiple reflections of the induced photoacoustic wave field between the layers of the
medium, shear waves in the solid layers, and absorptive and dispersive effects in the layers.
Similar to classic PCT reconstruction formulas for a planar measurement geometry, the
reconstruction formula is based upon a mapping between the 3D Fourier components of the
sought-after absorbed optical energy density distribution and the 3D Fourier components of
the measured pressure data that correspond to propagating wave modes. In the special case
where none of the layers are elastic solids, the developed reconstruction formula degenerates
into a previously developed one for layered fluid media [26]. Computer simulation studies
are conducted to demonstrate and investigate the proposed method.

2. BACKGROUND: CANONICAL FORMULATION OF PCT WITH A PLANAR
MEASUREMENT APERTURE

The standard imaging model for PCT is derived from the acoustic wave equation in either
the space–time or space–frequency domain. The space–frequency domain representation p̃
(r, ω) of the acoustic field is related to the space–time representation p(r, t) by a Fourier
transform, viz.,

(1)

where ω denotes the temporal frequency, , and r = (x, y, z). In a fluid medium, the
acoustic field obeys an inhomogeneous Helmholtz equation:

(2)

where k = ω/c is the wavenumber,  is the local speed of sound, ρ is the equilibrium
density, Γ = λ/CP, λ is the thermal expansion coefficient, CP is the specific heat capacity (at
constant pressure), A(r) is the absorbed optical energy density, and H(ω) describes the one-
dimensional (1D) Fourier transform of the temporal profile of the exciting optical or
microwave pulse. In Cartesian coordinates, we express A(r) as A(x, y, z). The pressure field
away from the acoustic source can be expressed as

(3)

where G(r, r′, ω) is an appropriate Green function and V denotes the support volume of
A(r). Equation (3) represents an imaging model for PCT expressed in the temporal
frequency domain. The required Green function can only be found analytically when the
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medium is homogeneous or when certain symmetries exist in the system [18,26]. Otherwise,
numerical methods must be employed to estimate the Green function needed to specify the
imaging model in Eq. (3). The inverse problem in PCT is to determine an estimate of A(r)
based on knowledge of p̃(r, ω) and H(ω).

In the case where the medium is acoustically homogeneous with speed of sound c and the
measurement aperture corresponds to a plane, taken to be z = 0 without loss of generality, a
Fourier transform-based solution to the inverse problem has been established [18,19]. Let p̄
(kx, ky, ω) denote the two-dimensional (2D) spatial Fourier transform of the pressure data p̃
(x, y, z, ω) evaluated on the measurement plane z = 0:

(4)

Similarly, let kx, ky, kz) denote the 3D Fourier transform of A(x, y, z):

(5)

It has been demonstrated [18] that certain values of kx, ky, kz) can be determined from the
measured pressure data:

(6)

One notes that the kz coordinate of kx · ky, kz) is found via a nonlinear mapping of kx, ky,
and ω. From knowledge of the estimated Fourier components, a low-pass filtered estimate of
A(r) can be determined by use of the 3D inverse Fourier transform [39]. The range of kx, ky,
and kz over which may be estimated is related to both the excitation pulse (the values of ω
for which H(ω) is nonzero) and the detector (the spatial resolution in acquiring p̃). In Section
3, a generalization of Eq. (6) is established for the case where the optical absorber described
by A(r) is embedded in a stratified planar acoustic medium in which at least one of the
layers is assumed to be an elastic solid.

3. PCT IMAGE RECONSTRUCTION FORMULA FOR LAYERED ACOUSTIC
MEDIA THAT INCLUDE ELASTIC SOLIDS
A. Dyadic Green Function Construction for Homogeneous Media

Elastic solids are characterized by two parameters that describe the stiffness of the solid.
These parameters, the Lame coefficients (λ, μ), along with the density of the solid, fully
characterize the acoustic response of the material. Fluids can be considered as a special case
of an elastic solid in which μ = 0. The boundary conditions for elastic waves involving
solids are best understood with respect to the particle displacement caused by the acoustic
wave. The vector-valued displacement, u(r, ω), in a fluid is related to the pressure by two
relations [40]:

(7)
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(8)

Computing the gradient of Eq. (2) and substituting from Eq. (7) yields the wave equation for
the displacement field produced by the photoacoustic effect:

(9)

In order to determine the particle displacement away from the source, the method of dyadic
Green functions can be employed. In a fluid, the dyadic Green function takes the form [41]

(10)

where G0 is the Green function for a homogeneous medium. The angular spectrum
decomposition for G0 is given by [42]

(11)

where k‖ = (kx, ky, 0)T and

(12)

Substitution from Eq. (11) into Eq. (10) yields the angular spectrum decomposition for the
dyadic Green function for homogeneous fluids:

(13)

where k̂ = k/k is a unit vector pointing in the direction of k = (kx, ky, kz)T and it is assumed
that z > z′ ∈ V.

The particle displacement field away from the photoacoustic source is found to satisfy

(14)

(15)

(16)
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On substitution from Eq. (16) into Eq. (8), one can obtain the previously determined
relationship between the pressure on a plane and the Fourier transform of the object found in
Eq. (6).

B. Reconstruction Formula for Layered Media
In the case that the object of interest is located in a layered medium containing both fluid
and solid layers, a new dyadic Green function must be constructed to account for the
presence of shear waves in the solid layers. The description of the relevant physics for shear
waves in a layered medium is contained below and in Appendix A. The interested reader is
pointed to [43] for a more thorough discussion of shear waves. This construction bears
strong resemblance to the method developed for a layered fluid [26]. An example of such a
layered medium is presented in Fig. 1. The field in the fluid layer n (except the source layer)
obeys

(17)

where kn = ω/cn and .

The vector displacement field can be represented in terms of solenoidal and irrotational
components as u(r, ω) = us(r, ω) + ul(r, ω). If layer m is a solid layer, these displacement
components satisfy

(18)

(19)

where km = ω/cm, ks = ω/cs, . One notes that the shear
speed of sound is identically zero for layers in which μm = 0. Materials, such as fluids, for
which μm = 0, do not support shear waves.

The angular spectrum decomposition for the longitudinal displacement component in each
layer (fluid or solid) is given by

(20)

and the angular spectrum decomposition in each solid layer for the shear displacement
component is given by

(21)

where  are unit vectors describing the polarization of the shear

waves such that . The z component of the wave vectors in
each layer are given by

(22)
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(23)

A detailed description of the relevant boundary conditions between layers and how to
determine the explicit form of the dyadic Green function for a layered medium employing
the angular spectrum representation is provided in Appendix A.

For the case in which the source A(r) is confined in the bottom layer n = M, assumed to be a
fluid layer, the resulting pressure field is found to be

(24)

where d0 is the distance between the last boundary and the detector. The factor T0 is the
transmission coefficient, found through the method described in Appendix A, for a unit
amplitude plane wave incident upon the plane z = zM from below and exiting the layered
medium at z = z1 (see Fig. 1). It is assumed that the detection process is performed in a fluid
layer, which is consistent with conventional PCT applications.

This relationship can be inverted readily to yield Fourier-space PCT reconstruction formula
for a layered medium that admits shear waves in some of the layers:

(25)

Equation (25) is the main result of this paper. It shows that the Fourier components of the
object that correspond to propagating pressure waves are simply related to the Fourier
components of the acoustic signal measured on a plane. It can be verified that, in the special
case of an object with homogeneous speed-of-sound and density distributions, i.e., a
medium described by a single layer, Eq. (25) reduces to Eq. (6). This result also reduces to a
previously found result when only fluid layers are present [26].

4. COMPUTER SIMULATIONS
Computer simulation studies were performed to corroborate the proposed reconstruction
method. A numerical phantom representing the object A(r) was considered that contained
three uniform spheres located within the bottom layer of the structure. The spheres were
centered at positions (1, −1.34, −2.6) cm, (0, 1, −2.8) cm, and (−1, 0, −2.7) cm, had radii of
1 cm, and were quasi-bandlimited by convolving each with a 3D Gaussian function of width
0.5 mm. The value of A(r) was assigned to be 1 for each sphere. Spheres were used in the
simulations because they have a known Fourier representation, eliminating numerical error
in calculating the Fourier transform of the object. The object was assumed to be embedded
in a four-layer structure (see Fig. 1). The bottom layer of the background was assumed to be
tissue, unbounded in the −z direction with a speed of sound of 1483m/s and a density of
1000 kg/m3. The second layer was also assumed to be tissue with a thickness of 6 mm, a
speed of sound of 1537m/s, and a density of 1116 kg/m3. The third layer was assumed to be
bone (a solid), with a longitudinal speed of sound of 2900m/s, shear speed of 1450m/s,
thickness of 8 mm, and density of 1900 kg/m3. The fourth (top) layer was assumed tissue,
with speed of sound of 1520m/s and density of 1100 kg/m3. The pressure wavefield was
assumed to be recorded in a layer that is matched to the skin layer d = 1 mm away from the
skin/bone edge.
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Samples of p̃(r, ω) were generated according to Eq. (24). Temporal frequency domain data
were generated at a sampling rate of 1.59 MHz on a rectangular grid of 128 × 128 idealized,
pointlike, transducers, with lateral spacing Δx = 0.5 mm.

Sampled values of p(r, t) were obtained by application of the 1D inverse fast Fourier
transform (FFT) to the computed values of p̃(r, ω). Noisy versions of p(r, t) were created by
addition of identically distributed white Gaussian noise at each transducer location. The
noise level was referenced to the average value of p(r, t) computed over all values of t and
transducer locations r.

The reconstruction algorithm was implemented as follows. The 3D FFT algorithm was
employed to compute sampled values of p(kx, ky, ω) from the noiseless or noisy
measurement data p(r, t). A low-pass filter was applied so that p(kx, ky, ω) = 0 for

, where cM is the speed of sound in the layer in which the object resides. The
filtering is performed to preserve the relationship expressed in Eq. (25). For

 is imaginary and is thus a Fourier-Laplace transform and not a
Fourier transform. The resulting data were employed in Eq. (25) to obtain an estimate of the
object’s Fourier transform on a uniform grid in kx and ky and a nonuniform grid in kz. For a

given kx and ky, the sampled values of kz corresponded to . The object
estimate was then interpolated onto a uniform grid in kz for kz > 0 for each kx and ky using
linear interpolation. As A(r) is real valued, the conjugate symmetry *(−kx, −ky, −kz) = 
kx, ky, kz) was used to obtain the Fourier components of the object for kz < 0. Finally, the
inverse 3D FFT algorithm was applied to the sampled values of kx, ky, kz) to obtain an
estimate of A(x, y, z).

5. RESULTS
A. Transmission Coefficients

It is well known that bone exhibits absorptive and dispersive effects at temporal frequencies
commonly encountered in biomedical applications of PCT. These effects may be
incorporated into the model in this paper by redefining the wave vector for each layer in
which absorptive and dispersive effects are to be modeled. One model for incorporating
these effects in PCT applications is [23]

(26)

where αm is the absorption coefficient in layer m and cm(ω) satisfies

(27)

and ω0 is a frequency at which c0m is known in each layer. The expressions for Km and
cm(ω) ensure that the wave field remains causal. The z component of the wave vector in each
layer is similarly redefined:

(28)

The kz are then complex quantities in each layer for which absorption is included. The Lame
coefficients are likewise redefined to account for absorption and dispersion:
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(29)

(30)

This model for absorption is consistent with previous investigations in transcranial
ultrasounds [37].

To better understand the manner in which propagating shear waves affect image
reconstruction, plots of the transmission coefficient for the system, both when the effects of
shear waves are included and neglected, have been studied. Let s(θ, ω) = |T0(ω sin θ/cN, 0,
ω)|2 be the intensity transmission coefficient for a layered structure in which shear waves are
modeled, where T0(kx, ky, ω) is the amplitude transmission coefficient for a layered medium
in which shear waves are modeled and cN is the speed of sound in the object layer, and let

f (θ, ω) = |T ̄0(ω sin θ/cN, 0, ω)|2 be the intensity transmission coefficient for a layered
structure in which shear waves are not modeled, where T ̄0(kx, ky, ω) is the amplitude
transmission coefficient for a layered medium in which shear waves are not modeled. The
medium simulated is one in which there are four layers, and layers 0, 2, and 3 are assumed
to be fluids and layer 1 is assumed to be an elastic solid. Layer 3 is modeled with properties
c3 = 1500 m/s and ρ3 = 1000 kg/m3; layer 2 is modeled with properties c2 = 1537 m/s, α2 =
6.18 × 10−6 s/m, d2 = 4 mm, and ρ2 = 1116 kg/m3; layer 1 is modeled with properties c1 =
2900m/s, cs = 1450m/s, ρ1 = 1900 kg/m3, α1 = 3.07 × 10−5 s/m, and d1 is allowed to vary;
and layer 0 is modeled with c0 = 1500 m/s and ρ0 = 1000 kg/m3. The intensity transmission
coefficients are plotted in Figs. 2 and 3 for d1 = 3 and 9 mm, respectively, for frequencies
between 500 kHz and 1 MHz. Each figure contains plots of f and s for θ = 10° and θ =
30°.

One sees immediately that the two sets of transmission coefficients for a fixed angle differ,
sometimes significantly, depending on whether one accounts for shear waves. The plots of
the transmission coefficients corresponding to propagating shear waves ( s) are similar to
transmission coefficients calculated for transcranial ultrasound applications [37] with a
similar layer structure.

B. Reconstructed Images
The algorithm proposed in this manuscript was compared to two other algorithms for PCT
imaging that are consistent with detection on a planar aperture. The algorithm proposed in
this manuscript, henceforth algorithm (a), is an implementation of Eq. (25) as described in
Section 4 with T0 calculated from the exact properties of the layered system. A previously
introduced algorithm for a layered medium in which all the layers are fluids [26], henceforth
algorithm (b), was implemented for the same layered medium, but without accounting for
the possibility of shear waves in layer 1. Finally, an algorithm for a homogeneous medium
[18], henceforth algorithm (c), was implemented with the homogenous medium consistent
with layer 3 of the structure. Estimates of A(r) were computed from the same noiseless
simulation data for all three algorithms. The pressure field was generated in accordance with
Eq. (16) for a medium as described in Section 4 and with absorption assumed in layers 1 and
2 with values α1 = 3.07 × 10−5 s/m and α2 = 6.18 × 10−6 s/m.

In Fig. 4, a 2D slice corresponding to the plane z = −2.76 cm is shown in the top left panel
for reconstruction method (a). The other three panels contain line plots through the
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reconstructed image (in black) and the original phantom (in blue) along the lines x = 0.75 cm
and z = −2.76 cm (top right), y = −1.33 cm and z = −2.61 cm (bottom left), and y = 1.42 cm
and z = −2.52 cm (bottom right). Note that the reconstructed and original objects are so
similar as to be indistinguishable. This is expected and corroborates the mathematical
correctness of the reconstruction formula.

The improvement in reconstruction accuracy gained through use of the proposed algorithm
is demonstrated in Figs. 5 and 6. In Fig. 5, a 2D slice corresponding to the plane z = −2.76
cm is shown in the top left panel for reconstruction method (b), the case when shear waves
are not assumed in the imaging model but the layered medium supports them. A different
low-pass filter (LPF) was used in reconstruction method (b) than in methods (a) or (c). The
LPF was set to remove nonpropagating longitudinal waves in layer 3 (the layer with the
largest speed of sound). In this example, shear waves propagate at a lower speed than
longitudinal waves in layer 3, and so the spatial frequency cutoff on the LPF was much
lower for method (b) when compared to methods (a) or (c). The other three panels contain
line plots through the reconstructed image (in black) and the original phantom along the
lines x = 0.75 cm and z = −2.76 cm (top right), y = −1.33 cm and z = −2.61 cm (bottom left),
and y = 1.42 cm and z = −2.52 cm (bottom right). One sees that while there are qualitative
similarities between the original object and the reconstruction, this reconstruction method is
in no way capable of providing accurate, quantitatively useful estimates of the original PCT
object when the object is embedded in a layered medium that supports shear waves.

In Fig. 6, a 2D slice corresponding to the plane z = −2.76 cm is shown in the top left panel
for reconstruction method (c), the case when a homogeneous fluid medium is assumed in the
imaging model, i.e., Eq. (6). The other three panels contain line plots through the
reconstructed image (in black) and the original phantom along the lines x = 0.75 cm and z =
−2.76 cm (top right), y = −1.33 cm and z = −2.61 cm (bottom left), and y = 1.42 cm and z =
−2.52 cm (bottom right). One notes that the homogeneous reconstruction method performs
no better than the reconstruction method assuming four fluid layers—it is only possible to
distinguish the existence of the two of the spheres in the plane z = −2.76 cm.

Finally, a preliminary investigation of the proposed algorithm’s robustness was performed
with regards to stochastic measurement noise. In Fig. 7, a 2D slice through the plane z =
−2.76 cm of the image reconstructed through application of Eq. (25) is shown for four
realizations of noisy data for the case when the object is embedded in a four-layered system
as described in Section 4. Reconstructions are shown for additive noise at 0.05% (top left
panel), 0.1% (top right panel), 0.5% (bottom left panel), and 1% (bottom right panel). The
noise level is referenced to the PCT signal as defined in Section 4.

6. CONCLUSIONS
In this paper, a PCT reconstruction formula has been presented for the case when the optical
absorber is embedded in a layered medium in which some of the layers support shear waves
and/or posses dispersive and absorptive properties and when acoustical detection is
performed on a planar surface parallel to the planes of the layered medium. The
reconstruction formula demonstrates a mapping between the 3D Fourier transform of the
optical absorber and the 3D Fourier transform of the acoustic pressure data acquired on the
detection plane. The reconstruction formula was compared to two previous reconstruction
formulae valid for the cases when the optical absorber is embedded in a homogenous
medium and a layered fluid medium. It was shown that neither formula returns accurate
estimates of object structure when the object is embedded in a layered medium that supports
shear waves, although there is qualitative similarity between the output of the reconstruction

Schoonover and Anastasio Page 9

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



formulae and the original phantom. Further work is required to account for more general
geometries of solid heterogeneities in PCT.

APPENDIX A
Construction of the dyadic Green function for the particle displacement in a layered medium
generated by a PCT signal is most easily performed using the angular spectrum
representation for the particle displacement. The Green function must satisfy the same
boundary conditions that the particle displacement satisfies at each layer interface. These
boundary conditions take the form (either for fluid–fluid or fluid–solid boundaries):

(A1)

(A2)

and (for fluid–solid boundaries only)

(A3)

where  refers to the side of the boundary in the solid layer and it is assumed that the
boundaries are all of the form z = zn. The σij denote stresses on the boundary, and take the
form (in layer n)

(A4)

(A5)

Solid–solid boundary conditions can also be included [37,43], but are not within the scope
of this manuscript. Substituting the angular spectrum representation for the particle
displacement into the above boundary conditions yields boundary conditions that must be
satisfied for each plane wave component labeled by (kx, ky, ω) [44]:

(A6)

(A7)

(A8)

(A9)

in fluid layers and
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(A10)

(A11)

(A12)

(A13)

in the solid layers and the notation . Applying the dyadic identity operator for

transverse fields, IT = I − k̂sk̂s [41], to the wave vector  gives the polarization
vector for the shear wave in each solid layer

(A14)

Note that the polarization direction,  depends only on kx, ky and ks in the solid layer in the
angular spectrum representation.

Finally, the equations for σxz and σyz reduce to

(A15)

(A16)

For a given configuration of solid and fluid layers (with no two adjacent solid layers), these
sets of boundary conditions are sufficient to uniquely determine the dyadic Green function
for the layered system. The system of equations that represent the boundary conditions may
be written in matrix form as M ̄ · a⃗ = s ⃗, where M ̄ is a matrix that depends only on the acoustic
parameters of each layer, a⃗ is the vector of plane wave amplitudes, and s ⃗ is the source term.
One notes that T0 is the particle displacement plane wave transmission coefficient. The
method of calculating these transmission coefficients is analogous to previous methods used
for transcranial ultrasound [37].

The dyadic Green function for PCT for the system described in this manuscript is

(A17)
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where it is understood that r′ is in layer M, r is in layer 0, and T0 is found from solving the
boundary conditions above. Substituting the form of the dyadic Green function in Eq. (14)
gives the particle displacement in the detection plane,

(A18)

Substitution of Eq. (A18) into Eq. (8) gives the pressure field generated by the PCT object at
the detector plane.
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Fig. 1.
Diagram of a layered medium. The detection plane is denoted z = zd and marked with a
dashed line. Each layer is characterized by density, ρn, and longitudinal speed of sound, cn.
Layer 1 (shaded) is assumed to be an elastic solid, characterized by longitudinal speed of
sound c1 and shear speed of sound cs. Layers in which absorption is considered contain αn in
the material properties.
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Fig. 2.
(Color online) Intensity transmission coefficients for a four-layer medium for the case when
the third layer is 3 mm thick. The transmission coefficients are shown for a plane wave
incident on the medium at 10° when the first layer is assumed to be an elastic solid (green
solid line) and a fluid (red dashed line), and when a plane wave is incident on the medium at
30° when the first layer is assumed to be an elastic solid (black dashed line) and a fluid (blue
dotted line). Note that Tf denotes the transmission coefficients when the first layer is
assumed to be a fluid and Ts denotes the transmission coefficient when the first layer is
assumed to be an elastic solid.
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Fig. 3.
(Color online) Intensity transmission coefficients for a four-layer medium for the case when
the third layer is 9 mm thick. The transmission coefficients are shown for a plane wave
incident on the medium at 10° when the third layer is assumed to be an elastic solid (green
solid line) and a fluid (red dashed line), and when a plane wave is incident on the medium at
30° when the third layer is assumed to be an elastic solid (black dashed line) and a fluid
(blue dotted line). Note that Tf denotes the transmission coefficients when the first layer is
assumed a fluid and Ts denotes the transmission coefficient when the first layer is assumed
an elastic solid.
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Fig. 4.
(Color online) Top left panel: An image of the numerical phantom in the plane z = −2.76 cm
reconstructed by use of Eq. (25) from noiseless data. Top right panel: A profile through the
reconstructed image (black) and original phantom (blue dashes) along the line x = 0.75 cm
and z = −2.76 cm. Bottom left panel: The corresponding profiles along the line y = −1.33 cm
and z = −2.61 cm. Bottom right panel: The corresponding profiles along the line y = 1.42 cm
and z = −2.52 cm. Note that the reconstructed and original objects are so similar as to be
indistinguishable.
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Fig. 5.
(Color online) Top left panel: An image of the numerical phantom in the plane z = −2.76 cm
reconstructed by use of algorithm (b) from noiseless data, i.e., the reconstruction assumes no
elastic solids are present in the layered medium. Top right panel: A profile through the
reconstructed image (black) and original phantom (blue dashes) along the line x = 0.75 cm
and z = −2.76 cm. Bottom left panel: The corresponding profiles along the line y = −1.33 cm
and z = −2.61 cm. Bottom right panel: The corresponding profiles along the line y = 1.42 cm
and z = −2.52 cm.
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Fig. 6.
(Color online) Top left panel: An image of the numerical phantom in the plane z = −2.76 cm
reconstructed by use of algorithm (c) from noiseless data, i.e., the reconstruction algorithm
assumes a homogenous background surrounding the PCT object. Top right panel: A profile
through the reconstructed image (black) and original phantom (blue dashes) along the line x
= 0.75 cm and z = −2.76 cm. Bottom left panel: The corresponding profiles along the line y
= −1.33 cm and z = −2.61 cm. Bottom right panel: The corresponding profiles along the line
y = 1.42 cm and z = −2.52 cm.
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Fig. 7.
(Color online) Images of the numerical phantom reconstructed in the plane z = −2.76 cm for
four different noise levels: 0.05% (top left panel), 0.1% (top right panel), 0.5% (bottom left
panel), and 1% (bottom right panel).
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