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Abstract: 
Carbohydrates, or glycans, are one of the most abundant and structurally diverse biopolymers constitute the third major class of 
biomolecules, following DNA and proteins. However, the study of carbohydrate sugar chains has lagged behind compared to that 
of DNA and proteins, mainly due to their inherent structural complexity. However, their analysis is important because they serve 
various important roles in biological processes, including signaling transduction and cellular recognition.  In order to glean some 
light into glycan function based on carbohydrate structure, kernel methods have been developed in the past, in particular to extract 
potential glycan biomarkers by classifying glycan structures found in different tissue samples. The recently developed weighted q-
gram method (LK-method) exhibits good performance on glycan structure classification while having limitations in feature 
selection. That is, it was unable to extract biologically meaningful features from the data. Therefore, we propose a biochemically-
weighted tree kernel (BioLK-method) which is based on a glycan similarity matrix and also incorporates biochemical information 
of individual q-grams in constructing the kernel matrix. We further applied our new method for the classification and recognition 
of motifs on publicly available glycan data. Our novel tree kernel (BioLK-method) using a Support Vector Machine (SVM) is 
capable of detecting biologically important motifs accurately while LK-method failed to do so. It was tested on three glycan data 
sets from the Consortium for Functional Glycomics (CFG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) GLYCAN and 
showed that the results are consistent with the literature. The newly developed BioLK-method also maintains comparable 
classification performance with the LK-method. Our results obtained here indicate that the incorporation of biochemical 
information of q-grams further shows the flexibility and capability of the novel kernel in feature extraction, which may aid in the 
prediction of glycan biomarkers. 
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Background:  
Supporting evidence has verified that glycans play crucial roles 
in cellular functions. However, the complexity in developing 
high-throughput techniques to characterize glycan structures 
poses one of the main obstacles to assess the structural elements 
responsible for specific functions. Thanks to the availability of 
glycan structure databases such as KEGG [1] and the 
Consortium for Functional Glycomics (CFG) [2], informatics 
techniques can be applied directly to glycan data to help 

researchers better understand the functions and structures of 
these complicated molecules.   
 
Compared to the linear structures of DNA and proteins, glycans 
are generally nonlinear polymers that can be represented by 
rooted ordered trees. Several approaches have been developed 
to mine structural features embedded in glycans [3, 4]. Support 
vector machines (SVMs) with tree kernels for analyzing glycan 
structures have been extensively investigated [5, 6]. In [5], 3-
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mers were used to represent the features for each glycan 
structure, where more weight was applied to the matching 
structures of the variable region (specifically, the non-reducing 
terminal structures of glycans) in constructing the kernel 
matrix. As for [6], the kernel function was expressed as a sum of 
local kernels over all possible subtrees. One of the 
groundbreaking representatives is the q-gram method [7, 8] 
which considers the vector of the frequencies of all possible 
subtrees isomorphic to paths with q nodes as the q-gram 
distribution. Like the previously proposed kernels, the 
traditional q-gram method ignores the similarity between two 
different q-grams. Taking into consideration the similarity of 
geometric structures, monosaccharides and glycosidic bonds in 
q-grams, a new tree kernel was created [9], resulting in a 
weighted q-gram method: LK-method. With this method, the 
classification performance was improved for some important 
glycan classes. However, one of the limitations of this method 
lies in the poor performance in extracting biologically relevant 
glycan substructures, the most important goal of our research. 
Our aim is to remedy the defects of the LK-method. 
  

 
Figure 1: Glycan structure with layer information: Root layer is 
defined as 0.  
 
Kernel methods work by embedding data instances into a 
feature space F. Due to their good performance in processing 
complicated data, kernel methods have gained increasing 
popularity in computational biology [10]. The Positive Semi-
Definite (PSD) property [11] of a kernel matrix is required to 
ensure the existence of a Reproducing Kernel Hilbert Space 
(RKHS) where a convex optimization formulation can be 
deduced to yield an optimal solution. However, in practice, 
similarity matrices can violate the PSD property. For example, 
in bioinformatics some popular functions evaluating pair-wise 
similarity between DNA and protein sequences produce non-
PSD (or indefinite) kernel matrices. Unfortunately, the best way 
to use them in the SVM framework is not clear. The weighted q-
gram method avoids the problem of the non-PSD property by 
constructing the similarity matrix as to ensure the PSD property 
of the kernel matrix. The method performs well in terms of 
classification accuracy for the often-used leukemia data set, but 
it did not perform as well on other data sets. Furthermore, the 
feature selection results of this method were poor in that the 
biologically known motifs for specific data sets were not 
retrieved in the results. 

In order to obtain biologically meaningful results, we focused 
on the similarity matrix, which is symmetric and can be 
decomposed into TS X P X= ⋅ ⋅ such that   is the diagonal 
matrix of the eigenvalues sorted in ascending order. Here   is an 
orthogonal matrix of the corresponding eigenvectors. The 
weighted q-gram method deals with the similarity matrix as 

TS S which is in fact 2 TX P X⋅ ⋅ .  To some extent, we may 
consider different eigenvalues as representing the roles that 
each q-gram plays in classification. Furthermore, the kernel 
matrix used in training the SVM should, in principle, involve 
the similarity matrix S  itself rather than TS S . In this context, a 
negative eigenvalue –λ (λ>0) will then be squared, becoming λ2, 
the square of its original magnitude. This suggests a possible 
reason why this method cannot perform well in all of the data 
sets as the importance of those negative eigenvalues were 
magnified. 
 
Previous studies have presented methods that attempt to alter 
the spectrum of an indefinite kernel matrix in order to create a 
PSD one. Representatives include the denoising method which 
deems all negative eigenvalues as noise and replaces them with 
zero [12], the flipping method which flips the sign of negative 
eigenvalues so as to form a PSD kernel matrix [13], the diffusion 
method which takes the data distribution into account by 
replacing the eigenvalues with an exponential form [14], and 
the shifting method which shifts eigenvalues to ensure the 
nonnegativity of all the eigenvalues [15]. The LK-method shares 
some similarity with the flipping method in that negative 
eigenvalues become the absolute values of themselves. 
Considering the fact that the denoising method, which neglects 
the negative eigenvalues, also yields good classification results, 
we propose a novel method treating eigenvalues in ascending 
order.  
 
Another problem with the previous model was that even 
though the weighted q-gram method considered the similarity 
between two different q-grams, the importance of the q-grams 
in the context of the whole glycan structures themselves was 
not taken into account. From a biological perspective, the 
variability of the sugars near the leaves is larger than those near 
the root [5]. Thus, employing the similarity matrix developed 
by the LK-method, we developed a biochemically-weighted 
kernel (BioLK-method) utilizing biological knowledge by 
adding weight based on the layer information il of q-grams 
with while ile α ensuring the PSD property of the similarity 
matrix.  
 
The effectiveness of our BioLK-method was then compared 
with the LK-method, the representative of the weighted q-gram 
method in terms of predictive performance of glycan 
classification and motif extraction. Our newly developed 
method exhibited comparable classification performance, if not 
better, with the LK-method. Moreover, our new method could 
capture biologically meaningful glycan substructures through 
feature selection while the LK-method failed to do so. 
 
Methodology: 
Our work incorporates two innovations. The first one is to 
perform a delicate transformation on the non-PSD similarity 
matrix constructed in one of the representatives of the weighted 
q-gram method: the LK-method. The second is to incorporate 
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existing biological information when computing the kernel 
matrix. Major contribution of this paper is to propose a 
biologically significant kernel that is robust in classification as 
well as in motif selection. We first describe the similarity matrix 
construction method used for the LK-method that considers the 
similarity of layers, monosaccharides, glycosidic bonds and 
geometric tree structures among the q-grams. Based on the 
existing similarity matrix, a PSD similarity matrix using 
techniques of spectrum transformation is created. We further 
develop the novel kernel by combining the biological 
importance of different q-grams. Different experiments of 
binary classification and feature selection are performed on the 
new kernel with SVMs (See supplementary material for 
detailed description). 
 

 
Figure 2: q-gram decomposition of glycan in Fig 1: q=1, 2, 3 
 
Discussion: 
Materials  
Three sets of glycan data are used to evaluate the classification 
and feature selection performance of our developed method. 
They are illustrated in (Table 1, see supplementary material). 
Glycan structures in two of the data sets are retrieved from the 
KEGG/GLYCAN database [1] with annotations from the 
CarbBank/CCSD database [16]. One pertains to leukemia 
consisting of 355 structures originating from four human blood 
components: leukemic cells, erythrocytes, serum and plasma, 
containing 162, 111, 85 and 73 examples respectively. Another 
data set pertains to cystic fibrosis, containing 89 glycans related 
to cystic fibrosis, 107 related to respiratory mucin and 101 
related to bronchial mucin. For these leukemia and cystic data 
sets, the total number of glycans is not the sum of each subclass 
because some glycans belong to several classes. In order to 
assess the generality of our kernel method in extracting 
meaningful substructures, we further utilized another data set 
obtained from the CFG [2]. We obtained O-linked and N-linked 
glycan profile data extracted from the brain of mouse strain 
C57BL/6 (Mouse Strain, 
http://www.functionalglycomics.org/glycomics/common/jsp
/samples/searchSample.jsp?templateKey=1&12=Tissue&opera
tion=refine), which consisted of 47 structures in Wildtype and 
50 structures in FucTIV+VII knockout mice. 
Classification and Feature Selection 

The effectiveness of our BioLK-method was evaluated through 
comparison with the LK-method in terms of performance of 
both classification and feature selection. Because the BioLK-
method involves the determination ofα beforehand, a program 
was run to find an optimalα in a statistical sense. The 
optimalα for the leukemia data set was 0.1, with 0.35 for the 
mouse data set and 0.85 for the cystic fibrosis data set. These 
results were consistent with our previous analysis. Since for the 
leukemia data set, there are in total 6527 features involved, it is 
very sensitive to largeα , while for the cystic fibrosis data set, 
which contains only 1260 features, it is reasonable that the 
optimalα  is relatively large. In the mouse data set, the number 
of features altogether was 4214, and the corresponding optimal   
also lies in 0.35α = between. 
 
Classification Performance 
Table’s 2-4 lists the performance of the SVM classifier for the 
LK-method and the BioLK-method as tested on our three data 
sets. We employed the Area Under the ROC Curve (AUC) 
measured by five-fold cross-validation run 10 times to evaluate 
the performance. For each ( 1, 2, ,9)q q = K , the tables illustrate 
the average AUC value over the 10 runs with standard 
deviations. It is clear to see that both LK-method and BioLK-
method show comparable classification performance.  
 
For the leukemia data, the classification performance always 
achieves accuracy greater than 89%. In the cystic fibrosis data 
set, the classification accuracy decreases slightly, but still 
achieves around 80% on average. For 9q =  in this data set, the 
performance goes down to 53% which is reasonable since this 
data set is much less complex when compared to the other two 
data sets, reflecting the fact that the number of features 
involved in 9-gram classification are few. For the mouse data 
set, the classification performance is also high, achieving 
accuracies in the 80% range. 
 

 
Figure 3: Top 3 features on the leukemia dataset. The top-
scoring features extracted by the BioLK-method are the trimer 
structure ‘ NeuAc 2-3Gal 1-4GlcNAcα β ‘found at layer 5. The 
substructure with the second highest score is the monomer 
structure 'Neu5Ac' found at layer 7. In contrast, the LK-method 
captures the features in reverse order. 
 
Feature Selection 
Both the direct usage of the similarity matrix and the 
incorporation of the BioWeight matrix in kernel construction 
enhance our confidence in extracting accurate features. The 
effectiveness of our BioLK-method in feature selection is 
assessed in comparison with the LK-method on the three glycan 
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data sets. Figures 3-5 illustrate the top three features extracted 
by the LK-method and the BioLK-method. For better 
illustration, the corresponding figures of the features can be 
accessed (available with authors).  
 
As shown in Figure 3, the top-scoring features extracted by the 
BioLK-method is the trimer structure ’NeuAc2-3Galβ1-
4GlcNAc’ found at layer 5. This precisely corresponds to the 
substructure in previous works [5, 6]. The substructure with the 
second highest score is the monomer structure ‘ Neu5Ac ’ found 
at layer 7, which is also consistent with the literature [6]. In 
contrast, the LK-method captures the features in reverse order. 
In fact, our results are more reasonable due to the fact that 
A.cylindracea galectin (ACG) is known to specifically bind to the 
trimer structure, whereas sialic acid is known to appear in 
many tumor cells. Thus ‘ Neu5Ac  ’ is considered to be a more 
generalized result, whereas the trimer is more specific.  
 

 
Figure 4: Top 3 features on the cystic dataset. The highest score 
using the BioLK-method is achieved by a dimmer 
‘ NeuAc 2-3Galα ’at layer 2, which is often found at the non-
reducing end of glycan structures. The top three structures 
captured by the BioLK-method are all 2-3α sialylated structures 
which are consistent with the literature as well. However, the 
features captured by the LK-method are structures which 
include the root, which may indicate that it is overfitting to the 
data. 
 
Figure 4 lists the top three motif candidates extracted by the 
LK-method and the BioLK-method in the cystic fibrosis data set. 
The highest score using the BioLK-method is achieved by a 
dimer ‘NeuAc2-3Gal’ at layer 2, which is often found at the 
non-reducing end of glycan structures. Although this is slightly 
different from the result predicted by [8] which captures this 
structure as the second highest score, it is acceptable since in 
their method, information indicating root and leaf nodes is 
incorporated directly into the q-gram data. Our method is still 
consistent with the result that the top scoring CF-related 
structure is 2-3 sialylated structures, which corresponds with 
the literature [17, 18]. It is also consistent with the result that the 
top scoring features extracted included monomers and dimers. 
We note that the top three structures captured by the BioLK-
method are all 2-3 sialylated structures which are consistent 
with the literature as well. However, the features captured by 
the LK-method are structures which include the root, which 
may indicate that it is overfitting to the data. Biologically 
speaking, one would also assume that the structures at the 

terminal end, and in particular the non-reducing end, are those 
that would be considered to be drug targets, as opposed to the 
larger structures containing common core structures. Indeed, 
the results of the LK-method all contained a common O-glycan 
core structure, whereas the BioLK-method extracted the 
common terminal structure from the non-reducing end of these 
results.  
  

 
Figure 5: Top 3 features on the mouse_fuc dataset. The feature 
with the top score extracted by the BioLK-method was 
‘ NeuAc 2-3/6Gal 1-4(Fuc 1-3)GlcNAcα β α ’at layer 5, which is 
sialyl-Lewis X, a previously discovered motif for this sample 
[2]. On the other hand, the LK-method always captured larger 
structures from the core. 
 
In order to show the robustness of our method in feature 
extraction, we tested it on glycan profile data of mouse brain 
collected from FucTIV+VII knockout mice, as provided by the 
CFG. We then compared the feature selection results as 
performed by the LK-method and the BioLK-method. The top 
three features extracted by both methods are listed in Figure 5. 
The feature with the top score extracted by the BioLK-method 
was‘ NeuAc 2-3/6Gal 1-4(Fuc 1-3)GlcNAcα β α ’at layer 5, which 
is sialyl-Lewis, a previously discovered motif for this sample 
[2]. On the other hand, the LK-method always captured larger 
structures from the core. Similarly to the cystic fibrosis sample, 
the top results of the BioLK-method contained the common 
non-reducing end structure of the top results of the LK-method, 
thus indicating that the LK-method is probably overfitting to 
the data, whereas our method produced precisely the unique 
substructures (features) of the target data set. 
 
Conclusion:  
In this work, we developed a new tree kernel based on the 
linkage kernel constructed using the weighted q-gram method, 
but we included two major novelties that enabled us to obtain 
highly accurate results, which previous methods were unable to 
obtain. First, the techniques of direct usage of the non-PSD 
similarity matrix to form a positive one largely aided in 
maintaining the biological properties of the data. Many kernels 
developed in bioinformatics ignore this important property in 
kernels, and we show that this is indeed important. Secondly, 
the incorporation of weighted layer information of q-grams 
together enables high accuracy in discriminating between 
classification groups as well as in the correct detection of glycan 
motifs with flexible size. This confirms the necessity of 
including weighted layer information of q-grams in order to 
construct more biologically meaningful tree kernels.  
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Indeed, our results were shown to correspond well with known 
glycan motifs obtained through experimental results, whereas 
the previous methods were unable to obtain the same results. 
Thus, we claim that our new kernel contributes greatly to the 
field of glycoinformatics to obtain a greater understanding of 
glycan functions in various areas of biological research. 
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Supplementary materials: 
 
Methodology: 
q-gram Representation   
The following terminology will be used throughout this paper. We use a labeled ordered rooted tree to characterize the molecular 
structure of a glycan. For glycans, the vertex labels stand for the monosaccharide type while the edge labels represent glycosidic 
bonds. Since the order of the children is significant, the tree of glycans is considered ordered. The monosaccharide at the reducing 
end is considered the root. We also define the concept of a layer for subtree rooted at a monosaccharide (i.e. a vertex) as the distance 
of the vertex from the root. 
 
We formulate q-grams for labeled ordered rooted trees. A q-gram is defined as a tree with q nodes isomorphic to a path where every 
node has at most two adjacent nodes, for 1q ≥ . A q-gram representation of a specific glycan is denoted as a vector of length N, 
where N is the total number of q-grams within the glycan data set being investigated. Figure 2 shows the q-gram decomposition of 
the given glycan structure (data not shown, please check with authors).   In total, if the glycan data set contains N glycans 

{ }1 2, , Ng g gL , we denote the set of all q-grams existing in these N glycans to be a q-gram set: { }1 2, , qn
q q q qφ φ φΦ = L . For a specific 

glycan ig  in the data set, the q-gram representation is a column vector 1 2, ,
q

T
q q q q
i i i n ix x x x⎡ ⎤= ⎣ ⎦L where q

lix  is the number of lth q-gram 

in the glycan ig .  
q-gram Similarity in LK-method  
Next, we describe the concept of similarity between two glycans (each represented as a q-gram) as defined in the LK-method.  For 
each q-gram, there are q  monosaccharides and 1q −  glycosidic bonds linking them to one another. When 1q = , we just consider a 

single monosaccharide instead. Suppose a q-gram is characterized by { }, , ,q l M Bφ σ= , where l  is the layer of the q-gram, M  is 
the ordered set of monosaccharides it contains, B  stands for the corresponding chemical bonds and σ  represents the structure 
shape (i.e., linear, branched, etc.) of this q-gram.  
Given two q-grams { }, , ,i i i i i

q l M Bφ σ=  and { }, , ,j j j j j
q l M Bφ σ= , the similarity between the two q-grams are defined as:  

1

1 1

( , ) ( , ) ( , ) ( , ) ( , )
q q

i j i j l i j M i j B i j
q q q k k k k

k k

S S S l l S m m S b bσφ φ σ σ
−

= =

= ⋅ ⋅ ⋅∏ ∏  

Where ( , )i jSσ σ σ  is the similarity between the shapes of the two q-grams, ( , )l i jS l l  is the similarity between the layers of the 

two q-grams, ( , )M i j
k kS m m  is the similarity of the corresponding monosaccharides, and ( , )B i j

k kS b b  is the similarity of the chemical 
bonds.  
The similarity of shape between two q-grams is defined as:  

1,
( , )

0,

i j
i jS

otherwise
σ σ σ
σ σ

=⎧
= ⎨
⎩

 

The similarity of layers is defined using the distance of layers:  

( , ) 1
m ax( )

i j
l i j

l l
S l l

l

−
= −  

The similarity among monosacccharides is obtained from the chemical structure comparison method SIMCOMP developed by [19]. 
For the bond similarity, it is defined according to their chemical meanings (additional data available with authors).  
 
The linkage kernel in the LK-method then can be created by:  

LK T T
q q q q qK V S S V= ⋅ ⋅ ⋅  

Where qV  is the q-gram representation matrix of the glycan data set.  
 
Biochemically-Weighted Kernel Construction: BioLK-method  
In order to bypass the issue of the non-PSD property in kernel construction, the LK-method uses TS S as a replacement for the 
similarity matrix S  However, from a biological standpoint, the kernel should be constructed as follows:  

T
q q q qK V S V= ⋅ ⋅  kq = vtq 

Here our objective is to directly use the indefinite similarity measures to construct both a new one that is PSD and that biologically 
shares more similarity with the original similarity matrix. 
 
Mathematically, the similarity matrix S can be decomposed as follows:  

TS X P X= ⋅ ⋅  
Where X  is the unit eigenvector matrix corresponding to the eigenvalues sorted in ascending order, P is the diagonal matrix of 
eigenvalues sorted in ascending order. Usually the similarity matrix constructed is non-PSD which means there are negative 
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eigenvalues. Taking into consideration the fact that the denoising method and the flipping method (described in the Introduction 
part) both can yield high precision in classification for protein datasets [20], we may get some clues in constructing a new similarity 
matrix based on the original non-PSD one. Basically, we should keep the original positive eigenvalues while avoiding the 
magnification of negative eigenvalues. Therefore, the new similarity matrix is proposed as:  
ˆ ˆ TS X P X= ⋅ ⋅  

where  

1

2

ˆ 0 0
ˆ0 0ˆ

ˆ0 0 n

P

λ

λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

M M O M

L

 

and ˆ , 1, 2,i i nλ = K  are defined as:  
1 1,ˆ
,

i
i

i
i

e
otherwise

λ λ
λ

λ

−⎧ ≤⎪= ⎨
⎪⎩

 

The newly developed similarity matrix in this context is PSD. It preserves the ascending property of eigenvalues without changing 
most of the positive eigenvalues. Moreover, the effect of negative eigenvalues is also included without magnification.  
 
However, the similarity matrix only considers the similarity of the geometric structure, monosaccharides and glycosidic bonds 
among q-grams. Glycans exhibit the property that substructures near the leaf are more variable. It is therefore desirable that we 
include this biological information in kernel construction. This may play a pivotal role in capturing exact motifs in feature selection. 
 
We measure the importance of q-grams by defining BioWeight for them according to the layer of q-grams.  

[ ]( ) , 0,1
ii l

qBioWeight eαφ α⋅= ∈  
The kernel therefore can be constructed as follows:  

ˆBioLK T
q q qK V BioWeight S BioWeight V= ⋅ ⋅ ⋅ ⋅  

 
For the BioWeight matrix α is a parameter to be predetermined. It endows the q-grams as a unit with significance in the whole 
feature set. The function we choose for BioWeight originates from a weight function used in constructing the similarity matrix for 

the leukemia data set [5]. The two functions 
ileα  and 1

ile α−− share similarity in putting more weight on the substructures in the 
variable region. The reason for α  as a parameter to be predetermined in our paper is that for different data sets, the number of 
features embedded varies from one to another. In the case of large data sets with numerous complicated features, α should be set 
to a smaller value because large α will pose too much significance on the variable part, thereby bringing about side effects to 
extract wrong substructures. On the other hand, relatively smaller data sets contain fewer and simpler structures, under which 
circumstance the data would be less sensitive to largeα . Values of α that are too small, on the other hand, would not help much 
to differentiate different features. Thus, while greater α  may contribute to better feature selection results, they must not be too 
large, but not so small that feature selection cannot be performed well. We have thus developed an algorithm to select the 
appropriate values for α given the size of the feature set (data not shown). 
 
Feature Selection   
For 1, 2, ,9q = K , we use the discriminant score ( )xδ  obtained from the trained SVM to represent the contribution of each q-gram 
pattern. The feature score representing the importance of feature f is defined as follows:  
( ) ( ) ( )x

x X
F f x I fδ

∈

= ⋅∑  

where x  is the glycan, and X  is the whole glycan data set being investigated.  
1,

( )
0, .x

If x contains feature f
I f

otherwise
⎧

= ⎨
⎩

 

The features with higher feature scores may be potential motifs. We select the most likely substructures under this mechanism. 
 

Table 1: Data set composition 
Leukemia 162 Erythrocyte 111 Plasma 73 Serum 85 Total 355 
Cystic 107 Respiratory 89 Bronchial 101  Total 177 
Wildtype 47 FucTIV+VII 50   Total 97 
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Table 2: For each ( 1, 2, ,9)q q = K , the table illustrates the average AUC value over the 10 runs with standard deviations. Both LK-
method and BioLK-method show comparable classification performance. For the leukemia data, the classification performance 
always achieves accuracy greater than 89%.  

q LK-method BioLK-method 
1 0.906±0.002 0.914±0.004 
2 0.952±0.004 0.959±0.003 
3 0.964±0.002 0.959±0.005 
4 0.957±0.003 0.951±0.005 
5 0.948±0.003 0.948±0.005 
6 0.924±0.004 0.934±0.003 
7 0.927±0.003 0.925±0.006 
8 0.900±0.007 0.904±0.004 
9 0.893±0.008 0.893±0.006 
 

Table 3: For each ( 1, 2, ,9)q q = K , the table illustrates the average AUC value over the 10 runs with standard deviations. Both LK-
method and BioLK-method show comparable classification performance. In the cystic fibrosis data set, the classification accuracy 
decreases slightly, but still achieves around 80% on average. For 9q =  in this data set, the performance goes down to 53% which is 
reasonable since this data set is much less complex when compared to the other two data sets, reflecting the fact that the number of 
features involved in 9-gram classification are few. 

q LK-method BioLK-method 
1 0.777±0.011 0.792±0.014 
2 0.78±0.020 0.792±0.016 
3 0.798±0.018 0.798±0.014 
4 0.793±0.015 0.815±0.022 
5 0.788±0.017 0.801±0.021 
6 0.746±0.022 0.755±0.020 
7 0.700±0.025 0.691±0.030 
8 0.613±0.024 0.612±0.031 
9 0.527±0.028 0.521±0.033 
 

Table 4: For each ( 1, 2, ,9)q q = K  , the table illustrates the average AUC value over the 10 runs with standard deviations. Both LK-
method and BioLK-method show comparable classification performance. For the mouse data set, the classification performance is 
also high, achieving accuracies in the 80% range. 

q LK-method BioLK-method 
1 0.718±0.019 0.726±0.02 
2 0.735±0.022 0.742±0.014 
3 0.787±0.016 0.804±0.031 
4 0.916±0.017 0.905±0.015 
5 0.880±0.02 0.885±0.012 
6 0.860±0.012 0.878±0.023 
7 0.875±0.015 0.889±0.019 
8 0.879±0.021 0.897±0.013 
9 0.868±0.013 0.872±0.024 
    


