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Abstract

Background: Bovine tuberculosis is a significant veterinary and financial problem in many parts of the world. Although
many factors influence infection and progression of the disease, there is a host genetic component and dissection of this
may enlighten on the wider biology of host response to tuberculosis. However, a binary phenotype of presence/absence of
infection presents a noisy signal for genomewide association study.

Methodology/Principal Findings: We calculated a composite phenotype of genetic merit for TB susceptibility based on
disease incidence in daughters of elite sires used for artificial insemination in the Irish dairy herd. This robust measure was
compared with 44,426 SNP genotypes in the most informative 307 subjects in a genome wide association analysis. Three
SNPs in a 65 kb genomic region on BTA 22 were associated (i.e. p,1025, peaking at position 59588069, p = 4.0261026) with
tuberculosis susceptibility.

Conclusions/Significance: A genomic region on BTA 22 was suggestively associated with tuberculosis susceptibility; it
contains the taurine transporter gene SLC6A6, or TauT, which is known to function in the immune system but has not
previously been investigated for its role in tuberculosis infection.
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Introduction

Bovine tuberculosis (TB) is a serious cattle disease, caused by

infection with Mycobacterium bovis. It costs an estimated $3 billion

annually in global agricultural losses [1] and is the fourth most

important livestock disease worldwide [2]. M. bovis displays strong

geographic localisation, most likely due to a series of clonal

expansions [3]. Despite an eradication programme in operation

since 1954 the annual animal incidence of bovine tuberculosis in

Ireland remains approximately 0.5% [4]. More than 99% of the

TB cases found in Ireland and the United Kingdom are part of a

single clonal complex [5]. While most human tuberculosis is

caused by the closely related pathogen Mycobacterium tuberculosis, M.

bovis can also cause infections in humans [6]. Knowledge of

resistance to the disease in cattle may provide insights into the

global medical problem of human tuberculosis, as the immune

response of cattle to mycobacterial infection bears a closer

resemblance to that in humans than it does in mice [7].

Genetic variation in susceptibility to tuberculosis has been

observed in cattle. Early and recent studies indicated higher

resistance to TB among Bos indicus than Bos taurus [8,9]. Also,

certain pedigree lines of cattle show greater and lesser suscepti-

bility to the disease [10]. Estimates of the heritability of reponse to

M. bovis PPD (purified protein derivative) in Irish herds were up

0.276 [11] while heritability of TB susceptibility in British herds

was estimated as 0.18+/20.04 [12]. Moreover field studies are

likely to underestimate heritability due to unequal exposure to the

disease, incomplete test sensitivity and errors in both data

recording and parentage [13]. Under the more controlled

circumstances of experimental infection and slaughter to count

lesions in the lungs a heritability of 0.48+/20.096 was calculated

in farmed red deer [14].

Susceptibility to tuberculosis is a complex phenotype. Differ-

ences in the management of cattle, climate and geographical

region, age and reproductive status can all influence exposure to

infection and probability of disease progression among individuals

and herds [10]. The development of the disease is influenced by

bacterial, host and environmental factors.

Both the innate and adaptive immune systems are involved in

the host defence against tuberculosis and mycobacteria use a range

of mechanisms to evade and inhibit destruction [15,16]. Many

studies have sought to dissect genetic influences on susceptibility,

incorporating linkage studies, candidate gene association, whole

genome association studies, admixture mapping, epigenetics, copy

number variation, gene-gene interaction in the host and gene-

strain interaction between the host and mycobacterium [17].

Genome wide searches for genes linked to TB susceptibility have

been performed in mice, cattle and humans and several genes have
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been identified and validated in different experiments. For

example cytokines and chemokines and their receptors, SLC11A1,

CD209, DC-SIGN, and pattern recognition receptors including

the toll-like receptors have all been implicated in the genetic

response [15,16,18,19,20,21,22,23]. A systems biology analysis

approach to infection by Mycobacterium tuberculosis has also proved

useful in integrating genomic studies of the pathogen and host and

their interactions and metabolic pathways [24].

Control of bovine TB is dependent on testing of herds to detect

chronic and subclinical infections, and the slaughter of infected

animals. As M. bovis multiplies quite slowly and only cattle in an

advanced stage of infection or challenged with high infective doses

tend to show high circulating levels of antibodies against M. bovis

[25], the predominant immune response to M. bovis in cattle is

mounted by T lymphocytes [26].

The standard intradermal tuberculin test consists of simulta-

neous injections of bovine and avian purified protein derivative

tuberculins into the skin and comparison of the swelling caused by

an inflammatory response. Estimates of the test sensitivity range

between 72% and 100% with median values of 80% and 93.5%

for standard and severe interpretations and specificity of between

78.8% and 100% with a median of 99.5% [27]. Both the

complexity of the phenotype and imprecision in test methods

present a challenge to genome wide association studies (GWAS).

In order to increase the power of the analysis we calculated a

composite phenotype for genetic merit (estimated breeding value

using a sire model, EBV) for TB susceptibility in sires based on

disease incidence in daughters, as measured by skin test responses

to bovine and avian tuberculin PPD.

EBVs are predictions of the genetic value of an individual, based

on the phenotypes measured in their relatives. They may be used

as a summary phenotype in GWAS (e.g. [28,29]). Here, EBVs

were calculated using a sire model, incorporating relevant

environmental factors and only daughter information was used,

not information from other pedigree relationships. This gave a

powerful composite phenotype for each individual, which we used

in a GWAS with 54001 SNP genotypes. Three consecutive SNPs

on chromosome 22 give an association with TB, one within and

two near the gene SLC6A6 or TauT.

Results

1. Genotype quality assurance and population structure
analysis

Genotyping was performed on 1004 Holstein-Friesian sires used

in the Irish herd using the Illumina Bovine SNP50 BeadChip.

After two rounds of quality control 44426 markers and 986

samples passed all criteria. 307 of these samples had informative

EBVs for TB susceptibility and only these were used in analysis of

TB susceptibility.

Multi dimensional scaling analysis of an identity by state (IBS)

matrix of the samples revealed population substructure among the

Holstein-Friesian samples (Figure 1). This correction uses the

observed proportion of IBS alleles between each pair rather than

that predicted from the pedigree relationship. When objectively

divided into two clusters and the proportion of Holstein and

Friesian ancestry in each sample examined, one cluster of 777

samples had averages of 97.8% Holstein, 2.2% Friesian while the

small cluster averaged 23.2% Hostein, 76.8% Friesian. The 307

sires with EBVs showed a similar pattern, two clusters of 253 sires

(average 97.8% Holstein, 2.2% Friesian) and 54 sires (average

24% Holstein and 76% Friesian) (Figure S1). The distribution of

EBVs is not significantly different between the two clusters (Figure

S2). No outliers were identified by the MDS so all EBV

informative samples were included in the genome wide analysis.

Both phenotypes and genotypes of the 307 samples with EBVs

were adjusted for the revealed population structure.

2. Genome Wide Association Analysis
EBVs were calculated as in [11], incorporating data from

daughters present in an episode of TB in a herd incorporating at

least two infected animals and including herd/episode, month of

Figure 1. Multidimensional scaling (MDS) analysis of an Identity by State (IBS) matrix of 986 samples, divided into two clusters
which reflect differing proportions of Holstein and Friesian ancestry. Both phenotypes and genotypes were adjusted for the population
structure before analysis.
doi:10.1371/journal.pone.0030545.g001
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calving of the cow, and an interaction between year of herd-test

and month of herd-test as fixed effects.

Genome wide analysis of the association between the TB EBV

and each SNP was performed after correcting for the underlying

population structure. After principal component analysis of the

IBS matrix both EBV and genotype were normalised on the axes

of variation (principal components) and the correlation computed

between corrected phenotype and genotype to remove the effects

of similarity due to shared ancestry. After this correction the

genomic inflation factor l was 1 and the observed test statistics did

not require adjustment. The genome wide Manhattan plot

displaying the resulting p-values with respect to genomic position

is shown (Figure 2). The distribution of p-values for each SNP was

also compared to the expected distribution in a Q-Q plot where

some deviation from expectation was observed at higher

values(Figure 3).The three most strongly associated SNPs, all on

chromosome 22, were significant at a chromosome wide level with

p-values of less than the chromosome wide significance threshold

5.1961025 (Figure 4). All had high call rates of .0.99 and MAF of

between 0.07 and 0.1 (Table 1).

These SNPs on chromosome 22 at positions 59588069,

59563696 and 59628616 (BTAU4.0 assembly (ftp://ftp.hgsc.

bcm.tmc.edu/pub/data/Btaurus) had corrected p-values of

4.0261026, 5.6761026 and 561025 and explain 0.000005%,

0.000027% and 0.000003% of the phenotypic variance respec-

tively. They are in linkage disequilibrium, two strongly, (ARS-

BFGL-NGS-21481 and ARS-BFGL-NGS-60576, r2 = 0. 9184)

and the third less so (ARS-BFGL-NGS-21481 and ARS-BFGL-

NGS-102776, r2 = 0.7284, ARS-BFGL-NGS-60576 and ARS-

BFGL-NGS-102776, r2 = 0.7932). ARS-BFGL-NGS-21481 lies

within the first intron of the gene SLC6A6, Bos taurus solute carrier

family 6 (neurotransmitter transporter, taurine) member 6 or

Taurine Transporter TauT (Figure 4) and the other two SNPs lie

16.9 kb and 57.4 kb upstream of it. SNP positions are slightly

different in the UMD3 assembly but these remain contiguous and

SLC6A6 the closest gene. The three SNPs form a bell shaped peak

with another SNP that approaches significance with a p-value of

5.4861024.

When the analysis was repeated on the two sire clusters

identified in the MDS analysis of the IBS matrix two of the same

SNPs were significantly associated with the phenotype in the large

cluster and none in the small cluster, probably due to small sample

size. The top four SNPs identified in the large (predominantly

Holstein) cluster included the three chromosome 22 SNPs ARS-

BFGL-NGS-60576 (p = 1.0661025) , ARS-BFGL-NGS-21481

(p = 1.1161025) and the non-significant ARS-BFGL-NGS-

102776 (p = 1.2261024) and a SNP on chromosome 21, ARS-

BFGL-NGS-28332 (p = 1.7361025) which lies within the predict-

ed gene chr21.1379 and within 300 kb of BDKRB2, bradykinin

receptor B2. Analysis of the smaller (predominantly Friesian )

cluster alone found no SNPs with p,161024.

Discussion

TB infection is a challenging phenotype for GWAS, given that

an animal’s probability of developing the disease depends on

exposure to infection, plus many epidemiological factors, and the

tests to detect infection are imperfect. However, EBVs for each sire

summarise information on many daughters and the EBV

calculation process involved data editing to maximise the

probability that cattle used in the genetic evaluation had been

exposed to the infection. Thus, the power of the study is much

greater than would be a field study involving a similar number of

individuals as cases and controls. The same SNPs show the

strongest association in the subgroup of animals with a higher

Holstein component but not in the smaller subgroup with a

significant Friesian component. This may be due to breed

differences or the small sample size of the Friesian subgroup.

This analysis has identified a genetic region that may have a role

to play in susceptibility to bovine tuberculosis. It contains three

significant SNPs and another approaching significance. These

SNPs are located within a 65 kb region of the genome, form a bell

shaped peak suggesting a non random association, and one lies

within an intron and two less than 60 kb upstream of the gene

SLC6A6, the taurine transporter TauT. The SNPs do not reach

genome-wide Bonferroni-corrected significance but this may be

conservative. Bonferroni correction inflatesType II errors, partic-

ularly when sample size is low, because SNPs are in linkage

disequilibrium across the genome violating the assumption that all

comparisons are independent. These SNP associations are

significant at a chromosome wide level which is suggestive of a

region implicated in tuberculosis susceptibility.

The biology of the nearest gene gives some support of its

involvement. Taurine is the most abundant amino acid in

mammals. Its zwitterionic nature means it cannot pass through

lipid layers so the taurine transporter TauT can create

concentration gradients across membranes. Taurine transporter

Figure 2. Manhattan plot displaying the results (2log 10 of p-values) of the genome wide scan with respect to genomic position.
Three SNPs on chromosome 22 attain chromosome wide significance and are indicated with red dots.
doi:10.1371/journal.pone.0030545.g002
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knockout mice show severely decreased taurine levels in many

body organs and systems, along with many pathological features,

severe skeletal muscle impairment, hepatitis and blindness [30].

Knockout mice also show important immunological differences to

wild type mice, for example they are more sensitive to ultraviolet B

induced immunosuppression [31].Also, blood-stage malaria from

which wild type mice fully recover is fatal in the knockout mice

[32]. Here lower levels of taurine in the cells and blood critically

affected the stability of cells and resulted in increased parasite

loads and inflammatory responses. Tumor necrosis factor a
(TNFa), a prominent inflammatory mediator in the innate

immune system has been shown to increase taurine uptake and

TauT mRNA expression in intestinal cells [33]. When monocyte

derived macrophages are experimentally infected with Mycobacte-

rium bovis, TauT expression shows a significant downregulation

(Professor David MacHugh, personal communication).

Taurine deficiency has been linked to immune system

abnormality and its presence to prevention of inflammation in

animal models [34]. Taurine maintains phagocytic and microbi-

cidal function in aged neutrophils [35]. It is an anti-inflammatory

factor in intestinal epithelial cells and it is thought that increasing

the taurine concentration in response to TNFa may counteract the

inflammatory response caused by pro-inflammatory cytokines

produced in response to TNFa.

Taurine also has an important function in host response to

bacterial pathogens. Hypochlorous acid (HOCl) is involved in

bacterial killing but can also damage host cells. Taurine reacts with

HOCl to form taurinechloramine (TauCl), a long lived stable

oxidant, which maintains bactericidal activity but is less toxic to

host tissue than the indiscriminate HOCl . TauCl has a role in

regulation of proinflammatory mediator release by the macro-

phage as well as a bactericidal action, modulates TNF a
production and inhibits the production of nitric oxide, prosta-

glandin E2, interferons and TNF-a and the proliferation of

lymphocytes [36,37,38,39,40]. Of several chloramines examined

TauCl was unique in its combination of structural stability and

inhibition of proinflammatory cytokine production and the least

toxic to cells [41].

In sum, the suggestive genomic localisation of TB susceptibility

to the gene TauT by GWAS is supported by several strands of

evidence suggesting significant immunological roles for TauT and

its substrate taurine.

Materials and Methods

Genotype data
Genomic DNA was isolated from semen obtained from the

National Cattle Breeding Center, Enfield, Co. Meath, Ireland of

Holstein-Friesian bulls used for artificial insemination. The semen

was washed twice in phosphate buffered saline (pH 7.4), cell pellets

were harvested by centrifugation and re-suspended in 450 mL of

pre-warmed extraction buffer (10 mM Tris pH 8, 10 mM EDTA

pH 8.0, 1% SDS, 100 mM NaCl) and 15 mL of 2-Mercaptoeth-

anol was then added. Samples were incubated at 55uC for

15 minutes followed by the addition of 10 mL Proteinase K

(20 mg/ml). Lysis occurred following an overnight incubation at

60uC. DNA was extracted using the MaxwellH instrument

(Promega Corp., Madison WI) and according to the manufactur-

er’s instructions.

All animals were genotyped commercially using the Illumina

BovineSNP50 BeadChip [42], containing 54001 SNPs with an

average spacing of 51.5 kb and a median spacing of 37.3 kb based

on the BTAU4.0 assembly (ftp://ftp.hgsc.bcm.tmc.edu/pub/

data/Btaurus).

Phenotypic data
Estimated breeding values (EBV), which are estimates of genetic

merit for an animal for a given phenotype were calculated, using a

sire model, in ASREML [43] from 14,013 Irish Holstein-Friesian

cows with single intradermal comparative tuberculin test results.

Relationships among sires were ignored so that the only

contribution to a sire’s genetic merit was its daughters’ phenotypes,

thereby avoiding double counting. The data, including editing

criteria imposed, are described in detail by Bermingham et al.

[44]. In brief, data from the years 2000 to 2005 were used and

only cows present in a herd during a period of infection where at

least 2 cows showing evidence of infection (standard interpretation

of the single intradermal comparative tuberculin test) were

retained; this ensured a high risk of exposure to M. bovis in the

herd. Animals that moved into the herd during, or within 6 weeks

of the start of a period of infection were removed to maximize the

likelihood of equalized, within herd, M. bovis exposure, as it takes 3

to 6 weeks post infection for cattle to develop a positive reaction to

the SICTT [27].

Fixed effects included in the sire model for the estimation of

breeding values were as described by in [11] and consisted of herd

- episode, month of calving of the cow, and an interaction between

year of herd-test and month of herd-test. The pedigree of each sire

was traced back at least four generations and included as a random

effect in the model.

The 307 sires used had EBVs calculated using data from

between 1 and 1046 daughters, with a mean number of 34,median

of 9 and mode of 4 daughters.

Quality control
Genotype quality control was performed using the ‘‘check.mar-

ker’’ function of the R statistical environment package GenABEL

[45]. SNPs with more than 5% missing data, a minor allele

frequency of less than 0. 27% or significantly out of Hardy

Figure 3. Q-Q plot of observed p-values against expected p
values.
doi:10.1371/journal.pone.0030545.g003
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Weinberg Equilibrium (HWE) (FDR = 0.2) or with a sex

chromosome genotype incompatible with the sample’s sex were

discarded, as were samples with more than 5% missing data

or more than 95% identity by state (IBS) with another

sample.

In the first round 1567 markers were excluded because of

extremely call rate ,0. 95 , 5840 markers were excluded as having

low (,0.27%) minor allele frequency. 121 X-linked markers were

likely to be autosomal (odds .1000), 1455 X/Y/mtDNA

impossible heterozygotes and female Ys were set as missing. One

sample was excluded because of a low (,95%) call rate and one

was excluded because of IBS. = 0.95. 75 male were likely to be

female (odds .1000). In the second round 13 markers were

excluded due to a low call rate, 5302 markers were excluded

because they were out of HWE. 1911 heterozygous X-linked male

genotypes were found, 756 X/Y/mtDNA impossible heterozy-

gotes and female Ys were set as missing and 26 male were likely to

be female (odds .1000). Two samples were excluded due to low

call rates(,95%). Due to the way quality control is performed

sequentially the sum of all categories excluded is greater than the

Figure 4. Scatter plot of the p values on chromosome 22 and a 1 Mb region surrounding the three most significant SNPs. Significance
(2log 10 of p-values) is plotted against position along the chromosome and the three SNPs above the threshold of chromosome wide significance
(the red line) are indicated in red. The 1 Mb region surrounding these SNPs is shown in more detail and superimposed on the genes found in the
region. One of the SNPs lies within the first intron of the gene SLC6A6 and the other two are upstream (plot generated using build Btau4.2 on
animalgenome.org).
doi:10.1371/journal.pone.0030545.g004
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number of SNPs or samples excluded, some were excluded for

multiple reasons.

Following editing 44426 SNPs from 986 animals with both

genotype and phenotypic data remained for inclusion in the

association analysis.

Association analysis
Multi dimensional scaling (MDS) analysis of an identity by state

(IBS) matrix of the samples was used to reveal population

substructure. Samples were objectively divided into two clusters

using the k-means method [46] and the proportions of Holstein

and Friesian for the samples in each cluster quantified using

theHolstein and Friesian component in the Holstein-Friesian

breed society database and is based on pedigree information stored

(at least three generations on each animal)

The genomic kinship matrix was used to derive axes of genetic

variation (principal components) and then both the EBV and

genotypes were adjusted onto these axes [47] using the egscore

command of GenABEL [45]. The association between the

breeding value and each SNP was analysed using a linear model

with the SNP genotype and the axes of variation as predictors. The

corrected genotypes were defined as the residuals from regression

of the genotypes on the orthogonal axes of variation before

correlation between phenotype and genotype was corrected.

A genome wide Bonferroni correction may result in high false

negatives because it ignores correlations between markers and

leads to an overly conservative correction, a problem which

intensifies as the marker density increases [48]. Thus instead of a

genome wide Bonferroni correction of p,1.2161026 (0.05/the

total number of SNPs) associations were tested at the chromo-

some-wide significance level (p,0.05/the number of SNPs on the

chromosome) as in [49]. The 5% chromosome wide significance

threshold ranged from 1.9161025 on chromosome one to

6.5861025 on chromosome twenty eight.

The proportion of variance explained by SNPs was estimated

using the formula V = 2pqa2 where p and q are the frequencies of

the major and minor alleles and a is the allelic substitution effect

[50].

Supporting Information

Figure S1 The distribution of samples with EBVs within
the Multidimensional Scaling (MDS) plot created from
an Identical by State matrix of all samples. If only the

samples with EBVs are included in the MDS analysis and then the

samples are objectively divided into two clusters one contains 253

sires (average 97.8% Holstein, 2.2% Friesian) and 54 sires (average

24% Holstein and 76% Friesian).

(DOCX)

Figure S2 EBV distributions in all samples and in the
two clusters identified by dividing an MDS analysis of an
Identical by State matrix. None of the pairwise comparisons

of distributions were significantly different (Welch Two Sample t-

test. All samples v.s Cluster one, t = 20.24 p = 0.81. All samples v.s

Cluster two, t = 20.5 p = 0.61. Cluster one v.s Cluster two

t = 20.31 p = 0.76).

(DOCX)
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