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Iuliana Ionita-Laza, PhD Objective: In families with autosomal dominant partial epilepsy with auditory features (ADPEAF)
Ruth Ottman, PhD with mutations in the LGI1 gene, we evaluated clustering of mutations within the gene and asso-
ciations of penetrance and phenotypic features with mutation location and predicted effect (trun-

cation or missense).
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ro6@columbia.cdu ously published ADPEAF families with LGI1 mutations. We used a sliding window approach to
analyze mutation clustering within the gene. Each mutation was mapped to one of the gene's 2
major functional domains, N-terminal leucine-rich repeats (LRRs) and C-terminal epitempin (EPTP)
repeats, and classified according to predicted effect on the encoded protein (truncation vs mis-
sense). Analyses of phenotypic features (age at onset and occurrence of auditory symptoms) in
relation to mutation site and predicted effect included 160 patients with idiopathic focal unpro-
voked seizures from the 36 families.
Results: ADPEAF-causing mutations clustered significantly in the LRR domain (exons 3-5) of LGI1
(0 = 0.026). Auditory symptoms were less frequent in individuals with truncation mutations in the
EPTP domain than in those with other mutation type/domain combinations (58% vs 80%, p = 0.018).

Conclusion: The LRR region of the LGI1 gene is likely to play a major role in pathogenesis of
ADPEAF. Neurology® 2012;78:563-568

GLOSSARY

ADPEAF = autosomal dominant partial epilepsy with auditory features; EPTP = epitempin; LRR = leucine-rich repeat; nt =
nucleotides.

Autosomal dominant partial epilepsy with auditory features (ADPEAF) (OMIM 600512) is an
idiopathic focal epilepsy syndrome with auditory symptoms or receptive aphasia as a promi-
nent ictal manifestation.'” These symptoms strongly suggest localization to the lateral tempo-
ral lobe; hence, the syndrome is also called autosomal dominant lateral temporal lobe epilepsy.
A substantial proportion (approximately 50%) of affected families have mutations in the
leucine-rich, glioma inactivated 1 (LG/I) gene,*=¢ with an average penetrance of 67%.”

LGII encodes a secreted protein, Lgil, with 2 major domains: an N-terminal leucine-rich
repeat (LRR) domain containing 4 LRRs flanked by 2 conserved cysteine-rich regions, and a
C-terminal epitempin (EPTP) domain containing 7 EPTP repeats.®’ To date, 33 unique LG/
mutations have been reported in ADPEAF families (n = 36) and sporadic patients with
idiopathic focal epilepsy with auditory symptoms (n = 2).7%1°-1> Missense and truncation
mutations have been found in both LRR and EPTP domains. Although previous studies have
reported that pathogenic LG/ mutations are uniformly distributed across the gene,® none has
used a quantitative approach to assess mutation clustering or investigated genotype-phenotype
correlations in detail. Establishment of genotype-phenotype associations has the potential
to elucidate the biologic pathways involving LG/1, including the mechanisms leading to
ADPEAF symptoms.
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In this study, we tested 2 hypotheses: 1) the
distribution of ADPEAF-causing mutations is
not uniform across the LG/ gene and 2) pen-
etrance and phenotypic features in ADPEAF-
affected individuals differ, depending on the
predicted effect (truncation or missense) or do-
main location (LRR or EPTP) of mutations.

METHODS ADPEAF families. Molecular and clinical in-
formation from all 36 previously reported ADPEAF families
with LG/1 mutations (11 reported by our group and 25 re-
ported by others) was collected and assembled into a database.
For our previously reported families,>*!*! we obtained this
information directly from our existing database. For families
reported by others, we abstracted the clinical information

from published reports.®10-121415.17-26

Mutation density and clustering analysis. To visualize
the distribution of previously reported mutations in the gene, we
first computed mutation density by counting the number of mu-
tations in each exon and dividing the count by the nucleotide
length of the exon (excluding intronic regions). For statistical
analysis of mutation clustering across the coding sequence of
LGI1, we used a sliding window approach. We considered all
overlapping windows of a fixed length Z, and for each such win-
dow W we calculated a statistic Sy, defined as the maximum
number of mutations over all windows of length Z, ie., S, =
max Sy, Statistical significance was assessed using a classic ap-
proach from scan statistic theory that efficiently corrects for the
multiple correlated windows that are considered.”” Sy, is sensitive

to L and the total length of the nucleotide sequence scanned.

Genotype-phenotype correlation analysis. We estimated
penetrance through a method similar to that in our previous
article, which was based on the proportion affected among obli-
gate carriers (i.e., parents of affected individuals who were not
married into the family).” To increase precision, we modified our
previous approach by including offspring of affected individuals
in addition to obligate carriers. In each family, we estimated the
number of mutation carriers (denominator of the penetrance
estimate) from the published pedigree, assuming that all obligate
carriers and half of the offspring of affected individuals were
carriers. The number of these individuals who were affected
served as the numerator of the penetrance estimate. To increase
the likelihood that the offspring included in these calculations
were old enough to have passed through the risk period for
ADPEAF, we included only offspring of affected individuals
aged >40 years at the time of the study or death, as reported in
the original articles. (Age of the affected individuals served as a
proxy for age of their offspring, because age of the offspring was
seldom reported.) Then we divided the families into 2 groups
based on the median penetrance estimate among all families and
used X tests to assess differences in the proportion with high vs
low penetrance in relation to the mutations’ domain localization
(LRR or EPTP) and predicted effect (missense or truncation).
For genotype-phenotype association analyses, we examined
age at onset of unprovoked seizures and occurrence of auditory
symptoms in 160 patients from 32 families with idiopathic focal
unprovoked seizures in LG/I mutation-positive ADPEAF fami-
lies. (For the remaining 4 families, information from published
reports was not sufficiently detailed for analysis.) These 2 features
were selected because they were the only ones systematically docu-

mented in the families reported in the literature. As described above,
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analyses were performed by stratifying the mutations by their do-
main location (LRR or EPTP) and predicted effect (missense or
truncation). Genotype-phenotype association was assessed by linear
regression (for age at onset) and logistic regression (for auditory
symptoms) using generalized estimating equations to account for
the clustering of individuals within families. All analyses were per-
formed using SPSS (IBM, Chicago IL).

Standard protocol approvals, registrations, and patient
consents. This study was approved by the Columbia University
Medical Center Institutional Review Board, and all participants
from our research group gave written informed consent. Data
from individuals studied by other research groups were taken

from published reports and were anonymous.

RESULTS Mutation density and clustering analyses.
Figure 1A summarizes the genomic structure of LG/I
with all 33 reported pathogenic mutations labeled. As
shown in the figure, 5 mutations have been observed
more than once, either in 2 families (n = 3) or in a
family and a sporadic case (n = 2). Mutation density
within each exon is represented by the color intensity of
the exon; higher color intensity represents higher den-
sity. Exons 1-6 encode the protein’s LRR domain, and
exons 7—8 encode the EPTP domain. Figure 1B is a
schematic diagram of the Lgil protein with predicted
effects of the mutations. With the exception of one in-
frame deletion mutation (377-379delACA) resulting in
the deletion of asparagine in the encoded protein,!! all
other mutations are predicted to produce either amino
acid substitution (missense mutations, n = 21, 66% of
all mutations) or truncation of the Lgil protein (n =
11, 34% of all mutations).

Figure 2A shows that mutation density is the highest
in exon 4, followed by exon 5 and exon 3. Stratification
of mutations by their predicted effects on the protein
revealed that the high density of mutations in exon 4 is
primarily attributed to missense mutations, which are
more common than truncation mutations.

To assess the significance of mutation clustering by
the sliding window analysis, we chose a window length
L = 118 bp, the median size of the LGI! exons, to scan
the mRNA length of the gene. Because the scanning
statistic is sensitive to the length of mRNA analyzed, we
chose 2 lengths (1,774 and 1,823 nucleotides [nt]) to
capture the sequencing range covered in the litera-
ture.”*? Among the total of 38 mutational events, 35
were included in this scanning analysis. The remaining
3 mutations were intronic and were excluded because
intronic sequences have not been systematically se-
quenced. As shown in figure 2B, the maximum number
of murational events observed in any window is 9, i.e.,
S, = 9. The resulting p values for 2 scanning lengths
are 0.030 and 0.026 for nt = 1,774 and nt = 1,823,
respectively. Moreover, 2 of the 3 previously re-
ported intronic mutations are located within the
genomic sequence spanning exons 3-5 of LGII, cor-
responding to the region where the exonic mutations
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[ Figure 1 LGI1 mutations cluster in leucine-rich repeat (LRR) domain
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(A) LGI1 gene structure with the reported mutation sites indicated. For superscripts next to mutations, the first digit indicates the exon localization of the
mutation, and the second digit (after the decimal point) indicates the order of the mutation within the exon (mutations at the same nucleotide numbered
arbitrarily). i = intronic mutation; * = mutation found in 2 families (n = 3); # = mutation found in a family and a sporadic case (n = 2). (B) Lgil protein with
effect of mutations on protein summarized. The 4 LRRs in the LRR domain are represented by ovals and the 7 epitempin (EPTP) repeats in the EPTP domain
are represented by diamonds. Different intensities of the red shade correspond to the density of mutations in each exon. The superscripts next to protein
variants are cross-indexed to the nucleotide changes listed in the gene structure (A). CRR = cysteine-rich region; SP = signal peptide.

cluster. The number of mutations was too small for
formal statistical analysis of missense and truncation
mutations separately.

To confirm that the clustering of LG/ variants ob-
served in the ADPEAF families is specific to pathogenic
mutations, we searched the UCSC Genome Browser
(db build 131) for LGI1 variants.>® The search returned
266 variants in the LGII gene, of which 170 were vali-
dated by HapMap (270 individuals) or the 1000 Ge-
nomes Project (629 individuals). Only 2 of 170
validated variants were in the coding region, one encod-
ing a synonymous change in exon 6 and the other en-
coding a change in the 3" untranslated region of exon 8.
Neither of these has been associated with ADPEAF.
The relative invariability of the protein coding sequence
of LGII in reference genomes indicates that the gene is
highly conserved, and the clustering of ADPEAF-

causing mutations in the LRR region is probably spe-

cific to pathogenic mutations.

Genotype-phenotype correlation analyses. The overall
penetrance estimate was 66% (SE 3.6%), with a me-
dian of 75% among the 36 families. The proportion
of families with penetrance =75% was similar
among those with missense (52%) vs truncation
(58%) mutations. The proportion with penetrance
=75% was higher among families with mutations in
the LRR (58%) vs EPTP (47%) domain, but the
difference was not significant.

The prevalence of auditory symptoms was signifi-
cantly lower among individuals with truncation mu-
tations than among those with missense mutations
(65% vs 81%, p = 0.031) but did not differ accord-

ing to domain location of mutations (table). Further
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(A) Mutation density per nucleotide within each exon. Blue bars represent truncation mutations, red bars represent missense mutations, and green bars
represent total mutations. (B) A sliding window analysis was performed on the sequence length of LGI1 mRNA amplified by the reported sequencing
primers (1,823 nucleotides). A window size of 118 bp (median size of exons in LGI/1) was used and the maximum number of mutations observed per window
was 9 (p = 0.026). EPTP = epitempin.

stratification by both mutation effect and domain
showed that the lower prevalence of auditory symp-
toms in individuals with truncation mutations was
attributed to a lower frequency in those with trunca-
tion mutations in the EPTP domain (58% vs 80% in
those with other mutation types/localizations, p =
0.018). Age at onset was not associated with either
domain location or predicted effect of mutations (ta-
ble). These results were not changed after adjustment
for the current age of the patients.

DISCUSSION Establishment of genotype-phenotype
relationships is fundamental to elucidating patho-
genic effects of human mutations. In addition to in-
fluencing susceptibility to ADPEAF, recent studies
have also shown that LG/! plays an important role in

Table Age at onset and occurrence of auditory symptoms in 32 ADPEAF families
by predicted effect and domain localization of LGI1 mutations
‘ Age at onset Auditory symptoms |

Mutation
effect and No. No.
domain individuals Mean(SEM) pValue individuals No.(%) p Value
Truncation 54 15.7 (1.37) 71 46 (64.8)

0.116 0.031
Missense 78 18.7 (1.34) 82 66 (80.5)
LRR 70 16.1(0.99) 74 58(78.4)

0.203 0.176
EPTP 65 18.6 (1.75) 84 58(69.0)
Truncation-LRR 25 14.8(1.32) 26 20(76.9)
Truncation-EPTP 29 16.4 (2.19) 45 26(57.8)

0.196 0.018
Missense-LRR 42 17.1(1.27) 43 34(79.1)
Missense-EPTP 36 20.4 (2.35) 39 32(82.1)

Abbreviations: ADPEAF = aut

osomal dominant partial epilepsy with auditory features;

EPTP = epitempin; LRR = leucine-rich repeat.
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limbic encephalitis, a disorder in which autoimmu-
nity against the Lgil protein is the underlying
cause.>! These observations support the importance
of LGII in a spectrum of neurologic functions.

We found that ADPEAF-causing mutations clus-
ter significantly within the LRR domain of LGII.
This finding was primarily attributed to missense
mutations. The most likely explanation for this find-
ing is that mutations in the LRR domain confer a
greater susceptibility to ADPEAF than those in the
EPTP domain, although mutations in both domains
are clearly pathogenic. In addition, given the very
strong conservation of this gene, an alternative expla-
nation is that mutations in the LRR domain are
more compatible with life and hence are observed
more frequently than those in the EPTP domain.
Either or both possibilities could underlie the muta-
tion clustering in the LRR domain.

We observed a significantly lower frequency of
auditory symptoms among individuals with trunca-
tion mutations in the EPTP domain than among
those with other mutation types/locations. This find-
ing is difficult to interpret with our current state of
understanding of the biological function of the LGII
gene products. Analysis of disease severity (e.g., med-
ication response or seizure frequency) might have
been more revealing but was not possible with the
data abstracted from the literature. One possible ex-
planation for the lower frequency of auditory symp-
toms among patients with truncation mutations in
the EPTP domain is that they had a milder form of
epilepsy, with fewer seizures overall and less recogni-

tion of associated symptoms.
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Further elucidation of the function of LG/I and
its products is essential for better understanding of
the possible phenotypic consequences of particular
mutations. The pathogenicity of LG/I mutations
may involve both haploinsufficiency and dominant-
negative mechanisms. In Zg7] mouse knockout mod-
els, homozygous ablation of the gene leads to
spontaneous seizures and early death,®% whereas
heterozygous Lgil+/— mice showed a lowered
threshold for auditory stimuli-induced seizures.??
These findings are consistent with a mechanism in-
volving haploinsufficiency, because the phenotype is
more extreme in homozygotes than in heterozygotes.
Although in many genes, truncation mutations lead to
nonsense-mediated decay of the abnormal mRNA,
evidence from animal and human studies indicates that
this process does not always occur with truncation mu-
tations in LGI1.33¢ For example, in transgenic mice
with an extra copy of the LG/1 gene containing a trun-
cation mutation in exon 6, maturation of glutamatergic
synapses was arrested, clearly indicating a dominant-
negative effect of the mutation.’® These results imply
that the abnormal mRNA transcript resulting from the
truncation mutation was not simply degraded by
nonsense-mediated decay.

Protein-protein interactions involving Lgil’s
EPTP domain have been studied more extensively
than those involving the LRR domain. Several stud-
ies have used EPTP truncation mutations to investi-
gate interactions of Lgil with Kvl channels in
presynaptic neurons® or with ADAM proteins at
transsynaptic sites.””* However, a recent model pro-
posed that the formation of Lgil dimers through the
LRR domain may influence pre- and postsynaptic
transport or communication.* These interactions
may underlie the maturation and activity of glutama-
tergic synapses and thus modify the manifestation of
ADPEAF 3¢37 Given our finding of mutation cluster-
ing in the LRR domain, the reported dominant-
negative effects of the EPTP truncation mutants, and
the observation of naturally occurring Lgil isoforms
that resemble EPTP truncation mutants, further
investigation of protein-protein interactions or other
molecular mechanisms involving the LRR domain
that might influence epileptogenesis is warranted.

Our inclusion of all known LG/I mutation-
positive ADPEAF families in these genotype-
phenotype association analyses provided an
opportunity to gain insights into the structure-
function relationships of LGI! in a physiologic con-
text. The sliding window analysis used here may be
applicable to the analysis of mutation clustering in
other disease genes.

Conversely, the lack of consistent reporting of

phenotypic characteristics in the literature restricted

our genotype-phenotype association analysis to pen-
etrance, age at onset, and auditory symptoms. Statis-
tical power was also limited by the relatively few
previously reported ADPEAF families with LGII
mutations. We are in the process of developing a
more structured and standardized platform that can
be used across different research centers for collection
of clinical information on ADPEAF. Future analyses
using a larger collection of ADPEAF families and
more comprehensive phenotypic information will fa-
cilitate further elucidation of genotype-phenotype re-
lationships of LG/ mutations.
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