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To date, most genetic association studies of tobacco use have been conducted in European American subjects using the phenotype of

smoking quantity (cigarettes per day). However, smoking quantity is a very imprecise measure of exposure to tobacco smoke

constituents. Analyses of alternate phenotypes and populations may improve our understanding of tobacco addiction genetics. Cotinine

is the major metabolite of nicotine, and measuring serum cotinine levels in smokers provides a more objective measure of nicotine dose

than smoking quantity. Previous genetic association studies of serum cotinine have focused on individual genes. We conducted a genetic

association study of the biomarker in African American (N¼ 365) and European American (N¼ 315) subjects from the Coronary Artery

Risk Development in Young Adults study using a chip containing densely-spaced tag SNPs in B2100 genes. We found that rs11187065,

located in the non-coding region (intron 1) of insulin-degrading enzyme (IDE), was the most strongly associated SNP (p¼ 8.91� 10�6) in

the African American cohort, whereas rs11763963, located on chromosome 7 outside of a gene transcript, was the most strongly

associated SNP in European Americans (p¼ 1.53� 10�6). We then evaluated how the top variant association in each population

performed in the other group. We found that the association of rs11187065 in IDE was also associated with the phenotype in European

Americans (p¼ 0.044). Our top SNP association in European Americans, rs11763963 was non-polymorphic in our African American

sample. It has been previously shown that psychostimulant self-administration is reduced in animals with lower insulin because of

interference with dopamine transmission in the brain reward centers. Our finding provides a platform for further investigation of this, or

additional mechanisms, involving the relationship between insulin and self-administered nicotine dose.
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INTRODUCTION

Nicotine addiction continues to be the largest modifiable
risk factor for morbidity and mortality in developed
countries (Bergen and Caporaso, 1999) because of its
causative link to cancer, cardiovascular, and respiratory
diseases. The attributable risk of lung cancer due to smok-
ing is B90%, with the burden of lung cancer being greater

in African-Americans compared with European Americans
(Haiman et al, 2006). The average 1975–2007 annual age
adjusted per 100 000 incidence and mortality rates of lung
cancer in African Americans was found to be 81.8 and 63.4,
respectively, in comparison with 64.1 and 53.9 for European
Americans (Ries et al, 2008). Recent genome-wide associa-
tion studies (GWAS) have identified several genetic variants
that influence nicotine intake, including a strong, replicated
association between genetic variants in the chromosome
15 nicotinic receptor subunit cluster and smoking quantity
in European Americans (Liu et al, 2010; Thorgeirsson et al,
2008; Thorgeirsson et al, 2010; Tobacco and Genetics
Consortium, 2010).

Although genetic association studies have succeeded
in identifying genetic variants on chromosome 15 that
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influence tobacco use, self-reported measures of smoking
may not accurately reflect nicotine intake. Cotinine is the
major metabolite of nicotine, with 75–80% of nicotine
transformed to cotinine (Hukkanen et al, 2005; Swan et al,
2009). It has a longer half-life than nicotine, and it is widely
used as a biomarker for nicotine exposure. Serum cotinine
levels provide a more accurate measure of nicotine intake
than self-reported cigarettes per day and the preference of
using serum cotinine in research over cigarettes per day has
been suggested in both genetic (Keskitalo et al, 2009) and
non-genetic (Gorber et al, 2009) literature.

Cotinine levels vary across populations. After controlling
for number and yield of cigarettes, Wagenknecht et al
(1990) observed that African American smokers have
significantly higher serum cotinine levels in comparison
with European American smokersFa finding that has since
been independently replicated (Caraballo et al, 1998).
To date, there are no published reports of serum coti-
nine genetic association analyses evaluating and comparing
the genome in these two racial groups. We, therefore,
conducted a genetic association study of serum cotinine
levels in African and European Americans using the IMAT-
Broad-Candidate Gene Association Resource (CARe) (IBC)
chip that includes genetic variants in B2100 genes. This
approach allows for the examination of the effect of genetic
variation on nicotine intake as measured by cotinine levels
rather than self-reported cigarette consumption and for
the comparison of variation in effects across these two
populations. This comparison is important because of the
potential for differences across populations in linkage
disequilibrium patterns, disease allele frequency, genetic
effect size, and rare variant effects.

MATERIALS AND METHODS

Study Participants

Participants were a part of The National Heart, Lung, and
Blood Institute’s Coronary Artery Risk Development in
Young Adults ‘CARDIA’ Study. CARDIA was designed to
examine the development, determinants, and risk factors of
clinical and subclinical cardiovascular disease. A total of
5115 young adult African and European American men and
women completed the baseline examination in 1985–1986.
The participants were selected so that there would be
approximately the same number of people in subgroups of
race, gender, education (high school or less and more
than high school), and age (18–24 and 25–30) in each of
four centers: Birmingham, AL; Chicago, IL; Minneapolis,
MN; and Oakland, CA. Periodic follow-up examinations
were held through 2006 with high participant retention
(72–90%). Additional details can be found on the CARDIA
website (http://www.cardia.dopm.uab.edu/).

This report focuses on participants with baseline serum
cotinine levels who reported, on an interviewer-adminis-
tered questionnaire, current regular smoking of at least five
cigarettes per week almost every week for the past 3 months.
Subjects reporting current use of nicotine gum, cigar, or
pipe, and subjects with cotinine values of zero were excluded
from the analysis. The final sample included subjects with
available phenotype and genotype data in African Americans
(N¼ 365) and European Americans (N¼ 315). In the African

American cohort, 43.6% of subjects were male and the mean
age of the participants was 25.1 (SD¼±3.6). In the
European American cohort, 44.4% of subjects were male
and the mean age of the participants was 25.3 (SD¼±3.4).

Phenotype

Blood for cotinine level analysis was collected under a
standardized protocol. A 1 ml aliquot of serum was frozen
and shipped to the Clinical Biochemistry Laboratories at
the American Health Foundation. Cotinine was determined
by radioimmunoassay using the method of Haley et al
(1983) after a modification of the method described by
VanVunakis et al (1987). A 3.4% sample of randomly
selected blind duplicates was submitted by the field centers
over the entire study period for an external assessment of
quality. Cross-classification of the duplicate samples of both
smokers and non-smokers yielded a 91% (177/ 194) exact
agreement rate. Internal quality control was maintained as
well; the inter-assay coefficient of variation was 7%.

The mean value of serum cotinine levels in European
Americans was 194.1 (SE¼±7.8), whereas in African
Americans it was 236.5 (SE¼±8.1). The mean of the
self-reported cigarettes per day in European Americans was
16.6 (SE¼±0.6), whereas in African Americans it was 10.5
(SE¼±0.4). A t-test comparison resulted in a finding of a
significant difference in the means of both serum cotinine
(po.001) as well as cigarettes per day (po.001) between the
two populations. Our finding is in agreement with previous
studies, which showed that African Americans have higher
serum cotinine levels than European Americans (Caraballo
et al, 1998; Clark et al, 1996; English et al, 1994; Pattishall
et al, 1985; Wagenknecht et al, 1990). Some researchers
have suggested that this difference is attributable, at least in
part, to nicotine metabolism (see Supplementary Figure 2
for nicotine metabolism; Nakajima et al, 1996; Perez-Stable
et al, 1998). Nicotine and cotinine are metabolized primarily
by the enzyme CYP2A6 (Cashman et al, 1992; Nakajima
et al, 1996). CYP2A6 is highly polymorphic (http://www.
cypalleles.ki.se/cyp2a6.htm), and the frequency of CYP2A6
polymorphisms differs significantly across populations
(Mwenifumbo et al, 2010).

Genotyping Assay

Samples from the CARDIA study were genotyped as part
of the CARe project (Musunuru et al, 2010). The content of
the genotyping array, ITMAT-Broad-CARe or ‘IBC chip’, is
informed by GWAS, expression quantitative trait loci,
pathway-based approaches, and comprehensive literature
searching. It was designed to study a number of phenotypes,
such as coronary heart disease, aging, blood biomarkers, and
hypertension, however, it includes loci relevant to addiction.
As an example, it contains densely spaced SNPs from 84 of
the 130 genes from the ‘addiction array’ (Hodgkinson et al,
2008) and additional genes that are not on the addiction
array, but were found to be associated with addiction
phenotypes in later genetic association studies. With respect
to genes previously associated with nicotine dependence,
IBC chip has good coverage of dopamine receptor genes, and
CYP2A6Fthe gene that mediates most of the metabolism of
nicotine (to cotinine), but no coverage of the gene that
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mediates nicotine glucuronidation UTG 2B10 responsible
for B10–20% of nicotine metabolism. The coverage of
the chromosome 15 nicotinic receptor subunit region is
moderate and includes SNPs upstream of CHRNA5 that are
in LD with the enhancer region previously associated with
nicotine dependence (Smith et al, 2011), as well as a variant
within CHRNA5. Please see Supplementary Table 2 for
information regarding the degree of coverage of some of the
genes previously found to be associated with nicotine
dependence (Wang and Li, 2010).

The loci (candidate genes and regions) on the IBC chip
are divided into three Groups: Group (1) n¼ 435 loci with a
high likelihood of functional significance (tag SNPs selected
to capture known variation with minor allele frequency
(MAF)40.02 and an r2 of at least 0.8 in HapMap popula-
tions); Group (2) n¼ 1349 loci potentially involved in
phenotypes of interest or established loci that required very
large numbers of tagging SNPs (tag SNPs selected to capture
known variation with MAF40.05 with an r2 of at least 0.5 in
HapMap populations); and Group (3) n¼ 232 loci com-
prised mainly of the larger genes (X100 kb), which were of
lower interest a priori to the investigators (includes only
non-synonomous SNPs and known functional variants). The
average number of SNPs per locus across Group 1 and
Group 2 loci was compared with the average number of SNPs
per equivalent loci from GWAS products. The average
coverage for Group 1 loci is B36.5 SNPs per locus on the IBC
chip. The Illumina Human 1 M (San Diego, CA, USA) and
Affymetrix 6.0 platform (Santa Clara, CA, USA), for com-
parison, have an average of B28.0 and B17.4 SNPs,
respectively, across the equivalent IBC loci. The average
number of SNPs observed for the Group 2 loci is B16.3
SNPs, which is comparable with the current GWAS products.

Additional details regarding the design of the IBC chip
have been described in (Keating et al, 2008). In total, 49 320
SNPs were chosen to map B2100 candidate gene loci. For
detailed genotyping and QC information, see (Musunuru
et al, 2010).

Statistical Analyses

As with previous genetic association analyses of cotinine
levels (He et al, 2009; Keskitalo et al, 2009), we evaluated
association between serum cotinine levels and age, gender,
BMI, and education. In the African American cohort,
we found associations with BMI (p¼ 0.025) and educa-
tion (p¼ 0.008), and in the European American cohort we
found associations with age (p¼ 0.003), gender (p¼ 0.004),
and education (p¼ 0.023). We used the R statistical pack-
age (The R Foundation for Statistical Computing, Vienna,
Austria) to make residuals based on adjustment by
covariates significantly associated with the phenotype per
each racial group. The serum cotinine phenotype was then
Box–Cox transformed yielding normally distributed data
(African American Cohort: Lilliefors (Kolmogorov–Smir-
nov) normality test p-value¼ 6.24� 10�07 before normal-
ization and 0.799 after normalization; European American
Cohort: Lilliefors normality test p-value¼ 2.38� 10�05

before normalization and 0.609 after normalization). In
the European American cohort, one subject was removed
after Box–Cox transformation because the subject’s pheno-
type value was 43SDs away from the mean.

Association analysis was performed in PLINK (Purcell
et al, 2007) using linear regression under an additive genetic
model. We addressed population stratification by conduct-
ing principal component analysis as implemented in
EIGENSTRAT (Price et al, 2006). The first 10 principal
components were included as covariates in the genetic
association analysis. The Bonferroni adjustment for multi-
ple comparisons was set at an a level of 2.3� 10�6. The
a value was set at 0.05 for the comparison of top variation in
effects across the two populations.

Imputation of ungenotyped variants was done using a
combined CEU + YRI reference panel, including SNPs segregat-
ing in both CEU and YRI, as well as SNPs segregating in one
panel and monomorphic and non-missing in the other,
resulting in 270 000 total SNPs. The use of the CEU + YRI panel
resulted in an allelic concordance rate of B95.6%, calcu-
lated as 1–1/2� |imputed_dosage–chip_dosage|. This rate is
comparable to rates calculated for individuals of African descent
imputed with the HapMap 2 YRI individuals (Huang et al,
2009). In the first step of imputation, individuals with pedigree
relatedness or cryptic relatedness (pi_hat40.05) were filtered
out. Recombination and error rate estimates for the entire
sample were calculated based on a subset of random individuals.
Next, these rates were used to impute all sample individuals
across the entire reference panel. SNPs with poor imputation
scores (RSQ_HATo0.6) and a MAFo0.01 were filtered out.

RESULTS

Genomic control (GC) analysis did not result in a significant
inflation of the w2-test statistic in the African American
cohort (GC inflation factor lGC¼ 0.967). The European
American cohort lGC value of 1.012 was adjusted for
inflation. Single-nucleotide polymorphisms that were the
most strongly associated with serum cotinine in the two
cohorts are summarized in Table 1. In African Americans,
the variant rs11187065 (imputed SNP) in IDE (the gene
encoding insulin-degrading enzyme or Insulysin) exhibited
the strongest association where each additional copy of the
rs11187065*C minor allele corresponded to lower serum
cotinine levels (b¼�85.14; SE¼ 18.88; p¼ 8.91� 10�06).
The next two most strongly associated SNPs, rs11187064
(genotyped SNP) and rs17445328 (imputed SNP), also reside
in IDE. See Figure 1 for a regional plot of the IDE region on
10q23–q25. In European Americans, rs11763963 (imputed
SNP), located on chromosome 7p15 exhibited the strongest
association where each additional copy of rs11763963*C
minor allele corresponded to higher serum cotinine levels
(b¼ 106.82; SE¼ 22.22; p¼ 1.53� 10�06; Figure 2). This
finding was closely followed by a second locus in MORF4L1
(mortality factor 4 like 1; Figure 3) with each copy of the
major A allele of rs12050510 (imputed SNP) corresponding
to higher serum cotinine levels (b¼ 83.21; SE¼ 17.83;
p¼ 3.07� 10�06). rs12050510 was not significantly asso-
ciated with serum cotinine levels in the African American
cohort (p¼ 0.17).

For the top SNP associations in both African and
European Americans, we examined whether a similar
signal existed in the other group. We found that the top
variant in African Americans, rs11187065, was also asso-
ciated with serum cotinine levels in the European American
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group, where each additional copy of rs11187065*C
minor allele corresponded to lower serum cotinine levels
(b¼�24.91; SE¼ 12.36; p¼ 0.044). The top variant identified

in European Americans, rs11763963, was non-polymorphic in
the African American sample. Because rs11187065 was
associated with serum cotinine levels in both populations, in
Supplementary Table 1 we present associations of variants
across IDE in both populations. Whereas in the European
American population there is a high degree of LD in the region
(Supplementary Figure 1b), leading to multiple, significant
associations across the gene, lower levels of LD in African
Americans (Supplementary Figure 1a) result in fewer variants
significantly associated with serum cotinine levels. The most
significant association in African Americans is localized to the
region in the first intron of IDE.

DISCUSSION

We examined serum cotinine levels for association with
genetic variants from a large number of candidate genes
in two populations with different linkage disequilibrium
patterns. Cotinine levels are a more objective measure
of nicotine intake than cigarettes per day (Gorber et al,
2009) because self-reported questionnaires or interviews
may result in underreporting of smoking quantity (Jarvis
et al, 1984) and also because cigarettes can be smoked
distinctively with different nicotine delivery from person to
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Table 1 Association of Genomic Variants with Serum Cotinine Levels in African and European American CARDIA Cohorts

COHORT CHR SNP SNP STATUS BP GENE A1 A2 A1_FRQ BETA (b) SE P

African American 10 rs11187065 I 94301904 IDE C T 0.09 �85.14 18.88 8.91E-06

10 rs11187064 G 94298233 IDE C T 0.09 �80.65 18.10 1.12E-05

10 rs17445328 I 94295169 IDE A G 0.90 80.47 18.10 1.18E-05

European American 7 rs11763963 I 26611958 NA C T 0.06 106.82 22.22 1.53E-06

15 rs12050510 I 76972174 MORF4L1 A G 0.87 83.21 17.83 3.07E-06

15 rs1836556 I 76991415 MORF4L1 A G 0.87 82.94 17.78 3.08E-06

Abbreviations: A1, allele 1; A2, allele 2; A1_FRQ, allele 1 frequency; BP, base pair; CHR, chromosome; G, genotyped; I, imputed; IDE, insulin-degrading enzyme;
MORF4L1, mortality factor 4 like 1; NA, SNP not located in transcript or within 2 kb flanking the transcript of a gene; SE, standard error; SNP, single-nucleotide
polymorphism; SNP STATUS, type of SNP (note: SNPs included here have imputation score X0.7).
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person. We found that rs11187065, located in intron 1 of
IDE, was the most strongly associated variant with serum
cotinine levels in African Americans. The association
observed with this variant was also found in the CARDIA
European American cohort.

The associated IDE SNP, rs11187065, is located in intron 1
of the gene. Previously, no study has reported a genetic
association with this SNP, however, proxies of rs11187065,
rs4646955 (imputed SNP and SNP #38 in Supplementary
Table 1), and rs4646953 (r2 value of 0.785 with rs11187065),
have been associated with an approximately twofold
increased risk for Alzheimer’s disease in the Finnish
population (Vepsalainen et al, 2007). rs4646953, a functional
SNP (based on location in the 50 promoter region of IDE),
was not genotyped or imputed in our study. rs4646955 was
associated with serum cotinine levels at a p-value 1.78� 10�5

in our African American sample and a p-value of 0.082 in our
European American cohort. It is important to note that in
this region there is high LD in European Americans,
presumably responsible for multiple associations observed
across the gene in this population. In the African American
population, which has lower levels of LD in this region, the
association is localized to intron 1, suggesting the approxi-
mate position of a functionally relevant region. Given the
proximity and LD between the associated region and the 50-
UTR region, it is possible that our top SNP is tagging a
functional SNP in the promoter region of the gene.

Although genetic association studies of cotinine levels do
not reveal whether a genetic variant influences behavioral
(pharmacodynamic) or metabolic (pharmacokinetic; either in
the periphery or the brain) mechanism(s), results of previous
research on insulin and addictive substances suggest that our
finding may represent a pharmacodynamic or a behavioral
effect. Nicotine treatment of cells enhances insulin-induced
activation of extracellular signal-regulated kinase (ERK) and
phosphoinositide 3-kinase pathways, as well as increases
expression of insulin receptor substrate (IRS) proteins IRS-1
and IRS-2 (Sugano et al, 2006), which are expressed in the

brain (Taguchi et al, 2007; Wang et al, 2009). However,
whether and how this interferes with behavioral aspects of
nicotine, namely insulin’s regulation of dopamine and/or
other neurotransmitters (Garcia et al, 2005; Owens et al, 2005;
Williams et al, 2007), relevant to cellular and behavioral
aspects of psychostimulant addiction (Sugano et al, 2006;
Williams et al, 2007), or with insulin’s effect on ERK signaling,
essential for learning and memory formation, still needs to be
determined. IDE is highly expressed in the brain (Farris et al,
2005) where the mechanism of IDE to degrade amyloid-b
protein (Farris et al, 2003; Farris et al, 2004; Qiu et al, 1998;
Qiu and Folstein, 2006; Vekrellis et al, 2000; Baskin et al, 1994;
Miller et al, 2003) has been extensively evaluated.

In our sample of European American subjects, a relatively
rare SNP rs11763963 was the most strongly associated variant
(Figure 2). rs11763963 lies on chromosome 7 and it is not
polymorphic in African Americans. A nearby gene SKAP2
encodes Src kinase-associated phosphoprotein 2. The protein
belongs to the src family kinases, which regulate the neuronal
nicotinic acetylcholine receptor (Wang et al, 2004). Whether
the observed finding in this region is modulated by this gene
or other nearby genes is a topic of future investigation. This
top SNP was closely followed by two SNPs, rs12050510 and
rs1836556 (imputed SNP), in and near MORF4L1Fa
transcription regulator, which was found to be significantly
upregulated in the ventral tegmental area of nicotine-infused
rats (Kurochkin and Goto, 1994). Linkage disequilibrium in
the region across MORF4L1 is very high (Figure 3) and the
proxies of rs12050510Four top SNP in this regionFextend
to both 50 and 30 region of the gene.

Previously, investigators conducted a single locus analysis
between serum cotinine levels and the cluster of nicotinic
receptor subunit genes on chromosome 15 (Keskitalo et al,
2009). They showed larger effect sizes for serum cotinine
in comparison to the cigarettes per day phenotype, and
suggested that future studies concerning the effects of nicotine
should strive to use cotinine levels from serum or saliva rather
than self-reported smoking quantity as a measure of nicotine
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intake or its regulation. In our European American cohort,
multiple variants in CHRNA5, CHRNA3, and CHRNB4, were
associated with serum cotinine levels (po0.05; Figure 3).
Interestingly, of the 114 SNPs in the region, none were
associated with cotinine levels in our African American sample
of individuals at a p-value o0.05.

Although the p-value (8.9� 10�06) of IDE SNP rs11187065
in the African American cohort did not reach the Bonferroni-
adjusted threshold of statistical significance (2.3� 10�6), the
central theme of our study is that this top SNP in African
Americans replicated in our European American cohort
(p¼ 0.044) despite the fact that the sample included only 315
subjects. Replicability of a finding with one available cohort,
especially of a different genetic ancestry and such a small size,
may be limited even for non-behavioral phenotypes, but
perhaps more so for a behavioral phenotype such as smoking.
These results suggest that this locus should be investigated
further in additional cohorts. It is important to note that our
cohort included subjects 18–30 years of age. It remains to be
determined whether the association may be observed in older
smokers. In addition, genetic studies typically attempt to
address genetic risk of a trait rather than current state.
Successful methodologies for assessing lifetime smoking
patterns have been difficult to achieve, however, it is possible
that a self-report measure of cigarettes smoked per day
during heaviest period of smoking may be more valuable for
a genetic study than current state measured by cotinine levels.

Even with the limited sample size, the power to detect the
effects observed here was more than sufficient (490%).
This is the first study to extensively evaluate the genome
(B2100 genes) in an analysis of serum cotinine levels in
both African Americans as well as European Americans.
We have shown that the IDE locus is involved in regulation
of nicotine intake, as measured through serum cotinine
levels, in both populations. Our work supports the idea of
using serum cotinine to efficiently map regions in the
genome that influence tobacco use.
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