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Spatial variability overwhelms seasonal patterns
in bacterioplankton communities across a river
to ocean gradient
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Few studies of microbial biogeography address variability across both multiple habitats and
multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton
community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing
of 300 water samples collected in 2007 and 2008. Communities separated into seven groups
(ANOSIM, Po0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (deptho350 m)
and slope bottom (depth4850 m). The ordination of these samples was correlated with salinity
(q¼�0.83) and depth (q¼�0.62). Temporal patterns were obscured by spatial variability among the
coastal environments, and could only be detected within individual groups. Thus, structuring
environmental factors (for example, salinity, depth) dominate over seasonal changes in determining
community composition. Seasonal variability was detected across an annual cycle in the river,
estuary and plume where communities separated into two groups, early year (April–July) and late
year (August–Nov), demonstrating annual reassembly of communities over time. Determining both
the spatial and temporal variability of bacterioplankton communities provides a framework for
modeling these communities across environmental gradients from river to deep ocean.
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Introduction

Over the past few decades, aquatic microbial
communities have been shown to be abundant,
deeply diverse, and variable across space and time.
Yet several recent studies demonstrate repeatable
and predictable patterns in the composition of
these communities. Spatial variability in aquatic
microbial communities has been explored on scales
that range from millimeters (Long and Azam, 2001)
to kilometers (Hewson et al., 2006) to global
(Pommier et al., 2007; Fuhrman et al., 2008). This
variability is often attributed to a combination of
environmental factors that influence the rate of
growth of individual taxa and physical parameters
that prevent different communities from interacting
(Crump et al., 2004; Fuhrman et al., 2006, 2008;
Lozupone and Knight, 2007; Nemergut et al., 2011).

Of these factors, salinity, temperature and depth
appear to be the most important in distinguishing
aquatic communities over large spatial scales, in
part because many environmental factors vary
with salinity, temperature and depth (for example,
light, nutrients, pressure), which results in separa-
tion of water masses and thereby communities
(Morris et al., 2005; Fuhrman et al., 2008; Carlson
et al., 2009; Treusch et al., 2009; Fortunato and
Crump, 2011). On a global scale, Lozupone and
Knight (2007) showed that the primary determinant
of aquatic microbial community composition was
salinity, whereas Fuhrman et al. (2008) found that
changes in diversity of marine bacteria across
a latitudinal gradient were highly correlated to
temperature.

Temporal variability in marine and freshwater
microbial communities is also predictable within
individual environments. Seasonal shifts in micro-
bial community composition have been demon-
strated in marine environments, such as the
Sargasso and Baltic Seas and the English Channel,
where succession of microbial communities
correlated with changes in mixed layer depth,
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temperature and nutrient concentrations throughout
the year (Morris et al., 2005; Carlson et al., 2009;
Gilbert et al., 2009; Andersson et al., 2010). Mixing,
temperature and nutrient concentrations are impor-
tant factors influencing communities in fresh-
water systems as well (Kent et al., 2007; Shade
et al., 2008; Nelson, 2009; Berdjeb et al., 2011).
Shade et al. (2008) found distinct communities
in layers of a stratified lake, where gradients of
temperature, dissolved oxygen and nutrients were
present. Seasonal succession in both marine and
freshwater has also been shown to be repeatable
(Morris et al., 2005; Fuhrman et al., 2006; Carlson
et al., 2009; Crump et al., 2009; Nelson, 2009;
Andersson et al., 2010). Crump et al. (2009) showed
synchronous shifts in communities of six arctic
rivers strongly correlated with seasonal changes
in the environment, suggesting microbial commu-
nities may shift in predictable patterns from season
to season.

Microbial communities are highly diverse, but
the extent and the variability of this diversity in
freshwater and marine systems is uncertain. High
throughput pyrosequencing of PCR-amplified 16S
rRNA genes is beginning to resolve the deep
diversity of these systems. Because of the large
number of sequences per run (B1 million reads),
16S amplicon pyrosequencing provides better
resolution of microbial biogeographical patterns,
because the depth of diversity captured with each
sample is greater when compared with classical
community fingerprinting techniques (for example,
DGGE, T-RFLP, ARISA), which only capture the
most dominant species in an environment (Sogin
et al., 2006). Recent studies have used 16S amplicon
pyrosequencing to determine the microbial diversity
of many different environments including deep sea,
arctic, soil and estuarine communities (Sogin et al.,
2006; Galand et al., 2009; Gilbert et al., 2009; Lauber
et al., 2009; Andersson et al., 2010).

Microbial community composition and diversity
have been characterized spatially and temporally in
various environments, but rarely have they been
assessed over both spatial and seasonal scales. Using
16S amplicon pyrosequencing, we characterized
bacterioplankton communities from 300 water sam-
ples collected across the Columbia River coastal
margin over an annual cycle. The coastal waters of
the Pacific Northwest are highly productive because
of nutrient delivery from seasonal upwelling and
from the Juan de Fuca strait and Columbia River
(Hickey and Banas, 2003). The biological and
physical processes of these coastal waters are
complex because of variable winds, remote wind
forcing, shelf width and submarine canyons (Hickey
and Banas, 2003, 2008; Hickey et al., 2010), which
in turn may differentially affect the composition of
bacterioplankton communities along the Oregon and
Washington coasts (Fortunato and Crump, 2011).
The Columbia River is the second largest river in the
United States with a mean annual discharge of

7300 m3 s�1 (Hickey et al., 1998). This significant
release of freshwater has a strong impact on the
chemical, physical and biological characteristics of
the coastal ocean, including primary and secondary
production within the river plume, and differen-
tially along the Oregon and Washington coasts
(Hickey et al., 2010).

In a previous study in August 2007, the commu-
nity fingerprinting technique DGGE was used to
broadly characterize the spatial variation of micro-
bial communities in the Columbia River coastal
margin (Fortunato and Crump, 2011). Here we used
16S amplicon pyrosequencing to expand on this
earlier dataset by increasing the sample size fourfold
and characterizing communities across multiple
seasons using a more resolved spatial scale from
the river to the deep ocean. We hypothesized that
because of the large spatial scale of this study,
bacterioplankton communities would separate from
river to ocean, across salinity, depth and other
environmental gradients that vary from fresh to
marine waters. Our results indicate that spatial
variability overwhelmed seasonal trends across the
entire sample set, and temporal variability could
only be resolved within single environment types.

Methods

Water samples were collected from the Oregon and
Washington coasts, and the Columbia River and
estuary (latitude 44.652 and 47.917, longitude
�123.874 and �125.929) as part of the NSF-funded
Science and Technology Center for Coastal Margin
Observation and Prediction. Samples were collected
between 2007 and 2008 on eight cruises aboard
the R/V Wecoma and R/V Barnes. Aboard the R/V
Wecoma, water samples were collected from the
Columbia River, estuary, plume and two coastal
ocean lines (Columbia River line, Newport Hydro-
line) in August and November of 2007 and April,
June, July and September of 2008 (Figure 1). For
coastal lines, samples were taken at three depths per
station (surface, within thermocline and bottom).
Plume samples were taken at two depths (surface
and bottom) in 2007 and four depths (surface, below
plume, within thermocline and bottom) in 2008.
In the estuary, samples were collected based on
the location of the salt gradient in both the north and
south channels of the river. Samples were collected
across the salt gradient from 0 to 30. Samples were
collected using a conductivity-temperature-depth
(CTD) rosette water sampler with 10-liter Niskin
bottles. With each CTD cast, depth profiles of
salinity, temperature (1C), turbidity (NTU), oxygen
(mgl�1) and chlorophyll fluorescence were recorded.
Water samples aboard the R/V Barnes were collected
using a high-volume low-pressure pump over
salinity gradients in the estuary in August 2007
and July 2008. For all samples, surface was defined
between 1 and 2 m depth, and bottom was defined
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between 1–5 m above sediment. Data from CTD
fluorescence and temperature sensors were used
to determine exact sampling depths for water
collected at the chlorophyll maximum and within
the thermocline.

DNA samples (1–6 l per sample) were collected,
preserved and extracted as described previously
(Fortunato and Crump, 2011) using methods
adapted from Zhou et al. (1996) and Crump et al.
(2003). Extracted DNA was PCR-amplified using
primers targeting bacterial 16S ribosomal RNA
genes. Each sample was assigned a uniquely
barcoded reverse primer and amplified in four
replicate 20-ml reactions (Hamady et al., 2008).
Primers used for amplification were bacteria-specific
primers focusing on the V2 region, 27F with 454B
FLX linker (50-GCCTTGCCAGCCCGCTCAGTCAG
RGTTTGATYMTGGCTCAG-30) and 338R with 454A
linker and a unique 8-bp barcode, denoted by N in
primer sequence (50-GCCTCCCTCGCGCCATCAGN
NNNNNNCATGCWGCCWCCCGTAGGWGT-30) (modi-
fied from Hamady et al., 2008). Replicate amplifica-
tions were combined, purified and normalized using
Invitrogen SequelPrep normalization plates (Invitro-
gen, Carlsbad, CA, USA). In all, 5 ml from each
sample was combined into a single tube and sent for
pyrosequencing on a Roche-454 FLX pyrosequencer
at Engencore at the University of South Carolina
(http://engencore.sc.edu/).

Sequence data were processed using two different
methods: (1) Manual global alignment and removal
of pyrosequencing errors using ARB (Ludwig
et al., 2004) and MOTHUR software (Schloss et al.,
2009), and (2) Denoising and pairwise alignment

using the QIIME (v.1.2.0) software package
(Caporaso et al., 2010).

For the first method, raw sequences were sorted
and quality controlled (minimum length 150 bp, no
ambiguous bases) using the Ribosomal Database
Project Pyro tools (Cole et al., 2005). A reference
sequence database was created using the community
analysis program MOTHUR (Schloss et al., 2009)
consisting of unique sequences from the overall
dataset. These unique sequences were imported into
ARB and manually aligned. Extra bases commonly
added in pyrosequencing (that is, pyronoise) were
placed in gaps added to the alignment. Once the
manual alignment was completed, sequences were
trimmed to E. coli basepair positions 136–335 and
were exported using a 3% basepair frequency filter
to mask insertions, but include variable bases.
This reference dataset of manually aligned unique
sequences was then used to align the entire dataset
using MOTHUR. Our approach removed insertions
from pyrosequencing, but did not repair deletions
of bases, which were included in downstream
analyses. Operational taxonomic units (OTUs) were
determined based on 97% sequence similarity using
MOTHUR.

For the second method using QIIME, sequences
were quality controlled using the Split_Libraries.py
script with default settings (minimum length 200,
maximum length 1000, minimum mean quality
score 25, maximum ambiguous bases 0, maximum
homopolymer length 6, maximum primer mismatch
0). To account for pyronoise, the remaining
sequences were denoised using the denoiser.py
script with the ‘fast’ method and default settings.
Sequences were then clustered using the pick_
otus.py script with the uclust method (97% sequ-
ence similarity). Potentially chimeric sequences
were identified among representative sequences
from each OTU with ChimeraSlayer, and a total of
3952 sequences composing 196 OTUs were elimi-
nated from the dataset.

For both methods, relative abundance was calcu-
lated for the OTUs in each sample and used to
calculate pairwise similarities among samples using
the Bray–Curtis similarity coefficient (Legendre and
Legendre, 1998). We also calculated pairwise simi-
larities among samples using both weighted and
unweighted UNIFRAC metrics (Lozupone et al.,
2006), but the results were nearly identical to those
based on Bray–Curtis, and so are not presented.
Bray–Curtis similarity matrices were visualized
using multiple dimensional scaling (MDS) dia-
grams, a form of ordination. Analysis of Similarity
Statistics (ANOSIM) was calculated to test the
significance of differences among a priori sampl-
ing groups based on environmental parameters.
Similarity matrices, MDS diagrams and ANOSIM
statistics were carried out using PRIMER v6 for
Windows (PRIMER-E Ltd, Plymouth, UK).

Alpha diversity for samples was calculated
using MOTHUR. The number of sequences was

Figure 1 Map of the Oregon and Washington coast. Inset depicts
Columbia River estuary and plume region. Dotted line denotes
approximate location of shelf break.
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normalized before calculation by randomly selecting
the same number of sequences per sample, based
upon the sample with the least number of sequences
(n¼ 209 sequences). The taxonomy of OTUs identi-
fied was determined using the Ribosomal Database
Project Classifier tool. Taxonomic assignments with
less than 80% confidence were marked as unknown.
A total of 306 samples were analyzed overall. This
number was reduced to 300 as samples with a low
number of sequences were removed.

All sequences can be downloaded from the NCBI
Sequence Read Archive database under the acces-
sion number SRP006412. In addition, a Supplemen-
tary Table containing sample metadata conforming
to MIMARKS standards has also been provided
(Supplementary Table S1).

Results

Comparison of the two sequence analysis methods
showed that the overall patterns of microbial
community structure for this study are highly
robust, as both spatial and temporal patterns in
beta-diversity were the same for both methods. The
number of OTUs identified by the QIIME analysis
(8039) was slightly lower than that of the ARB/
MOTHUR analysis (9389), but this was because
fewer sequences passed the initial QIIME quality
control step due to different quality control para-
meters, including maximum homopolymer length
and primer mismatches. Because the patterns of
community variability were comparable, the results
presented are based on the QIIME sequence analysis
protocol.

Bacterioplankton communities separated into
seven distinct groups (ANOSIM, Po0.001): river,
estuary, plume, epipelagic, mesopelagic, shelf
bottom and slope bottom. The plume group
consisted of coastal surface samples with salinity
less than 31, the epipelagic group included coastal
surface and chlorophyll maximum samples (average
depth¼ 8 m), the mesopelagic group consisted of
coastal samples within and below the thermocline
(average depth¼ 44 m), the shelf bottom group
consisted of bottom samples with depth less than
350 m and the slope bottom group consisted of

bottom samples deeper than 850 m. Percent similar-
ity for all samples was 22.9% (±15.3%) with a range
from 0% to 74.8% similarity. Similarity values were
higher within groups than between groups (Table 1).

A MDS diagram of all 300 samples based on Bray–
Curtis similarity values (Figure 2) depicts the seven
groups based on location in the system. Groups
separate along two axes that form a V-shaped
arrangement of microbial communities. The first
axis is clearly related to salinity and the second is
related to depth. A strong correlation was shown
between Dimension 1 and salinity, with a Spear-
man’s rho value of �0.83 (Po0.001, Figure 3). A
weaker relationship was observed between Dimen-
sion 2 and sample depth (r¼�0.62, Po0.001 for
Dimension 2 axis and depth), although this relation-
ship improved when river and estuary samples were
omitted (r¼�0.76, Po0.001).

Spatial variation in communities based on sam-
pling location is readily apparent in Figure 2.
Temporal variation, however, appears to be over-
whelmed by the strong spatial gradients of salinity
and depth. Temporal variation was only detectable
when each spatial group was analyzed separately.
For river, estuary and plume samples, a seasonal
trend is apparent from river to ocean (Figure 4). In

Table 1 Percent similarity values within and between groups ±standard deviation (ANOSIM: Po0.001) as determined by Bray–Curtis
similarity coefficient

River Estuary Plume Epipelagic Mesopelagic Shelf bottom Slope bottom

River 33.6±11.2
Estuary 17.8±11.7 24.9±11.1
Plume 2.6±4.1 19.2±11.4 36.5±10.5
Epipelagic 0.1±0.2 15.4±11.2 35.0±9.2 38.4±9.9
Mesopelagic 0.4±1.5 13.1±10.0 27.3±11.1 33.4±11.8 37.2±11.5
Shelf bottom 0.2±0.3 10.3±8.6 17.9±9.5 22.8±10.9 32.2±12.1 41.8±12.6
Slope bottom 0.2±0.3 4.3±4.0 6.2±5.8 8.7±6.3 16.4±9.6 24.7±9.0 50.3±6.6

Abbreviation: ANOSIM, Analysis of Similarity Statistics.

Figure 2 Multiple dimensional scaling diagram of percent
similarities for all 300 samples. Bacterioplankton communities
were separated into seven groups based on location across salinity
and depth gradients (ANOSIM: Po0.001, Stress: 0.12).

Spatial overwhelms seasonal community patterns
CS Fortunato et al

557

The ISME Journal



the river, three communities are visible: spring,
freshet-early summer and late summer-fall. In the
estuary, seasonal clustering of communities was not
as clear, although communities did split into two
significant clusters (ANOSIM, Po0.001), an early-
year community, encompassing samples from April
to July, and a late-year community, encompassing
samples from August to November. These same
two communities, early and late, are also present
in the plume (ANOSIM, Po0.001). The seasonal
pattern in the other groups is less discernable.
There was significant seasonal variation in the
shelf bottom and epipelagic groups according to
the ANOSIM statistics, but these patterns could
not be discerned in the individual MDS diagrams
because of the large amount of variability within
each group. There was no significant temporal
pattern in the slope bottom or mesopelagic groups.

Most sequences in the dataset were related to the
phyla Proteobacteria (44.7%) and Bacteriodetes
(33.6%). Within the Proteobacteria, Alpha (21.2%),
Gamma (17.0%), Beta (2.6%) and Delta (0.4%)
were present. In the Bacteriodetes, Flavobacteria
was the largest group, with 55 915 sequences making
up 28% of the total dataset. The most abundant
OTU belonged to the SAR-11 clade and consisted
of 16 635 sequences. Overall, SAR-11 made up
11.3% of the dataset with a total of 22 454 sequences
belonging to 208 OTUs. The second largest OTU
was a Gammaproteobacteria with 13 137 sequences.
Cyanobacteria was a small percentage of the total
dataset, only 1.8%, but constituted as much as
19% of sequences in epipelagic samples collected
off the shelf. More specific taxonomic informa-
tion for each of the seven spatial groups can be
found in the Supplementary Material (Table S2,
Figure S1).

To better understand community composition, we
classified each of the 8039 OTUs in this study

based on the location in the system where they
exhibited their maximum average relative abun-
dance in pooled sequences (Figure 5). For example,
if OTU-1 was most abundant in the plume (based
on its relative abundance within each pool of
sequences from the seven groups), it was classified
as a plume OTU. Results suggest mixing of water
masses and microbial communities from estuary to
the shelf bottom. The river and slope bottom groups
appear to be end members in the system, as most of
the river and slope bottom sequences are found

Figure 3 Correlation of Dimension 1 for the 300 samples from
Figure 2 and salinity. A Spearman’s rho value of �0.83 (Po0.001)
indicates a strong relationship between salinity and bacterial
community variation.

Figure 4 Seasonal multiple dimensional scaling diagram of
river, estuary and plume. River displays three seasonal commu-
nites, which cluster into two communities, early (April–July) and
late (August–November), in the estuary and plume. Stress¼0.04,
0.15 and 0.17 for river, estuary and plume, respectively.
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only in their respective locations. The estuary
community is primarily a mix of sequences belong-
ing to river and estuarine OTUs, with some addi-
tion from the plume and epipelagic. In the plume,
however, plume sequences are mostly classified
as being from plume, epipelagic and mesopelagic
OTUs with few sequences coming from river or
estuary OTUs.

We mapped the relative abundance of the top
OTU from each of the seven spatial groups (based on
average relative abundance per group) using the
ordination of Figure 2. These bubble plots show that
the top OTUs for each group are most abundant in
samples from their location and less abundant in
neighboring locations (Supplementary Figure S2).
The top OTUs for the estuary and the river display
some seasonality, with the largest abundances
occurring in only one or two seasons (for example,
June and July 2008 for the estuary).

Alpha-diversity varied across the spatial groups
(Figure 6). The river and slope bottom groups had
the highest and third highest average diversity
(Chao1¼ 1104 and 868, respectively), indicating
the presence of many more endemic taxa within
these two environments, and showing further that
freshwater and deep ocean represent end members
in this study. As water mixes from the river to
the coastal surface ocean, diversity measurements
decrease to the lowest diversity in the epipelagic
group (Chao1¼ 380). Diversity then increased from
surface to the deep ocean, with the mesopelagic,
shelf bottom, slope bottom groups each having
a higher diversity than the previous. Diversity
measurements show that when water mixes from
fresh to salt and from deep to surface, taxa are
reduced in abundance beyond our limit of detection
and thus community composition becomes more
streamlined in the coastal surface.

Discussion

Previous studies of variability and diversity in
bacterioplankton communities are restricted to
single dimensions, focusing on long-term time
series, depth profiles or horizontal surveys across
environmental gradients (Morris et al., 2005;
Hewson et al., 2006; Lozupone and Knight, 2007;
Pommier et al., 2007; Fuhrman et al., 2008; Gilbert
et al., 2009; Treusch et al., 2009; Andersson et al.,
2010; Nemergut et al., 2011). Here we present a
dataset that compares bacterioplankton community
composition in all three of these dimensions:
spatially from river to surface ocean, by depth from
surface to deep ocean, and through time seasonally
over an annual cycle. This large-scale biogeographi-
cal analysis was enabled by the use of 16S amplicon
pyrosequencing, which assesses diversity through
DNA sequencing of hundreds of thousands of PCR-
amplified gene copies. Previous 16S amplicon
pyrosequencing studies focused on deep sampling
of small numbers of samples, allowing for character-
ization of the ‘rare biosphere’ but only at limited
spatial and temporal scales (Galand et al., 2009;
Gilbert et al., 2009; Andersson et al., 2010; Kirch-
man et al., 2010). In this study, we took a different
approach to characterizing bacterioplankton com-
munities by applying 16S amplicon pyrosequencing
to ten times the number of samples seen in previous
studies. Sequencing more samples produces fewer
sequences per sample and limits the resolution of
the rare biosphere. However, the greater number of
samples in this study (n¼ 300) led to the discovery
of robust spatial patterns from river to ocean and
seasonal shifts that may not have been observed if
fewer samples were sequenced. Based on a previous
community fingerprinting study of 71 samples from
August 2007 using DGGE, we found that commu-

Figure 5 Percentage of sequences in OTUs classified by location.
Slope bottom and river groups represent end members in the
system. Rare category represents sequences belonging to OTU that
make up to less than 0.1% of the total number of sequences from
each corresponding location.

Figure 6 Average Chao1 index per group ± standard deviation
as determined using MOTHUR (v.1.15.0). OTU number was
normalized to the sample with the smallest number of sequences
(n¼ 209 sequences).
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nities separated into just five groups defined by
location across salinity and depth gradients (For-
tunato and Crump, 2011). With the addition of over
four times the number of samples, in this study we
were able to further resolve the spatial patterns of
bacterioplankton communities into seven distinct
groups across steep salinity and depth gradients in
addition to determining temporal variability.

Salinity and depth changed significantly from the
Columbia River to the deep ocean, and these factors
appear to strongly influence the composition of
bacterioplankton communities. In contrast, tempor-
al variability in bacterioplankton communities was
relatively small, and was obscured by the spatial
variability in communities across environments in
the coastal zone. Several studies of coastal zone
bacterioplankton identify time as the principle axis
of community variability (Stepanauskas et al., 2003;
Fuhrman et al., 2006; Kan et al., 2006; Gilbert et al.,
2009), but these studies were restricted to one
environmental type (for example, estuaries or a
fixed coastal station) within which spatial varia-
bility of bacterioplankton communities was limited.
Few studies address temporal variability across
many different habitats, so it was difficult to
compare our results with other studies. However,
one study by Kirchman et al. (2010) identified a
similar pattern among 11 surface water samples in
which winter/summer differences in Arctic Ocean
bacterioplankton communities was minimal com-
pared with spatial variability across their sampling
range. Thus, although temporal variability may
occur within many marine habitats, it is clear that
structuring environmental factors (for example,
salinity, depth) dominate over seasonal changes in
determining community composition.

Spatial differentiation among samples was highly
correlated with salinity, confirming the observations
of two global meta-analyses of microbial diversity
based on 16S rRNA gene sequences (Lozupone and
Knight, 2007; Tamames et al., 2010). In one of these
studies, Lozupone and Knight (2007) found that
salinity was the primary environmental determinant
for community composition across marine, fresh-
water, sediment and soil environments, more so
than temperature, pH or other environmental
factors. In the coastal marine environment, salinity
contributes to density gradients that physically
separate water masses and their resident microbial
communities. However, the degree to which these
water masses are separated depends on the magni-
tude of mixing by river flow, tides, upwelling,
surface winds, and so on. This mixing from fresh
to marine or from surface to deep leads to the
formation of communities in mixing zones that
comprise bacterioplankton populations from
multiple water masses. For example in the Columbia
River estuary, the flushing rate exceeds the doubling
time of bacterioplankton populations, thus a
distinct free-living estuarine community is unable
to form (Crump et al., 1999). Our study confirmed

this observation, demonstrating that estuarine
bacterioplankton communities are composed of
populations from the river and the coastal ocean
(Figure 5). We also identified significant overlap in
communities across environmental gradients in the
coastal ocean including the plume, epipelagic,
mesopelagic and shelf bottom environments (Figure
5 and Supplementary Figure S2), although it is
unclear whether this is the result of mixing or the
presence of generalist organisms that thrive in
different environments.

Coastal bacterioplankton communities correlated
with depth from the surface to the deep ocean,
despite the fact that samples were collected over
multiple seasons and at sampling sites as much as
150 km apart. Salinity varies with depth, as do many
other environmental parameters including tempera-
ture, light and nutrients. We therefore are treating
depth here as a proxy for many factors that vary in
the vertical dimension. The vertical structuring of
bacterioplankton communities in the ocean has
been demonstrated in many studies and has been
linked to changes in hydrostatic pressure as well as
water mass properties (Lee and Fuhrman, 1991;
Morris et al., 2005; Blumel et al., 2007; Carlson
et al., 2009; Treusch et al., 2009). For example,
Treusch et al. (2009) found that Sargasso Sea
bacterial communities separated into surface (upper
40 m), deep chlorophyll maximum and upper meso-
pelagic communities. We also observed a separation
of the epipelagic and upper mesopelagic commu-
nities, but not between surface and chlorophyll
maximum samples, possibly because the mixed
layer depth (5–56 m) was, in general, shallower than
that of the Sargasso Sea (o50–350 m)(Carlson et al.,
2009; Treusch et al., 2009). Treusch et al. (2009)
attributed separation of these communities to stra-
tification and seasonal mixing in the upper water
column. The coastal zone of the Pacific North-
west experiences seasonal upwelling, and thus a
mixing of communities from bottom to surface. The
degree of mixing is evident in Figure 5, where the
mesopelagic group is actually a mix of populations
from the bottom and surface. In July 2008 during
strong upwelling, near-shore surface samples from
the Newport Hydroline contained a higher propor-
tion (23%) of sequences belonging to shelf bottom
and slope bottom OTUs than during other times in
2008 (5%). Also during that month, the most
abundant estuary-classified OTU was found in some
shelf bottom samples (Supplementary Figure S2),
indicating a possible exchange between these two
environments.

Temporal variability could only be resolved
within some environments. Seasonal changes were
observed in the river, estuary and plume environ-
ments. In the river, there were three separate groups,
spring, freshet-early summer and late summer-fall,
corresponding to seasonal changes in Columbia
River discharge, where maximum discharge occurs
in late spring and is minimum in late summer to
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early fall (Prahl et al., 1998). In the plume, seasonal
upwelling strongly influences temperature and
nutrient concentrations, and thereby production in
the plume (Hickey et al., 2010). Thus, plume
community composition is tightly linked to the
physical processes occurring along the coast. The
seasonality of the estuary community then can be
attributed to a combination of both river and coastal
processes. The periods of maximum and minimum
discharge of the river correspond to the two seasonal
bacterioplankton groups seen in the estuary, early
(April–July) and late (August–November). During
times of high river flow, the estuarine community is
shaped by the river and when river flow is at a
minimum, community composition is influenced
more by the plume and coastal ocean.

River and deep ocean (slope bottom group) appear
to be end members in this system in that they
contribute populations to nearby environments, but
receive little to no contributions themselves
(Figure 5). In the other five groups there was tremen-
dous overlap in community composition from
estuary to shelf bottom, suggesting dynamic ex-
change of communities through advection and
mixing. Within each group there also appeared to
be environment-specific communities, based on
maximum relative abundance (Figure 5). In the
plume, 37% of plume sequences were classified as
belonging to plume OTUs, indicating the presence
of a plume-specific community. Additionally, only
5% of plume sequences were from the river and
estuary, whereas 36% came from epipelagic and
mesopelagic OTUs, indicating the plume commu-
nity is comprised more of coastal populations than
bacteria flushed from the estuary. As mentioned
previously, the plume is highly productive because
of nutrient delivery from the river and coastal
upwelling (Hickey et al., 2010) and as primary
production increases in the plume, different epipe-
lagic taxa could increase depending on availability
and quality of organic matter. This would result in
a different combination of bacterial populations
and a clear distinction between the plume and
epipelagic communities. We speculate then that
each spatial group, from estuary to shelf bottom,
contains bacterioplankton populations that are
broadly distributed across environments, but each
group supports a different combination of these
bacteria, creating distinct communities within each
environment.

16S amplicon pyrosequencing, like any other
molecular technique, is prone to errors and it is
important to analyze sequences in a way that
accurately assesses community patterns. Analyzing
16S amplicon pyrosequencing data is difficult
because of sequencing errors termed ‘pyronoise’,
which may artificially increase the number of OTUs
observed. In Kunin et al. (2009), the authors PCR-
amplified a 300 bp region of the 16S rRNA gene from
a known cultured E. coli strain and then pyrose-
quenced it. The results returned a largely inflated

number of OTUs, showing that pyrosequencing
errors may lead to a gross overestimation of the
number of OTUs in a sample. An increase in the
number of OTUs leads to inflated alpha diversity
within samples, and greater beta diversity between
samples. We found that global alignment combined
with manual removal of pyronoise insertions was
comparable in total OTU number, alpha-diversity
and beta-diversity patterns to analysis using a
QIIME analysis pipeline that includes denoising
(denoiser.py) and pairwise sequence alignment
(uclust). We also found that removing the pyronoise
is crucial for minimizing the total number of OTUs
and overall sequencing errors. To demonstrate this,
we globally aligned our sequences using a reference
database from SILVA (Pruesse et al., 2007) and
found that although our beta-diversity patterns were
comparable, the OTU number and alpha diversity
estimates were nearly twice than that of our
previous methods (data not shown). It is important
then that pyrosequencing datasets be subjected to
rigorous quality checking and denoising, in order to
accurately assess both the overall community pat-
terns and the rare biosphere.
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