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Abstract

In this paper we investigate how metabolic network structure affects any coordination between transcript and metabolite
profiles. To achieve this goal we conduct two complementary analyses focused on the metabolic response to stress. First,
we investigate the general size of any relationship between metabolic network gene expression and metabolite profiles. We
find that strongly correlated transcript-metabolite profiles are sustained over surprisingly long network distances away from
any target metabolite. Secondly, we employ a novel pathway mining method to investigate the structure of this transcript-
metabolite relationship. The objective of this method is to identify a minimum set of metabolites which are the target of
significantly correlated gene expression pathways. The results reveal that in general, a global regulation signature targeting
a small number of metabolites is responsible for a large scale metabolic response. However, our method also reveals
pathway specific effects that can degrade this global regulation signature and complicates the observed coordination
between transcript-metabolite profiles.
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Introduction

The dynamics of metabolic networks are the product of

complex interactions between genes, proteins and enzymes and

metabolites. Since the introduction of DNA microarray technol-

ogy, the expression signatures of metabolic networks have been

extensively analyzed. An underlying assumption of these studies is

that fluctuations in gene expression levels are mirrored in the

protein and metabolite signals. Although it stands to reason that

some relationship exists between metabolic gene expression and

other observed metabolic responses, the inherent complexity of

metabolism makes the validity of this assumption difficult to assess.

Furthermore, it has previously been well established that the

correlations between simple gene expression and protein or

metabolic flux measurements are unreliable [1,2]. Recently, many

researchers have sought to elucidate these relationships through

combined metabolomic and transcriptomic analyses. These

combined analyses use techniques such as Gas Chromatography

Mass Spectrometry (GC-MS) and microarrays to simultaneously

measure changes in metabolite concentrations and gene expres-

sion [3,4]. The integration of these two data sources provides the

opportunity to more thoroughly understand how changes in gene

expression are converted into metabolic responses.

The results of these combined studies have revealed that

transcript and metabolite interaction is often quite complex.

Intermediate steps between transcription and metabolite produc-

tion such as post-translational modification [5], regulation or

buffering expression by metabolite levels [6] have been found to

seriously affect any simple relationship. However, studies have

shown simple coordination between metabolite and expression

exists although it is either locally restricted [7], around specific

reporter reactions [8], or highly specific to environmental stress

conditions [4,9].

It is clear that intermediate steps such as post-translational

modification and buffering have a pronounced effect on the

transcriptome-metabolome relationship. However, the extent to

which the network structure of metabolism impacts this relation-

ship is unclear. It is known that metabolic gene expression is highly

coordinated along pathways [10,11] and that this coordinated

structure is significantly rewired in response to an external stress.

Clearly this regulated coordination of gene expression along

metabolic pathways is intended to effect the protein and finally

metabolite profiles. In this paper we investigate how the network

structure effects the correlation between gene expression and

metabolite profiles. To address this question we develop models to

uncover the gene pathways with the most coordinated expression

profiles and then use the expression profiles along these pathways

to identify the potential target metabolites.

There are two main theories regarding how metabolic networks

function and respond to external stimulus; robustness and

modularity. Robustness can be observed as metabolic networks

are surprisingly resistant to genetic [12] or metabolomic [13]

perturbations. Modularity attempts to explain this observed

robustness through densely connected community structure

centering around critical genes and metabolites. This community

structure provides backup pathways that are activated in response

to an induced perturbation [14]. These backup pathways possess a

branched structure connecting the densely connected subgraphs or
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modules [10,15]. Such a branched structured graph connecting

dense modules is the basis for the observation of modularity within

metabolic networks [15,16]. Metabolic network modularity

implies that global regulation exists which activates specific

modules of genes to produce a required metabolic process.

Modularity places important metabolites in the center of these

branched clusters [13,17] and then assumes that within these

modules a high level of coordinated gene expression exists

surrounding these important metabolites. Therefore, the task of

identifying these modules is synonymous to identifying the

important metabolites which are required to reproduce specific

metabolic processes.

Identifying the important metabolite which are driving the

function of metabolic networks therefore also gives insights into

the modularity and robustness properties of metabolic networks.

To achieve this goal, network structural analysis methods such as

network expansion models seek to identify the input metabolites

which if provided as input can be used to synthesize all network

elements [18]. Network expansion identifies these input metabo-

lites by defining the scope of a set of input (seed) metabolites. The

scope of a set of seed compounds is defined to be the set

metabolites which can be produced using only the seed

compounds as input into the network. The network expansion

model determines which metabolites are included in the scope by

imposing the known stoichiometric rules of the network. The

imposition of stoichiometric rules on the scope definition means

that a compound can only be added to the scope if all required

substrates have already been included within the scope. The

network expansion scope is found by a greedy search through the

metabolic network which spans out from the seed compounds

iteratively adds the newly produced compounds that satisfy the

required stoichiometric constraints.

The concept of metabolite reachability through the pathways of

a metabolic network is fundamental to the network expansion

model. The network expansion model defines metabolite reach-

ability as those compounds which can be reached from the seed

compounds without violating the stoichiometric constraints of the

network. However, this assumption ignores the regulatory

dynamics present within underlying gene expression. Another

approach to define the set of reachable metabolites is to consider

the correlation between the expression of neighboring genes within

the network. The modeling of correlated neighboring expression

defines metabolite reachability as those compounds which can be

reached by a pathway of connected genes with highly coordinated

expression profiles. Shifting the definition of metabolite reach-

ability from pathways of stoichiometry consistency to pathways of

coordinated gene expression leads to efficient algorithms for

identifying the most probable paths between two metabolites [11].

This paper is separated into two complementary analyses

focusing on the metabolomic and transcriptomic stress responses

of the Escherichia coli K-12 MG1655 metabolic network over four

different stress conditions. Firstly, we investigate the overall

structure of metabolic gene expression and metabolite profiles.

This preliminary investigation shows that in general transcript-

metabolite correlation is sustained over a surprisingly long network

distance away from any given target metabolite. This result

highlights the requirement for a broader analysis involving longer

pathways of coordinated expression rather than focusing on the

immediately connected reactions of any given metabolite.

Secondly we seek to further understanding of these results by

proposing variant of the network expansion approach which seeks

to identify the important metabolites which are driving the

function of the network by extracting pathways of genes within

significantly coordinated expression profiles.

In the past, extracting pathways of maximum coordinated

expression has been known to be biased towards shorter path

lengths [11,19]. In this paper we overcome this path length bias

through the use of a significance test to determine if a path

between any two metabolites is non-random. We then use this

pathway significance test to define the sustainable scope of each

metabolite to be the list of all metabolites which can be reached by

a significantly correlated expression path through the network.

From this list of extracted metabolite scopes we identify the

important metabolites within the network through an integer

programing solution to the minimum set cover problem. The

result is minimum list of metabolite scopes required to completely

encompass all significantly correlated paths within the network.

Additional information obtained in the minimum set analysis are

hub genes which mark local centers coordinated expression that

are used by many paths in metabolite scopes.

Finally we compare the profiles of these hub genes to the

metabolite profiles within the minimum set. This comparison

confirms our initial hypothesis that broad coordination between

transcript and metabolite profiles exists and is sustained over long

network distances. More specifically, our overall result shows that

global regulatory stress responses are focused on controlling the

profiles of a small number of critical metabolites that are dictating

the entire network response. However, for more complex stress

conditions we observe a reduction in the strength of the global

regulatory signal in favor of a pathway specific regulatory

response.

Results and Discussion

Metabolite and Network Distance Relationship
We first perform a preliminary investigation to identify the

general network structure of the correlation between metabolite

concentration and gene expression. Within each stress condition,

for every metabolite which we have mapped to the network data,

we treat this metabolite as the target metabolite. We then correlate

the target metabolite concentration with the expression of all

unique genes that have a direct path to produce the target

metabolite at increasing network distances. This procedure is

shown diagrammatically in Figure 1a. As many genes occur in

many positions within the metabolic network we only consider the

first instance of each gene, and remove any future references of

that gene at longer network distances. Additionally to test if the

resulting correlations are significant we compare against a

reference distribution of correlation coefficients computed on

1000 random permutations of the metabolite concentrations with

non-permuted gene expression values.

In Figure 1c we present the maximum, mean and minimum

correlations observed between metabolite concentration and gene

expression at each network distance. The shaded area in Figure 1c

represents the range (minimum and maximum correlation

coefficients) of the random permuted reference distribution. It is

clear that the maximum and minimum correlations computed on

the real data cannot be by chance as they lie well outside of the

reference distribution. The results for each metabolite and stress

condition are presented separately in the supporting Figure S1.

The overall plot on the left side of Figure 1c is the additional

average over each stress condition. An obvious feature of Figure 1c

is that the maximum and minimum correlations are sustained over

a longer of network distance of 3 to 7 reactions. The correlation

values observed at these distances is relatively strong ranging

between 0.7 to 0.9. Additionally, this result suggests that there may

be strong path specificity in positively correlated transcript and

metabolite concentration profiles as the mean correlation is

Coordinated Expression & Metabolite Neighborhoods
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approximately 0 and the minimum correlation mirrors the

maximum correlation but with a negative sign.

The strong correlations observed in Figure 1c are similar

strength to those found by [4] and [9]. Additionally our result

also explains why inconsistent correlations between transcript and

metabolite concentration were obtained when only immediately

connected reactions are considered [7], or appear weak if the

network structure is not taken into account [5]. In fact, such long

distances are also indicative of a very general network response to

external stress and suggest that hub or reporter reactions could be

strongly controlling metabolite responses [8]. In Figure 1b we

display the average number of metabolites that can be reached

within each network distance and show that within a distance of 3

to 7 edges between 150 to 900 metabolites can be reached. This

observation of long coordinated paths suggests that the effect of

global regulation of a central module, rather than the

immediately connected reaction to the target metabolite, is

significantly affecting the specific metabolite profiles being

produced. The activation of such a large sub-section of the

metabolic network can be seen to be in agreement with the

concept of modularity as it implies that many entire subnetworks

show coordinated activation in response to stress. Additionally

this result also implies that this global regulatory stress response is

a large and non-specific effect which is activating multiple

pathways to key metabolites, therefore reinforcing the robustness

of the response.

Minimum Set Extraction
The overall analysis to identify the minimum sets and analyze its

structure for each stress condition has the following steps:

Figure 1. Overall view of the metabolite concentration and gene expression correlation at increasing network distances. In Figure 1c
the numbers in brackets on the horizontal axis indicate the average number of unique genes at each network distance.
doi:10.1371/journal.pone.0031345.g001
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1. For each metabolite ci, identify the set of all reachable

compounds to define the scope, Si using our proposed path

extraction algorithm in the Materials and Methods section.

2. Identify the minimum set of compound scopes M, over all

scopes Si, by solving the integer programming problem defined

in the Materials and Methods section.

3. Collapse all paths included within the minimum set,M, down

into a single network of traversed reactions and weight each

edge by the number of paths within which it is observed within

M. Then construct a maximum spanning tree of most

commonly traversed reaction paths and extract the top 10

most connected hub reactions.

4. Correlate the gene expression of all hub reactions with the

concentration profiles of the metabolites within the minimum

set.

As this procedure contains many separate steps, at each stage we

assess the validity of the current results. The validity of each

pathway is assessed by its p-value within a distribution of all

network pathways computed by Metropolis sampling [20].

However, extracting the scope of a single compound requires

many 1000’s of p-values to be computed. Therefore to minimize

the false positive rate a Bonferroni correction was applied to a base

significance threshold of 0:01 and corrects for the number of

metabolites in the network.

Once all scopes have been extracted the size of each scope and

length of all paths are compared to the expected scope sizes

computed from our preliminary experiments in Figure S2. In the

scope size distribution (supporting Figure S2) for each stress

condition is shown to be highly positively skewed with larger

scopes being more unlikely. The largest extracted scope size is

found to be 954 for lactose, 950 for heat stress, 929 for cold stress

and 843 for oxidative stress. These maximum scope sizes are

consistent with our preliminary results on the transcript-metabolite

network distance relationship which suggested scope sizes of

approximately 850–900. The path length histograms (supporting

Figure S2) show the average path length over all scopes and stress

conditions is approximately 10 reactions and the distributions have

a reasonably broad variance. This rather long average path length

and broad variance confirms that extracting the most significant

path is successfully removing the short path length bias known to

exist in standard shortest path algorithms. Although the average

path length is above the estimate of 7 to 8 correlated reactions

(Figure 1b), it is not entirely unexpected given strongly coordinated

expression profiles inherent in metabolic networks [10,11].

Once all scopes for each stress condition have been extracted

the minimum sets are computed. The results of the minimum set

results are presented in Table 1. Table 1 reveals that the number

of metabolite scopes included within the minimum sets is quite

small, at most 27 scopes. A surprising result from Table 1 is that

the number of compounds and reactions included are consistent

over all stress conditions. Within each stress condition approxi-

mately 1000 compounds can be reached using approximately

1200 reactions, which equates to over half of the entire metabolic

network.

Prompted by the large number of reactions included in the

resulting minimum sets an additional validation was performed

using the enrichment score from gene set enrichment analysis

(GSEA) [21]. An enrichment test is performed to determine if the

edges selected over all paths within the minimum sets are

significantly positively correlated given all edges within the

network. The results of this validation reveals each scope to

comprise of a significantly correlated subnetwork with enrichment

scores of w0:6 and the maximum enrichment scores over 1000

permuted gene sets to be v0:3. This result validates each

minimum set to contain paths of significantly positively correlated

edges and reveals that at over many stress conditions Escherichia coli

is highly coordinating the expression of over 50% of its metabolic

network.

However, it is expected that much of this coordination will be

part of normal cell functioning and not in response to the external

stress. The effect of the external stress will be to activate or

deactivate specific pathways which will rewire the correlation

structure of each network, but as Table 1 shows the rewiring is

unlikely to alter the number of reachable compounds or the

number of reactions used. This finding agrees with the

observations of [7] which show that changes in transcription or

enzyme abundance can change individual reaction rates but

overall do not affect the homeostasis of the global metabolic

network. As a result we seek to analyze the structure of each re-

wired network by identifying hub genes within frequently

traversed paths through the network and correlate these hub

genes with the metabolite profiles within the minimum set.

Minimum Set Analysis
In Figure 2 we visualize the structure of each minimum set, and

the combined view over all minimum sets. In Figure 2 green circles

are minimum set metabolites and orange squares are hub

reactions. Small red circles are metabolites which are produced

by a significant path ending at that metabolite. Blue nodes are

metabolites which are included in a path within the minimum set,

but have no significant path ending at that compound. Gray nodes

are not included in any path.

The relative sizes of the nodes in Figure 2 indicate the number

of stress conditions whose minimum sets include that node. The

stress conditions of each network are heavily overlapping and

share many common reaction hubs which form a large central

sub-graph within the metabolic network. Although this large

amount of overlap is expected as each minimum set includes over

half compounds and reactions of the entire network (Table 1) the

sheer size of the central cluster and the number of common hubs

illustrates the strong interconnectivity of metabolism. This

interconnectivity reinforces the observation that metabolic net-

works are very robust as the density of these bipartite graphs is

proportional to the number of paths which connect the critical

metabolites.

A more detailed and annotated view of the minimum sets in

form of a bipartite graph is available in the supporting Figure S3.

The bipartite graphs are constructed using the minimum set

metabolites as the first node set and the common hub reactions

included within each minimum set scope as the second node set.

The majority of common reaction hubs across each stress

condition, aspartate transaminase, glutamine synthetase, pyruvate

formate lyase, glutamate dehydrogenase (NADP), glutamine-

fructose-6-phosphate transaminase, acetylornithine transaminase,

phosphoenolpyruvate synthase, nitrate reductase, cysteine syn-

thase, succinate:fumarate antiporter, methionine adenosyltransfer-

ase, are directly connected to the centrally located amino acid

metabolism pathway of alanine, aspartate, asparagine, glutamate

metabolism [22]. The metabolism of alanine, aspartate, aspara-

gine, glutamate can be regulated in a large part by rpoS (sS )

[23–25] and H-NS [26,27] which are known to be general stress

response factors of Escherichia coli. The central location and strong

stress responsive regulation of alanine, aspartate, asparagine,

glutamate metabolism suggests that this pathway is a hub pathway

for critical source metabolites required for Escherichia coli stress

response. Therefore, the regulation profiles of the genes along this

pathway strongly determine the response profiles of the down-

Coordinated Expression & Metabolite Neighborhoods
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Table 1. Minimum set cover solution summary statistics for each stress condition.

Stress Condition
Minimum Set
Optimal Size

Number of
Solutions

Combined
Minimum Set Size

Number of Covered
Compounds

Number of Covered
Reactions

coldstress 25 4 27 1053 1217

heatstress 20 1 20 1022 1182

lactose 18 1 18 1053 1240

oxidativestress 22 6 24 1012 1159

doi:10.1371/journal.pone.0031345.t001

Figure 2. Minimum set network visualization for all stress conditions combined, and for each separately. Green circles are minimum set
metabolites and orange squares are hub reactions. The node size reflects how many stress conditions each node is observed. Small red circles and
orange squares are metabolites which can be produced by a significant path and reactions respectively. Blue nodes are metabolites which are
included in a path included within the minimum set, but have no significant path terminating at that metabolites. Gray nodes are not included in any
path.
doi:10.1371/journal.pone.0031345.g002
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stream connected pathways. Furthermore, this result suggests that

tight regulation of a few centrally located metabolites can be

sufficient to create an entire network stress response.

To validate our assertion that expression regulation of the

alanine, aspartate, asparagine, glutamate metabolism are mirrored

in the metabolite profiles we compare their profiles in Figure 3. In

Figure 3 in the left most column, for each stress condition, we

cluster the gene expression profiles of the identified hub reactions

using k-means set to 9 clusters. The central column in Figure 3

shows the metabolite profiles over time of the minimum set

metabolites or hub reaction enzyme targets. The profiles of each

metabolite are then correlated with the mean expression profile of

each cluster and presented in the correlation heat map in the right

column of Figure 3. Figure 3 shows that cold and heat stress have a

very clear gene expression signature which is consistently

correlated with the metabolite profiles. However, for lactose and

oxidative stress the gene expression profiles are more complex and

the correlation signature with the metabolite profiles is less

consistent. Additionally what is immediately obvious is that the

expression profiles are generally smoother and clearer than the

metabolite profiles. The pronounced correlations surrounding

amino acid metabolism and the more specific metabolite response

compared to the transcript responses are observations which agree

with those of [4].

For cold and heat stress, the transcript response is a sudden

increase or decrease in expression levels. This profile jump is

mirrored by some metabolites such as alanine, glutamate,

asparagine, and succinate in cold stress and glycerol, ribose-5P,

shikimate, methionione in heat stress. However it is observed,

particularly in heat stress, the metabolites may respond to the

jump in transcript levels by a smooth increase or decrease in

concentration. Interestingly the clearest transcript/metabolite

profile agreements are generally found within the explicit amino

acid biosynthesis minimum set compounds. However as the

distance from the amino acid biosynthesis pathways increases the

profiles become more divergent e.g. glycine, glycerol, cysteine,

serine. This indicates that although in general amino acid

transcript and metabolite profiles are tightly coupled in Escherichia

coli’s cold and heat stress response, as the distance from this central

pathway increases, so does the number of metabolites profiles that

deviate from the jump profile. However these deviations occur at a

later time in the experiment indicating that they are either due to

pathway specific regulation or to a network latency from the stress

response centered on amino acid biosynthesis e.g. glycine, glycerol,

glucose-6P, trehalose and cysteine in coldstress and glycine, valine,

malic acid, tyrosine and ornithine in heatstress. This agrees with

the observation that protein degradation is increased in response

to stress [28] resulting in the increased availability of amino acids

which are then used to produce new proteins required for stress

adaptation [29].

The transcript-metabolite correlation strength clearly degrades

for lactose and oxidative stress responses indicating a significantly

more complex response for these conditions. The weakening

correlation signal for these two stress conditions is likely due to the

effect of the additional metal ion enzyme cofactors that are

included with the minimum set metabolites for these stress

conditions (supporting Figure S3). The requirement for specific

enzyme cofactors in addition to central activation of alanine,

aspartate, asparagine, glutamate metabolism by rpoS and H-NS in

the response to lactose and oxidative stresses indicates that for

these conditions Escherichia coli requires additional pathway specific

regulation. The shift from glucose as a major carbon source to

lactose requires the ability to metabolize b-galactosidase which is

known to require Zn2z ions cofactors and is correlated with Cu,

Mn, Ni and Co ions abundance [30–33]. Additionally iron and

nickel are known to be cofactors in catalyzing the superoxide

removal under oxidative stress [34] and in catalyzing reactions on

the pentose phosphate pathway known for its detoxification

response to oxidative stress [35,36]. The effect of this more specific

stress response is the drop in strength of the transcript-metabolite

correlation signal. Although in Figure 3 strong correlations are still

observed with central alanine, aspartate, asparagine, glutamate

metabolites, more distant metabolites from this central pathway

are effected by pathway specific regulatory responses and therefore

show weaker transcript-metabolite correlations.

Overall we have shown that the concepts of metabolic network

modularity and robustness can be reflected in the metabolite

profiles. Furthermore strong correlations can exist between

metabolite and gene expression, however the effect of the full

metabolic network must be considered as these correlations occur

at long network distances and are a result of global network

regulation. This global regulation can be clearly seen in the strong

transcript-metabolite correlation structure for cold and heat stress

(Figure 3). However, for stress conditions such as a carbon source

shift from glucose to lactose or oxidative stress the transcript-

metabolite correlation profiles are significantly weaker. This is

likely due to the effect of pathway specific regulation, such as post-

transcriptional modification or the limitation of specific metabo-

lites. This is hinted by the inclusion of metal ion cofactors within

the cover sets of these conditions. These cofactors catalyze

additional reactions which are specifically required to respond to

these stress conditions. The effect of these enzymes is altering the

metabolite concentrations through specific reaction kinetics and

therefore cannot be reflected in the transcriptional response.

Materials and Methods

Network and Data Processing
The specific network reconstruction used is iAF1260 for

Escherichia coli K-12 MG1655 [37] and was sourced from the

BiGG database [38]. This network contains 1972 unique

metabolic compound entries and 1944 reaction entries. Before

any pathway analysis the network was preprocessed into a network

of connected reactions. The preprocessing connects neighboring

reactions by their substrate and product compound dependencies.

Edge weights w are then assigned between each connected

reaction pair to be the maximum Pearson correlation between the

expression profiles computed for all pairwise gene combinations

from the gene sets of each connected reaction.

However constructing a network based solely upon substrate-

compound dependencies has two consequences. Firstly it collapses

the complex substrate-product compound dependencies into

simple linear pathways where an edge is drawn between every

substrate and compound pair of each reaction. This is simplifi-

cation is a key difference between our approach and the original

network expansion method [18] and is required to implement our

approach of efficiently extracting pathways of significantly

coordinated expression. This shifts the network expansion scope

definition from the original set of feasible metabolites that can be

produced from a collection of seed compounds and constrained by

the network stoichiometry to the set of metabolites which are

encompassed by the significantly coordinated expression signature

which spans out from the set of seed compounds. Secondly the

simplification creates huge numbers of redundant edges due to

ubiquitous reaction cofactors and currency compounds, such as

ATP, which are connected to most metabolites but do not create

biologically interesting pathways. To solve the redundancy issue

after conversion to the reaction network we remove all edges

Coordinated Expression & Metabolite Neighborhoods
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considering the following compounds, fHz, CoA, H2O, CO2,

Orthophosphate, ATP, ADP, AMP, FAD, FADH2, GDP,GTP, NAD,

NADH, NADP, NADPH, UTPg. This list of compounds edges to be

removed was generated to agree with the Pathfinder tool of

Reactome [39,40]. Finally at the end of this network pre-

processing the resultant network has 9334 edges connecting

neighboring reactions.

The dataset used is a combination dataset of time course gene

expression and metabolite profiles for Escherichia coli K-12

MG1655 [4]. This study was performed on 4 stress and 1 control

conditions; oxidative stress (oxidativestress), Glucose-Lactose

Diauxic Shift (lactose), Heat Stress (heatstress), cold stress

(coldstress) and the control condition (control). The expression

dataset was downloaded from GEO (GSE20305) [41] and the raw

metabolite dataset was sourced from the supplementary informa-

tion website of the original paper. The metabolite dataset identifies

time course data for 188 metabolites (95 could be positively

identified, 58 chemically classified and 35 with an unknown

structure). The location of specific metabolites stored in the raw

data within metabolic network was done by a manual search

matching the names of the metabolites found within the

metabolite profiles data file with the SBML compound names

found within the metabolic network. This search was able to

identify 39 unambiguous metabolites that were contained within

both the experimental data and the metabolic network. The

microarray data was log2 normalized and the metabolite data was

normalized according to the instructions within the supplementary

section of [4]. The experimental times for the microarray and

metabolite data were aligned which results in 8 times for cold

stress, control and heat stress, 6 times for lactose and 12 times for

oxidative stress, where each time involves three biological

replicates.

Scope Extraction
We define a path beginning at compound s and terminating at

compound t as an ordered sequence of reactions required to

synthesize all required intermediate compounds and the final

target compound t. Given a reaction network structure a path has

the form specified in (1),

p~s?Rk

(ck ,ckz1,ckz2)

wRk?Rkz1

Rkz1 � � �?t ð1Þ

where the entire path is denoted by p, ½Rk,Rkz1� are path

reactions, ck are the substrate and product compounds of

½Rk,Rkz1� , w are the edge weights and s and t are pseudo-

nodes added into the network to indicate the start and end vertices

respectively of each path to be extracted. The edge weights,

wRk ,Rkz1
, in (1) are the computed maximum correlation

coefficients between the expression of all pair-wise combination

of the genes within Rk, and Rkz1.

We define the scope, Si, of a compound ci to be the list of all

compounds which are connected to ci by a significantly highly

correlated path. The scope extraction is done through a brute

force search which simply enumerates through all pairs of specified

start, s, and end, t, compounds. For example, given pair of

compounds, s~ci and t~cj ; s is connected to all reactions where

ci is a substrate and t is connected to all reactions where cj is a

product. As many compounds occur in multiple positions within a

metabolic network and have multiple substrate and product

dependencies the pseudo-nodes s and t are usually reactions sets.

For the case where s and t correspond to multiple reactions, to

maintain computational efficiency we only include shortest

significant path that spans between ci and cj within the scope.

Significant Path Ranking
To test if path is comprised of significantly coordinated

expression profiles we first define the score of each path p to be

sp (2),

sp~{
Xjpj{1

k~1

log PECDF wƒwRk?Rkz1

� �� �
ð2Þ

where jpj is the path length and PECDF is the empirical cumulative

distribution probability of an edge weight wRk?Rkz1
given all

other edge weights within the network. If we then assume the

edges along a given path are randomly and independently drawn

from the network edge weight distribution, the p-value of the path

can be computed using (3) [11].

P(Y§sp)~1{e{sp
Xjpj{2

k~0

(sp)k

k!
ð3Þ

Equation (3) simply computes the probability randomly and

independently picking the path edge weights given all other

weights in the network.

From [11,19] we know that ranking only by (2) is biased towards

shorter path lengths. However, ranking by p-value corrects for the

path length dependency by ensuring the extracted path is non-

random. Our proposed approach is an extension on the standard

shortest path algorithms where we use the observation that if we

hold the path length (in terms of edges) constant the task finding

the path of minimum p-value is equivalent to maximizing the path

score function (2). This suggests an algorithm which extracts the

best path in terms of score between two vertices for all lengths,

would also yield an algorithm to find the path of minimum p-

value. To extract a list of all best paths for all lengths between two

vertices we use a dynamic programming algorithm. Once this list

has been extracted we can readily find the most significant path

over all lengths through direct evaluation of (3).

However our p-value computation assumes that each edge

weight is independently drawn, which given the known network

structure is unlikely to hold. To address these concerns we employ

a Metropolis sampling algorithm [20]. The resulting Metropolis

algorithm randomly samples candidate paths p� of all lengths 0 to

jpj from the weighted network. The probability p(p�), of each

randomly sampled path p is stored and used as a reference

distribution to compute the p-value of each shortest path identified

by the algorithm. In the supporting methods (Methods S1) we

show that computing the p-value from this reference distribution

overcomes the randomly and independently drawn network edge

assumption within (3). Further details of this sampling and

Figure 3. (left column) Clustered gene expression profiles (z-scaled) for each hub reaction; (center column) Metabolite profiles (z-scaled) for all
metabolites in the minimum sets; (right column) A correlation heat map correlating the mean hub expression cluster profiles with each metabolite
profile, green indicates strong positive correlation and red indicates strong negative correlation.
doi:10.1371/journal.pone.0031345.g003

Coordinated Expression & Metabolite Neighborhoods

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e31345



pathway extraction methods are included in the supplementary

methods.

Metabolite Set Cover Analysis
Using our path ranking method we extract the scope of all

compounds within the weighted metabolic network. This proce-

dure will return, for each compound ci [ C we define a scope

Si [ S where C is the set of all compounds ci, and S is the set of all

compound scopes, Si. However set of all scopes in S are likely to

contain large amounts of overlap which correspond to highly

coordinated sections of the metabolic network. The task now is to

identify the minimum set of scopes M which can be used to

represent this coordinated network structure. This task can be

efficiently completed by solving the minimum set cover problem

[42]. The result of this algorithm is a smaller set of compounds

MvESE whose scope combined scopes encompasses all com-

pounds that can be reached within the network. Therefore the

combination of these compounds form a representative set of all

significant paths within the network.

The minimum set cover problem seeks to find the minimum

number of compound scopes Si required to be selected such that

each compound ci is included at least once over all scopes. This

can be represented by the following binary integer programming

problem,

min
P

Sj[S
1½Sj [M�

subject to
P

Sj[M
1½cj [ Sj �§1 Vcj [ C

ð4Þ

where the minimum set of compounds is M and 1½� is a binary

function which returns 1 when its bracketed logical operation is

true. We solve this problem using the CPLEX software [43]. For

any given collection of scopes, there is likely to be many solutions

to (4). In this case we use the branch-and-cut method implemented

in CPLEX to extract all possible solutions to (4). We then collapse

all these solutions into one, non-optimal, but universal statement

on the composition of the minimum set M.

Supporting Information

Figure S1 Maximum, mean and minimum correlation between

metabolite concentration and gene expression at various network

distances from each source metabolite.

(PDF)

Figure S2 Scope size and path length distributions for each

stress condition.

(TIFF)

Figure S3 Bipartite graph representing the structure of each

stress conditions minimum set. Metabolite node sizes are

proportional to the scope size of that metabolite. Hub reaction

node size is proportional to how many times it is included in a

minimum set metabolites scopes. In the case of long enzyme or

metabolite names the first characters of the name are printed

followed by the node label used within the SBML network file.

The SBML file contains cellular compartment information for

each metabolite {(c)ytosol, (e)xtraorganism, (p)eriplasm} which is

printed after the ‘_’ in the metabolite name.

(PDF)

Methods S1

(PDF)
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