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Abstract
The three types of interferon (IFNs) are essential for immunity against at least some viruses in the
mouse model of experimental infections, type I IFNs displaying the broadest and strongest anti-
viral activity. Consistently, human genetic studies have shown that type II IFN is largely
redundant for immunity against viruses in the course of natural infections. The precise
contributions of human type I and III IFNs remain undefined. However, various inborn errors of
anti-viral IFN immunity have been described, which can result in either broad or narrow
immunological and viral phenotypes. The broad disorders impair the response to (STAT1, TYK2)
or the production of at least type I and type III IFNs following multiple stimuli (NEMO), resulting
in multiple viral infections at various sites, including herpes simplex encephalitis (HSE). The
narrow disorders impair exclusively (TLR3) or mostly (UNC-93B, TRIF, TRAF3) the TLR3-
dependent induction of type I and III IFNs, leading to HSE in apparently otherwise healthy
individuals. These recent discoveries highlight the importance of human type I and III IFNs in
protective immunity against viruses, including the TLR3-IFN pathway in protection against HSE.

Introduction
Since the first descriptions of interferon (IFN) as a factor interfering with virus replication
[1, 2], our understanding of IFNs has significantly improved leading to the current
appreciation of these cytokines in various biological functions including the induction of an
antiviral state [3–5]. There are three types of IFNs classified by on their nucleotide
sequence, chromosomal location, and receptor specificity [6]. Human type I IFNs, first
discovered in 1957, are found as a cluster on chromosome 9 and are comprised of twelve
IFN-α, one IFN-β, one IFN-ω, one IFN-ε, and one IFN-κ that utilize the IFN-α receptors 1
and 2 (IFN-αR1 and 2) [6–8] (J. Manry et al, unpublished). Mouse studies have
demonstrated the essential role of type I IFNs, via IFNAR1 or IFNAR2 knockout mice [9],
and of IFN-β, via IFNB1 knockout mice, in a wide range of viral infections [10, 11]. Type II
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IFN discovered in 1965 is represented only by IFN-γ, which is encoded on chromosome 12
and uses the distinct IFN-γR1 and 2 receptors [12, 13]. To an even greater degree than in the
mouse model [13, 14], human IFN-γ plays an important role as a ‘macrophage-activating
factor’ rather than an ‘IFN’ [15] as patients lacking either receptor chain suffer mostly from
intra-macrophagic bacterial infections, mycobacterial diseases in particular [16, 17]. Type
III IFNs discovered in 2003, including IFN-λ1 (IL-29), IFN-λ2 (IL28B), and IFN-λ3
(IL28A), are encoded on human chromosome 19 and signal through the IFN-λR1 and
IL-10RB receptors [18–20]. IFN-λ was shown to protect against some viral infections in
mice [21, 22]. Descriptions of autoimmune diseases as a result of enhanced type I IFN
immunity [23] and mycobacterial diseases as a result of decreased type II IFN immunity
[16] have been reviewed elsewhere. We will herein review the known human inborn errors
of immunity leading to reduced type I and/or III IFN immunity, associated with viral
diseases [22].

Defects in antiviral IFNs - Broad Defects
The first inborn errors of anti-viral IFNs have been deciphered via the clinical investigation
of children with herpes simplex virus (HSV)-1 encephalitis (HSE). HSE is a rare and
potentially fatal infection of the central nervous system (CNS) affecting about two to four
per 1,000,000 individuals per year [24–26]. Unlike the asymptomatic or benign (herpes
labialis) presentation of HSV-1 infection, in the vast majority of the infected population
(adult seropositivity is as high as >85%), HSE can result in up to 70% mortality if left
untreated [27, 28]. Treatment with acyclovir has significantly improved survival rates
however 35–62% of patients suffer life long neurological sequellae of varying severity [29].
There are two peaks of incidence, one occurring in childhood between the ages of 6 months
to 3 years during HSV-1 primary infection, and another later in life (>50yrs) probably due to
viral reactivation from latency [29]. In a French epidemiological survey of HSE patients it
was suggested that HSE may have a strong Mendelian genetic basis, despite being sporadic,
as up to 14% of the children were born to consanguineous parents [29]. HSV-1 is thought to
remain localized in the CNS as systemic spread of the virus during infection has only rarely
been observed [30]. There have been no reported associations of cases with a particular
strain of HSV-1, suggesting that variation in virus virulence is not a major determinant of
disease [31, 32]. Hence, the pathogenesis of HSE has remained elusive until the description
of HSE in patients with IFN deficiencies. We will first focus on three unrelated single gene
disorders underlying susceptibly to multiple viral infections, including HSE, owing to their
broad impairments of IFN immunity (Table 1 and Figure 1).

STAT1
Signal transducer and activator of transcription-1 (STAT-1) is a protein involved in the
transduction of cellular responses to IFN-α/β, -λ and γ, and IL-27, via the formation of two
transcription factor complexes: the interferon stimulated gamma factor 3 (ISGF3) composed
of STAT1-STAT2-p48/IRF9 trimers and the gamma activated factor (GAF) comprised of
STAT1 homodimers [33, 34]. Heterozygous loss-of-function germ-line mutations in STAT1
impairing STAT-1 phosphorylation or DNA binding activity underlie selective impairment
of the IFN-γ dependent GAF responses but intact IFN-α/β-dependent ISGF3 responses [35–
37]. These patients suffer from autosomal dominant (AD) mycobacterial disease due to the
impaired IFN-γ responses. First described in 2003, complete autosomal recessive (AR)
mutations in STAT1 lead to a complete loss of STAT1 protein expression and consequently
have no STAT1-dependent responses to IFN-γ, IFN-α/β, and –λ, leading to both
mycobacterial and numerous viral diseases (Table 1) [38–41]. Two of these patients died of
viral disease, one of confirmed HSE due to abolished responses to IFN-α/β and/or -λ. A
milder form of partial AR STAT1 deficiency has also been reported in several patients [42,
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43]. More recently, heterozygous gain-of-function mutations in STAT1 have been described
in patients suffering from AD chronic mucocutaneous candidiasis (CMC). These mutations
are loss-of-dephosphorylation, gain-of-function, and enhanced cellular responses to IFN-α/β,
-λ and γ, and/or IL-27 are probably responsible for the poor development of IL-17-
producing T cells, which are essential for muco-cutaneous immunity against Candida
albicans [44–46]. These findings explain the fungal infections and the lack of mycobacterial
or viral diseases in these patients. Overall, the various types of STAT1 mutations allowed a
fine dissection of the role of STAT1-dependent IFN immunity in host response,
demonstrating in particular an essential role of IFN-α/β- and/or -λ-dependent ISGF3
immunity to control various viral infections, including HSV1 infection in the CNS.

TYK2
Shortly after the description of STAT1-deficient patients with viral infections, TYK2
deficiency was reported in 2006 in a single individual with multiple viral infections and
surprisingly no HSE. TYK2 is a kinase that is constitutively associated with various
cytokine receptors, including IFN-αR1, in which case it is activated upon ligand-induced
IFN-αR1 and IFNαR2 dimerization, allowing for the formation of ISGF3 [47]. Mouse
TYK2 was initially shown to be essential for IFN-α/β signalling [48, 49] but since been
shown to be involved in other cytokine response pathways including those of IL-6 and IL-12
[50, 51]. The patient with complete deficiency in TYK2 [52] displayed a broad clinical
phenotype including susceptibility to Staphylococci, atopic dermatitis, high serum IgE,
similar to hyper-IgE patients [53, 54] perhaps due to reduced IL-6 and/or IL-10 responses.
He also displayed infections by Mycobacteria and Salmonella, reminiscent of patients with
Mendelian susceptibility to mycobacterial disease (MSMD) [16], which was attributed to his
poor cellular responses to IL-12 and subsequent impairment to upregulate IFN-γ. Finally he
also suffered from recurrent cutaneous HSV-1 and Molluscum contagiosum infections,
probably owing to his poor cellular response to IFN-α/β. Unlike the AD STAT1-deficient
patients, the viral diseases manifested in the TYK2 patient were mild and limited to
cutaneous infections, the reasons for which remain unclear and may reflect residual, TYK2-
independent cellular responses to IFNs. The description of other TYK2 patients will be
helpful in better delineating the immunological and viral phenotypes associated with this
defect. In any case, TYK2 deficiency impairs at least IFN-α/β responses and confers
predisposition to at least cutaneous viral diseases.

NEMO
Nuclear factor-κB (NF-κB) essential moderator (NEMO), also known as IKK-γ, is a
regulatory subunit of the IKK complex activating the canonical NF-κB signalling pathway,
and operating downstream of multiple receptors including TNFRs, TCR, BCR, IL-1Rs,
TLRs and the RIGI/IPS-1 pathways [55, 56]. Mutations in NEMO cause a very wide
spectrum of disease ranging from incontinentia pigmenti causing in-utero lethality in
hemizygous males and ectodermal abnormalities in heterozygous females [57], to various
forms of X-linked recessive forms of anhidrotic ectodermal dysplasia with
immunodeficiency (EDA-ID) [55, 58]. Children with EDA-ID usually suffer from multiple
infections by various pathogens including pyogenic bacteria, fungi, mycobacteria, and
viruses [55, 58]. Pneumococcal infections are the most common infections they suffer,
probably due to impaired TLR and IL-1R responses [59–61]. Mycobacterial diseases
probably occur due to an impaired CD40-IL-12 pathway, leading to impaired IFN-γ
mediated immunity [62]. Systemic or intestinal cytomegalovirus (CMV), adenoviral and
cutaneous HSV-1 infections are the most common viral manifestations of disease (Table 1)
[55, 63, 64].. Interestingly, a patient with a hypomorphic mutation in NEMO developed
recurrent HSE, which led to his death [63, 65]. NEMO, unlike the previous two deficiencies,
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is involved in the induction of, as opposed to the response to, type I and III IFNs following
cell stimulation by various receptors. A recent report has demonstrated NEMO to be
involved in IRF3 activation following viral infections [56]. Of course NF-κB activation is
also important to trigger the transcription of IFNs [66–69]. This dual action of NEMO
potentially explains viral susceptibility in patients carrying mutations in NEMO, via
impaired type I and/or III IFN production. Fibroblasts from the HSE patient with a
hypomorphic frameshift mutation in NEMO (110_111insC), showed impaired IFN-α/β and -
λ production following viral infection or Toll-like receptor 3 (TLR3) stimulation [70]. TLR3
recognizes dsRNA of viral origin, furthermore inborn errors of TLR3 immunity underlie
HSE in other patients (see below), hence this defined a plausible molecular mechanism for
HSE, at least in this patient [70]. In fact 8 additional patients with different mutations in
NEMO showed varying degrees of impaired IFN-α/β, -λ production but no HSE despite
being seropositive for HSV-1. Hence, all NEMO patients might be potentially prone to HSE
however there is incomplete clinical penetrance [70]. Whether the mutations in NEMO or
other factors, genetic or environmental, account for the observed rarity of HSE in patients
with NEMO mutations is unclear. The specific molecular basis of viral infections other than
HSE in NEMO patients also remains elusive. In any case, the role of NEMO in regulating
the induction of type I and III IFNs responses is probably associated with viral diseases and
the TLR3-IFN pathway with HSE in particular.

Defects in anti-viral IFNs- Narrow Defects
NEMO, STAT1, and TYK2 deficiencies all have in common broad immunological defects
affecting not only type I and III IFNs but also other cytokines. They thus confer a broad
infectious phenotype including viral, bacterial as well as fungal infections. It is no surprise
that these patients are susceptible to multiple viral infections as their defects lie where
multiple antiviral pathways converge: STAT1 and TYK2 downstream of type I and III IFN
receptors and NEMO downstream of the numerous IFN-inducing receptors. In recent years,
a growing number of receptors that induce antiviral IFNs have been identified, including
TLRs, retinoic acid-inducible gene-I (RIG)-like receptors (RLRs), DExD/H helicases,
nucleotide-binding oligomerization domain (NOD)-like receptors, and various DNA
receptors (Figure 1). Ten TLRs have been described in humans, each stimulated by different
agonists [71]. TLR3, TLR7/8 and TLR9 in particular are intracellular (endosomal) and
involved in the sensing of extracellular and endosomal nucleic acids, dsRNA, ssRNA and
dsDNA respectively, leading to type I and III IFNs production [72, 73]. RLRs consist of
RIG-I, and melanoma differentiation-associated gene (MDA)-5, and laboratory of genetics
and physiology-2 (LGP2) that recognize cytosolic RNA and DNA inducing IFNs through its
specific adaptor, interferon-β promoter stimulator (IPS)-1 (also known as MAVS, VISA or
Cardif) [74–77]. NOD2 has also been shown to recognize ssRNA and produce type I IFNs
in an IPS1-dependent manner [78]. Recent reports have revealed DExD/H helicases to be
involved in dsRNA sensing either in a TRIF-dependent (DDX1-DDX21-DHX36) [79] or in
a RLR-dependent or IPS-1-dependent manner (DDX60 and DHX9 respectively) [80, 81].
The DNA sensor RNA polymerase III indirectly induces IFNs by transcribing AT rich DNA
into uncapped 5′ triphosphate–bearing RNA which then signals via the RLR-pathway [82,
83]. Finally, DNA-dependent activator of IFN-regulatory factors (DAI or DLM1/ZBP1), a
PYHIN (pyrin and HIN200 domain–containing proteins; also known as p200 or HIN200
proteins) protein interferon gamma-inducible protein 16 (IFI16), and another DExD/H
helicase DDX41 have all been implicated in cytoplasmic recognition of intracellular DNA,
leading to type I IFN production [84–87]. They signal through stimulator of interferon genes
or STING (MITA, ERIS, MPYS or TMEM173) which has itself been shown to detect cyclic
di-GMP, and the kinases TANK-binding kinase 1 (TBK1) and IKK-ε [86, 88–91]. The
antiviral nature of these receptors have been studied primarily in the context of mouse
models of experimental infection or in vitro [72, 74, 78–80, 84, 85, 87, 92, 93]. This shed
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light on their function in host defence in experimental conditions in vivo, which appeared to
be relatively broad for each receptor; however their respective role in natural immunity
remained elusive. Recent developments in understanding antiviral immunity in natura,
thanks to human studies, have revealed the crucial importance of the TLR3-IFN pathway in
protection against the development of HSE. Here we review the few known inborn errors of
antiviral IFNs that are associated with HSE (Table 1 and Figure 1). The function of other
IFN-inducing pathways, like that of the many IFN-inducible genes, remains largely
unknown.

UNC-93B
In 2006, the first genetic etiology for isolated HSE was reported in two children with AR
UNC-93B-deficicency [94]. UNC-93B is an endoplasmic reticulum (ER) protein that
contributes to the translocation of TLRs (TLR3, 7, 8 and 9) from the ER to endolysosomes
[95, 96]. The four human intracellular TLRs rarely tolerate missense or nonsense mutations
suggesting that they are under strong purifying selection, unlike surface-expressed TLRs
[97]. TLR7 and TLR8 are primarily involved in detection of ssRNAs, TLR9 in the detection
of dsDNA and TLR3 of dsRNA, which is produced during the replication of almost all
viruses including HSV-1 [71, 98]. Mouse TLR7 and TLR9 have been shown to play an
important role in pDCs, contributing to a significant amount of type I IFN produced by these
cells [98], however human TLR7, TLR8, and TLR9 are largely redundant in host defence
against viruses, as revealed by the lack of any detectable viral diseases in patients with
IRAK4 and MyD88 deficiency [59, 60, 99–101]. UNC-93B was first discovered in an N-
ethyl-N-nitrosourea (ENU) mutagenesis screen, underlying the 3d mouse mutant phenotype
which displayed abolished responses to TLR3, 7 and 9 agonists as well as susceptibly to
murine CMV (MCMV) infection [102]. Human UNC-93B deficiency was reported shortly
after, in two unrelated HSE patients homozygous for null mutations in UNC93B1 [94].
Similar to the 3d mouse, the patients’ peripheral blood mononuclear cells (PBMCs) failed to
produce type I and III IFNs in response to TLR3, TLR7, TLR8, and TLR9 agonists. The
patients’ fibroblasts also showed no production of type I or III IFNs (specifically IFN-β and
IFN-λ1/3) following stimulation with the TLR3 agonist polyinosinic-polycytidylic acid
(poly(I:C)) or following infection with vesicular stomatitis virus (VSV) or HSV-1. This viral
susceptibility was complemented by the addition of recombinant IFN-α2b, suggesting the
lack of IFN production was responsible for sensitivity to viral infection and demonstrating
that IFN response was normal. Despite multiple TLRs affected, UNC-93B-deficient patients
suffered only from HSE with no systemic or cutaneous dissemination of HSV-1, nor did
they present with other severe viral infections. Hence, UNC-93B-deficiency, in combination
with STAT1 and NEMO deficiencies, hinted at the essential requirement of UNC-93B-
dependent IFN production for protective immunity against HSV-1 primary infection in the
CNS, at least in some children. Moreover, the contribution of TLR7, TLR8 and TLR9 to
disease, if any, is probably small as IRAK4- and MyD88-deficient patients, who display
impaired responses to all TLRs except TLR3 do not develop HSE upon infection by HSV-1,
nor any other severe viral diseases but typically present with pyogenic bacterial infections
[59–61, 100]. It followed then that our attention should turn to human TLR3 as the receptor
mediating the necessary protection against HSV-1 infection in the CNS.

TLR3
Shortly after the discovery of AR UNC-93B deficiency, AD TLR3 deficiency was
discovered in two unrelated HSE patients carrying the same heterozygous missense mutation
affecting the ectodomain of TLR3 [103]. The patients’ fibroblasts displayed dominant
negative properties for poly(I:C) induced type I and III IFNs production, consistent with
impaired but not abolished responses to poly(I:C) [103]. Similarly, the patients’ cells were
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more susceptible to VSV and HSV-1 infections as assessed by IFN production, viral
replication, and virus-induced cell death. The addition of recombinant IFN-α2b to the
patients’ cells reversed the phenotype to control levels such that the patients’ cells were able
to control viral induced cell mortality and replication. However, not all TLR3 expressing
cells were found to have impaired poly(I:C) responses, which can be attributed to other
dsRNA sensors, or residual TLR3 signalling, or both. Interestingly, another patient
heterozygous for the same TLR3 mutation was subsequently reported as having coxsackie B
virus myocarditis [104], suggesting that TLR3 mutations may underlie susceptibility to other
viral diseases. We have also more recently identified an AR form of TLR3 deficiency, in a
patient compound heterozygous for two null TLR3 alleles [105] whose fibroblasts displayed
abolished responses to TLR3 whereas the patient’s PBMCs, monocytes, and monocyte
derived macrophages responded to poly(I:C) normally. Genome-wide transcriptome analysis
using cells from this patient revealed that TLR3 is largely redundant for responses to dsRNA
in leukocytes, where other dsRNA sensors may play a more significant role. Whereas the
normal resistance to most viral infections in patients with AD TLR3 may result from
residual TLR3 cellular responses, the occurrence of childhood HSE in an otherwise healthy
adult with complete TLR3 deficiency suggests that TLR3 is largely redundant in host
defence, against viruses in particular. The redundancy of TLR3 in leukocytes probably
explains the narrow clinical vulnerability. Conversely, the development of HSE suggests
that resident cells in the CNS, like fibroblasts, rely on TLR3 to respond to poly(I:C) and
HSV-1.

TRIF
The confirmation that mutations in the TLR3 pathway underlie HSE also came recently
from the discovery of Toll/IL1R (TIR) domain-containing adaptor inducing IFN-β or TRIF
deficient patients [106]. TRIF, also known as TIR domain containing adaptor molecule 1
(TICAM-1), is an adaptor protein serving as the sole adaptor to TLR3 and as an alternative
adaptor via TRIF-related adaptor molecule (TRAM) to TLR4 [107, 108]. Once activated by
agonist-induced TLR3 dimerization (or via TLR4-TRAM), this cytosolic protein homo-
oligomerizes to form a platform from which all downstream signalling events occur,
ultimately resulting in type I and III IFNs and proinflammatory cytokine production [109,
110]. A recent report described an additional role for TRIF engaging in detection of
cytosolic dsRNA through the DExD/H-box helicase complex, DDX1-DDX21-DHX36 [79].
TRIF-deficient mice show an abolished response to poly(I:C), resistance to endotoxic shock,
and are susceptible to MCMV and vaccinia virus infections [107, 108]. Two HSE patients
with TRIF deficiency were identified, one with a homozygous nonsense mutation, resulting
in complete AR TRIF deficiency, and another with a heterozygous missense mutation,
leading to partial AD TRIF deficiency. Similar to TLR3-deficient patients, TRIF-deficient
patients’ fibroblasts did not produce IFNs after stimulation with poly(I:C) and showed
increased susceptibility to VSV and HSV-1 infections, highlighting the importance of the
TLR3-TRIF-IFN pathway in protection against HSE. In addition, as the AR TRIF patient
was a loss-of expression, loss-of-function mutation, the patient’s cells also displayed
impaired responses to both transfected poly(I:C) and LPS in terms of IFN induction, due to
TRIF’s role in the DExD/H helicase pathway and the TLR4 pathways respectively. These
observations suggest that the human TRIF-dependent TLR4 and DExD/H helicase pathways
are largely redundant for host defence, as this patient only suffered from HSE which can be
attributed solely to the unresponsive TLR3 pathway. The impairment of these other
pathways had no clinical consequence, or at least not for the moment and their role in other
diseases, viral illnesses in particular, cannot be entirely excluded as the AR TRIF patient is
still relatively young.
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TRAF3
Discovered prior to TRIF deficiency, TNF-receptor associated factor 3 (TRAF3) deficiency
was surprising at first glance because of the broad involvement of TRAF3 in both various
IFN-inducing pathways and multiple TNFR superfamily responsive pathways [111, 112].
TRAF3 is an adaptor protein found downstream of the TNF receptors [111, 112], and IFN-
inducing receptors including TLR3, TLR7, TLR8, TLR9, and the cytosolic dsRNA receptors
RIG-I/MDA5 [112, 113]. Surprisingly, we discovered AD TRAF3 deficiency in a patient
with HSE, carrying a de novo missense allele, which is loss-of-expression, loss-of-function,
and dominant-negative, resulting in impaired but not abolished TLR3-mediated induction of
IFNs and increased susceptibility to viral infections in heterozygous cells from the HSE
patient [114]. Consistent with the loss-of-function observed in the TLR3-IFN mediated
pathway, the TRAF3 heterozygous cells displayed impaired but not abolished function for
all other TRAF3-dependent pathways, including those downstream from TNF receptors such
as CD40, BAFF, and LT, and IFN-inducing receptors such as TLR7/8, and the cytosolic
dsRNA pathways. At odds with the prediction and observation that human TRAF3 plays
such a broad role, the patient only suffered from HSE. It is surprising that this patient has
not displayed any other infectious or immunological diseases given the broad impact of the
heterozygous mutation in various cell types. This suggests that the residual signalling
threshold below that of predisposition to disease varies among the numerous TRAF3-
dependent pathways. In other words, impaired TRAF3-dependent responses to TLR3
predisposed to HSE, whereas impaired TRAF3-dependent responses to other receptors
remained clinically silent. A complete defect would be predicted to have broader clinical
consequences. We cannot however exclude that such clinical consequences may appear later
in life in the HSE patient. So far, TLR3-independent TRAF3-dependent IFNs (due to some
residual function of TRAF3 in the patients’ cells) and/or TRAF3-independent IFN
production probably protected the patient against other viral infections. In any case, this
experiment of Nature demonstrated that the human TLR3-and TRAF3-dependent induction
of IFNs is essential for protection against HSV-1 in the CNS.

Conclusion
Broad inborn errors of antiviral IFNs, as shown by NEMO, STAT1, and TYK2 deficiencies,
result in multiple viral infections in different tissues including systemic or intestinal CMV,
cutaneous Molluscum, cutaneous herpes infections as well as HSE. Indeed, these three
molecules are critical for IFN immunity, controlling cellular production of all three types of
IFNs in response to the stimulation of various signalling pathways (NEMO) or cellular
responses to most anti-viral IFNs, not to mention other cytokines that may also contribute to
anti-viral immunity (STAT1 and TYK2). In contrast, narrow inborn errors of antiviral IFNs
are thus far limited to one particular viral phenotype, HSE, due to the alteration of one
particular IFN-inducing pathway, controlled by TLR3. The discoveries of UNC93B, TLR3,
TRIF and TRAF3 deficiencies which all have in common a defect in the TLR3-IFN pathway
strongly suggest that this mechanism is at the heart of resistance against HSV-1 primary
infection in the CNS, at least in some children. Not in all children, however, as incomplete
clinical penetrance was observed for all single-gene inborn errors of TLR3 immunity for
which at least one relative of the proband was also genetically affected, explaining the
paradoxically sporadic nature of genetically determined HSE. Multiple factors may
contribute to incomplete clinical penetrance, whether environmental (infectious virus nature
and amount), or host factors (genetic and even epigenetic, as suggested by the early-onset)
[29].

In any case, inborn errors of TLR3-dependent IFN immunity predispose to HSE, at least in
some children. TLR3 is highly expressed in the CNS, and is capable of recognizing dsRNA
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intermediates produced during the life cycle of HSV-1, which with rabies virus is one of the
few viruses that infect the human CNS via a neurotropic route, not crossing the blood-brain
barrier [92, 115, 116]. Moreover, children with HSE are not prone to HSV-1 infections at
other sites. Hence, it is tempting to speculate that TLR3 acts as a predominant dsRNA
sensor in the CNS, controlling CNS-intrinsic immunity against HSV-1 in particular via its
control of antiviral IFN. The selective pressure exerted by HSV-1 and other neurotropic
viruses, such as rabies virus, may account for the strong signatures of purifying selection
documented for human TLR3 and TRIF (e.g. missense and nonsense mutations were rarely
tolerated), suggesting that they played a crucial role in the survival of mankind [97, 117]. In
this context, the identification of UNC93B, TLR3, TRIF, and TRAF3 deficiencies
underlying HSE suggests that other genes controlling this particular pathway may be
mutated in other children with HSE. The intriguing observation of a patient with viral
myocarditis and AD TLR3 deficiency [104] however raises the possibility that the infectious
phenotype associated with inborn errors of TLR3 immunity may be narrow in individual
patients but broader at the population level, consistent with the incomplete clinical
penetrance documented for both HSE and viral myocarditis.

Naturally the role of the other IFN-inducing viral sensors in host defence comes into
question, as well as that of the diverse IFNs and IFN-inducible antiviral target genes. Why
are there so many genes at each of these three levels? Which viral diseases would occur in
individuals with inborn errors of one or another component? Reports of rare non-
synonymous sequence variants in RIGI and MDA5 have been reported, several with proven
defect in function but with no clear viral association reported yet [118, 119]. This suggests
that these receptors might be largely redundant in anti-viral immunity. No such mutations
associated with a loss of function have been reported yet for any of the other receptors.
Deleterious mutations in these genes very possibly may have clinical consequences that
have not yet been brought to light. It would be interesting to study these genes from an
evolutionary genetic perspective and determine which ones are under purifying selective
pressure [120]. A clinical genetic approach similar to that followed for HSE may also be
fruitful. We hypothesize that other inborn errors of IFN immunity may underlie severe viral
infections other than HSE, such as severe influenza, myocarditis, or hepatitis [121, 122]. As
some of these infections show some degree of tissue specificity (like HSE restricted to the
CNS), it is possible that a particular IFN-related pathway may be devoted to a specific virus
or tissue, or both, in a non-redundant manner. Consistent with this notion, recent studies
have associated sequence variants in IFN-λ2 with hepatitis C infection treatment response
and spontaneous viral clearance in humans [123–126]. Each IFN-inducing pathway, or each
IFN type and subtype, or each anti-viral IFN-inducible gene, may have selectively evolved
towards protection against a particular viral infection, the diversity of IFN-inducing, IFNs,
and IFN-inducible genes reflecting the diversity of viruses and tissues.
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Figure 1. Human deficiencies of types I and III IFNs
Following viral infection, immune receptors engage in the recognition of viral nucleic acids
via the endosomal TLRs (TLR3, TLR7/8, TLR9), the cytosolic RLRs (RIGI, MDA5,
LGP2), RNA-detecting DExD helicases (DDX1-DDX21-DHX36; DDX60, DHX9), NLRs
(NOD2) or DNA receptors (DAI, IFI16, DDX41, RNA polymerase III, STING) (left panel).
This in turn triggers various signaling pathways leading to the activation of the transcription
factors NF-κB, IRF3 and IRF7 leading to the production of the antiviral IFNs, IFN-α/β and –
λ. These IFNs are detected by their respective receptors: IFN-α/β by the heterodimers of
IFN-αR1 and IFN-αR2, and IFN-λ by the heterodimers of IFN-λR1 and IL-10R2. This
triggers the formation of the ISGF3 transcription factor complex that binds the IFN-
stimulated response element (ISRE) resulting in the induction of numerous IFN stimulated
genes (ISGs) initiating an antiviral response leading to the destruction of the virus (right
panel). Mutations in NEMO, STAT1 or TYK2 are associated with multiple viral infections (in
pale blue) while mutations in UNC93B1, TLR3, TRIF or TRAF3 are strictly associated with
HSE. RNA molecules are shown in gray where as DNA is shown in black.
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