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Several lines of evidence indicate that the diacylglycerol kinase eta (DGKH) gene is implicated in the etiology of bipolar disorder (BD).

However, the functional neural mechanisms of DGKH’s risk association remain unknown. Therefore, we examined the effects of three

haplotype-tagging risk variants in DGKH (single nucleotide polymorphisms rs9315885, rs1012053, and rs1170191) on brain activation

using a verbal fluency functional magnetic resonance imaging task. The subject groups consisted of young individuals at high familial risk of

BD (n¼ 81) and a comparison group of healthy controls (n¼ 75). Individuals were grouped based on risk haplotypes described in

previous studies. There was a significant risk haplotype*group interaction in the left medial frontal gyrus (BA10, involving anterior

cingulate BA32), left precuneus, and right parahippocampal gyrus. All regions demonstrated greater activation during the baseline

condition than sentence completion. Individuals at high familial risk for BD homozygous for the DGKH risk haplotype demonstrated

relatively greater activation (poor suppression) of these regions during the task vs the low-risk haplotype subjects. The reverse pattern

was seen for the control subjects. These findings suggest that there are differential effects of the DGKH gene in healthy controls vs the

bipolar high-risk group, which manifests as a failure to disengage default-mode regions in those at familial risk carrying the risk haplotype.
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INTRODUCTION

Bipolar disorder (BD) is a highly debilitating condition
marked by recurrent episodes of depression and mania.
Epidemiological research has shown that BD has a strong
genetic component, with heritability estimates ranging from
59 to 93% (Bertelsen et al, 1977; McGuffin et al, 2003).
Genetic linkage and candidate gene association studies
indicate that BD is likely to be a complex polygenetic
disorder with individual genes conferring small influences
to overall risk of disorder (Barnett and Smoller, 2009).

One of the first susceptibility genes for BD to be identified
by the genome-wide association study (GWAS) approach in
two independent samples of European origin was diacyl-
glycerol kinase eta (DGKH) (Baum et al, 2008). Association
was found for three single nucleotide polymorphisms
(SNPs) located in the first intron of the DGKH gene
(rs9315885, rs1012053, and rs1170191). Although some
studies have not confirmed this association (Sklar et al,
2008; Tesli et al, 2009; Yosifova et al, 2009), numerous lines

of evidence indicate that DGKH might be involved in the
etiology of the disorder. First of all, DGKH is located in the
region 13q14 that has been linked to BD in previous studies
(Badner and Gershon, 2002; Detera-Wadleigh and
McMahon, 2006). Further, an association of DGKH with
BD has been replicated in a Sardinian as well as a Chinese
sample at the haplotype level (Zeng et al, 2011; Squassina
et al, 2009). A recent study also reported an association of
DGKH with BD, as well as unipolar depression and adult
attention deficits/hyperactivity disorder (Weber et al, 2011).
In addition, SNP rs9315885 has been associated with BD in a
Finnish family cohort (Ollila et al, 2009), and the GWAS
carried out by the Wellcome Trust Case Control Con-
sortium (The Wellcome Trust Case Control Consortium,
2007) indicated association for several SNPs near and
within DGKH (Manchia et al, 2009; Robbins and Arnsten,
2009). Finally, gene expression level of DGKH in the
prefrontal cortex has been reported to be significantly
increased in BD patients (Moya et al, 2010). The DGKH gene
is also of particular interest as it encodes the Z isoform of
diacylglycerol kinase that is involved in the phosphoinositol
pathway through which lithium, one of the most effective
pharmacological treatments for BD, is thought to exert its
therapeutic effects (Manji and Lenox, 1999).

Together, these findings suggest the involvement of the
DGKH gene in the pathophysiology of BD. To the best of
our knowledge, however, no study has examined association
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between genetic variation in the DGKH gene on brain
activation. Therefore, we investigated the effects of three
SNPs of the DGKH gene that have been associated with BD
(Baum et al, 2008) on brain activation during a functional
magnetic resonance imaging (fMRI) paradigm in healthy
controls and a group of individuals at high familial risk of
the disorder. The advantage of studying brain activation
patterns in individuals who are unaffected by BD them-
selves but have a close relative suffering from the disorder is
that findings are likely to reflect the influence of shared risk
genes for the disorder, excluding confounding effects of
chronic illness or medication.

We examined the effects of the DGKH haplotype in those
at familial risk for the disorder in relation to healthy
controls. We hypothesized that as DGKH has been
associated with risk for BD, the effects of the low-risk vs
high-risk haplotype may differ in those who have an already
present genetic loading for the disorder vs those without.
As there is limited literature regarding this particular
susceptibility gene in terms of regional brain activation, we
hypothesized that these differences would occur in regions
previously implicated in the disorder, specifically the
prefrontal cortex. We employed the verbal initiation section
of the Hayling Sentence Completion Test (Burgess and
Shallice, 1996) involving verbal fluency and word produc-
tion to test this hypothesis. The task was chosen as it has
been shown to differentiate BD patients and those at
increased familial risk for the disorder from healthy
controls with respect to differing brain activation patterns
(McIntosh et al, 2008b; Whalley et al, 2011). It has also been
found to activate left superior and middle prefrontal regions
(Allen et al, 2010), anterior cingulate areas (Nathaniel-
James et al, 1997), as well as the striatum (McIntosh et al,
2008b), which are considered to be involved in the
pathophysiology of BD (Strakowski et al, 2005; Cerullo
et al, 2009). Moreover, it probes neuropsychological deficits
in verbal initiation and verbal fluency commonly observed
in BD (Arts et al, 2008).

MATERIALS AND METHODS

Subjects

Individuals at high genetic risk of BD I (BDI) because of a
close family history of the disorder and control subjects
were recruited as part of the Scottish Bipolar Family Study
that has been described in detail elsewhere (Sprooten et al,
2011; Whalley et al, 2011). To identify high-risk partici-
pants, caseloads of psychiatrists across Scotland were
searched for individuals diagnosed with BDI. Diagnoses
were confirmed with the Structural Clinical Interview for
DSM-IV-TR Axis I Disorders (SCID-I) (First et al, 2002) or
the symptom checklist of the Operational Criteria (McGuf-
fin et al, 1991). Subsequently, subjects affected by BDI were
asked to identify a first- or second-degree relative aged 16–
25 years not suffering from the disorder. These unaffected
individuals were invited to participate in this study
providing that they had at least one first-degree, or two
second-degree relatives suffering from BDI. It should be
noted, owing to the age of the subjects, the high-risk cohort
will still be within the risk period for development of the
disorder, hence this group will likely contain those at high

risk who will remain well and those who will subsequently
become unwell. The results should be considered in this
light. Control subjects with no personal history of BD or
family history of a mood disorder in first-degree relatives
were identified from the social networks of the bipolar high-
risk subjects. Only unrelated individuals were included
in the current analysis. Exclusion criteria for all groups
included a personal history of major depression, mania
or hypomania, psychosis, or any major neurological or
psychiatric disorder, a history of substance dependence, a
history of learning disability or any history of head injury
that included loss of consciousness, and any contraindica-
tions to fMRI. A total of 81 bipolar high-risk subjects and 75
controls provided suitable fMRI data along with genetic
information. All participants provided written informed
consent, and the study was approved by the multicentre
research ethics committee for Scotland.

Genotyping

Genomic DNA was extracted from venous blood samples.
The genotyping was conducted by the Wellcome Trust
Clinical Research Facility, Edinburgh, UK (www.wtcrf.ed.
ac.uk), and used standard TaqMan assays, by the TaqMan
PCR-based method (TaqMan, AssayByDesign, Applied
Biosystems, Foster City, California). Subjects were typed
at SNPs rs9315885, rs1012053, and rs1170191 that have been
previously shown to be associated with BDI (Baum et al,
2008). As there was evidence of linkage disequilibrium (LD)
between the SNPs (rs9315885 and rs1012053 D’¼ 0.999,
po0.001; rs9315885 and rs1170191 D’¼ 0.642, po0.001),
we studied the effects of genetic variation of the SNPs
combined as a three-marker haplotype in line with a
previous study (Squassina et al, 2009). In this previous
study, the most common haplotype was T-A-C (for
rs9315885, rs1012053, and rs1170191, respectively). This
haplotype was the only one that showed significant
association with BD, remaining significant after permuta-
tion testing (Squassina et al, 2009). Subjects in the current
study were therefore grouped according to the presence of
this presumed risk haplotype (T-A-C). If they were
homozygous for this risk haplotype they are referred to as
‘RISK + ’, if they were not carriers of the risk haplotype or
heterozygous they are referred to as ‘RISK�’. Differences
from the Hardy–Weinberg equilibrium (HWE) and assess-
ments of linkage disequilibrium were performed using the
genetics package in ‘R’ (version 2.12.1, the R Foundation for
Statistical Computing).

Clinical Assessments

All participants were interviewed by one of the two
experienced psychiatrists (AMM and JES) using the SCID
(First et al, 2002) to confirm the absence of any lifetime axis
I disorders. Current manic and depressive symptoms were
rated using the Young Mania Rating Scale (Young et al,
1978) and Hamilton Rating Scale for Depression (HAM-D)
(Hamilton 1960). Estimates of temperamental variations in
minor affective symptoms were assessed using the Tem-
perament Evaluation of Memphis, Pisa, Paris and San Diego
Autoquestionnaire (TEMPS-A) (Akiskal et al, 2005), a
validated self-rated questionnaire that provides measures
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of cyclothymic, depressive, hyperthymic, irritable, and
anxious temperament. Statistical analysis of demographic
characteristics was conducted using independent t-tests or
w2 tests. For the clinical assessments and measures of
temperament, comparison of groups was conducted using
Mann–Whitney U-tests.

Experimental Paradigm

Subjects performed the verbal initiation section of the
Hayling Sentence Completion Test (Burgess and Shallice,
1997) in the scanner (Whalley et al, 2004). This task is
considered an extension of the verbal fluency task, where
constraint is based on sentence context rather than letter or
semantic category. Briefly, subjects were shown sentences
with the last word missing and asked to silently think of an
appropriate word to complete the sentence and press a
button when they had done so. The task has four levels of
difficulty, according to the range of suitable completion
words suggested by the sentence context. This design allows
both a standard subtraction analysis (sentence completion
vs baseline) and the more constrained parametric analysis
(examining areas of increasing activation with increasing
task difficulty). Sentences were presented in blocks of fixed
difficulty. Each block lasted 40 s and included eight
sentences. Sentences were presented for a period of 3 s
followed by a fixation cross for 2 s. The baseline condition
consisted of viewing a screen of white circles on a black
background for 40 s. The order of the blocks was pseudo-
random, and each block was repeated four times using
different sentences. Standardized verbal instructions were
given before scanning.

Immediately after scanning, subjects were given the same
sequence of sentences on paper and requested to complete
each sentence with the word they first thought of in the
scanner. ‘Word appropriateness’ scores were determined
from the word frequency list of sentence completion norms
(Bloom and Fischler, 1980). A score of one was given to
the most frequently produced word in the word frequency
list, a score of two for the next most frequently produced
word, etc.

Scanning Procedure

Imaging was carried out at the Brain Imaging Research
Centre (BIRC) for Scotland on a GE 1.5. T Signa scanner
(GE Medical, Milwaukee, WI, USA). The functional imaging
protocol consisted of axial gradient-echo planar images
(EPI) (TR/TE¼ 2000/40 ms; matrix¼ 64� 64; field of view
(fov)¼ 24 cm) acquired continually during the experimental
paradigm. Twenty-seven contiguous 5 mm slices were
acquired within each TR. Each EPI acquisition was run
for 404 volumes, the first four of which were discarded. The
T1 sequence yielded 180 contiguous 1.2 mm coronal slices
(matrix¼ 192� 192; fov¼ 24 cm; flip angle¼ 81). Visual
stimuli were presented using a screen (IFIS, MRI Devices,
Waukesha, WI, USA) placed in the bore of the magnet.

Image Processing and Analysis

The EPI and T1 images were reconstructed into nifti format
(Mayo Foundation, Rochester, MN, USA) using DICOM

convert functions available in SPM5 (Statistical Parametric
Mapping: The Wellcome Department of Cognitive Neuro-
logy and collaborators, Institute of Neurology, London)
running in Matlab (The MathWorks, Natick, MA, USA).
Images were preprocessed using standard protocols
available in SPM5. All EPI images were realigned to
the mean volume in the series. The functional images
were then normalized according to the standard co-
registration procedures using the individual’s structural
scan. Finally, all realigned and normalized images were
smoothed with an 8� 8� 8 mm full-width half-maximum
Gaussian filter.

First-level statistical analysis was performed using the
general linear model approach. At the individual subject
level, the data were modeled with four conditions corre-
sponding to the four difficulty levels each modeled by a
boxcar convolved with a synthetic hemodynamic response
function. Estimates of the subject’s movement during the
scan were entered as ‘covariates of no interest’. Before
fitting the model, the participants data were filtered in the
time domain using high pass filter (128 s cutoff), and serial
correlations were accounted for by using the autoregressive
(AR(1)) model. Contrasts were constructed to examine all
four sentence completion conditions vs baseline, and areas
of increasing activation with increasing task difficulty (the
parametric contrast).

Second-Level Analysis

All second-level statistical analyses were conducted
in SPM5. In order to directly test our hypothesis of
differential effects of the risk haplotype between the
controls and bipolar high-risk groups, our approach was
to examine regions where there was a significant geno-
type*group interaction. This was followed by analyzing
pair-wise comparisons of the genotype groups within
the controls and high risk separately to explore the
origin of these interaction effects. For each contrast of
interest (sentence completion vs baseline and parametric
effects), one contrast image per subject was entered into a
second-level random effects analysis. Haplotype*group
interactions were examined using a full factorial ANOVA
model comparing the bipolar high-risk group against
the healthy controls. Haplotype and group were entered
as two factors in the design matrix with two levels of
genotype (risk haplotype homozygotes vs the remainder)
and two diagnostic groups (healthy controls vs individuals
at high risk of BD). Where significant interactions were
found, pair-wise group comparisons were explored and the
effect of haplotype within each diagnostic group was
examined.

Statistical maps were thresholded at a level of po0.005
(uncorrected), and regions were considered significant at a
cluster level of po0.05, corrected for multiple comparisons.
All coordinates are quoted in Montreal Neurological
Institute (MNI) convention (http://www.mni.mcgill.ca),
and images are overlaid onto standard brain in MNI space
using Mango software package (http://ric.uthscsa.edu/
mango). Based on our previous hypothesis, small volume
corrections were applied for the prefrontal cortex, created
using the WFU PickAtlas (Tzourio-Mazoyer et al, 2002;
Maldjian et al, 2003).
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RESULTS

Demographic, Clinical, and Behavioral Measures

Controls. Thirty control subjects were homozygous for the
risk haplotype (T-A-C), referred to as RISK + . Of the
remainder (n¼ 45), referred to as RISK�, 38 individuals
carried one copy of the (T-A-C) haplotype.

Bipolar high risk. For the bipolar high-risk group, 35
subjects were homozygous for the risk haplotype. Of the
remainder (n¼ 46), 39 individuals carried one copy of the
(T-A-C) haplotype.

For each of the SNPs individually, none of the allele
frequencies differed from HWE, and the haplotype fre-
quencies did not differ between the groups (w2¼ 0.16,
p¼ 0.69). Measures of linkage disequilibrium are provided
in the Materials and Methods. Further details describing the
individual haplotype frequencies are presented in Supple-
mentary Table. These frequencies were consistent with
those reported previously (Squassina et al, 2009).

Demographic details are presented in Table 1. There
were no significant differences between the haplotype
groups or between high-risk subjects and controls in
terms of age, gender, handedness, or verbal intelligence as
estimated with the National Adult Reading Test (Nelson
1982).

For the clinical measures, there were significant differ-
ences between controls and high-risk subjects on measures
of depression and cyclothymia as measured with the HAM-
D (Hamilton 1960) and a short version of the TEMPS-A
(Akiskal et al, 2005), respectively with the high-risk subjects
having higher scores on both measures. These findings have
been described previously in this sample (Sprooten et al,
2011; Whalley et al, 2011). There were, however, no
significant differences within the groups based on haplo-
type.

Statistical analyses revealed no significant differences
in Hayling Sentence Completion Test reaction time
or word appropriateness scores between the two haplo-
type groups or between the controls and high-risk
subjects.

Table 1 Demographic, Clinical, and Behavioral Characteristics

Controls (n¼75) Bipolar high-risk subjects (n¼ 81) Between-group
comparison

RISK�
(n¼ 45)

RISK+
(n¼30)

Within-group
comparison

RISK�
(n¼46)

RISK+
(n¼ 35)

Within-group
comparison

Demographics

Mean/n (SD) Mean/n (SD) T/v2 p Mean/n (SD) Mean/n (SD) T/v2 p T/v2 p

Age (years) 20.99 (2.35) 20.53 (2.50) 0.81 0.42 21.00 (2.52) 21.75 (3.08) 1.21 0.23 1.23 0.22

Gender (male:female) 20 : 25 13 : 17 0.01 0.92 21 : 25 19 : 16 0.59 0.44 0.45 0.50

Handedness (right:other) 41 : 1 27 : 3 2.16 0.14 42 : 4 31 : 4 1.33 0.51 1.62 0.45

Verbal IQ (NART) 110.49 (5.91) 109.67 (9.41) 0.46 0.64 109.24 (7.25) 111.60 (6.17) 1.55 0.13 0.09 0.93

Clinical characteristics

Median (IQR) Median (IQR) U p Median (IQR) Median (IQR) U p U P

YMRS sum score 0 (0) 0 (0) 0.12 0.90 0 (0) 0 (0) 0.19 0.19 1.67 0.10

HAM-D sum score 0 (1) 0 (1) 1.33 0.18 0 (2) 1 (2) 1.54 0.12 3.72 o0.01

Temperament characteristics (TEMPS-A)

Median (IQR) Median (IQR) U p Median (IQR) Median (IQR) U p U p

Cyclothymia 1.00 (2.75) 1.00 (2.75) 0.02 0.99 2.00 (4.00) 2.00 (3.00) 0.01 0.99 2.91 o0.01

Depressive 0.00 (2.00) 0.00 (1.00) 0.16 0.87 0.00 (2.00) 0.00 (1.00) 0.20 0.85 0.95 0.34

Irritability 1.00(2.00) 1.00 (2.00) 0.39 0.69 1.00 (1.00) 1.00 (2.00) 1.54 0.12 1.70 0.09

Hyperthymia 2.00 (2.00) 1.50 (4.00) 0.48 0.64 2.00 (2.00) 1.00 (3.50) 0.72 0.47 0.55 0.58

Anxious 0.50 (1.00) 0.50 (2.00) 0.09 0.93 0.00 (1.00) 1.00 (2.00) 0.99 0.32 0.17 0.86

Behavioral characteristics (Hayling sentence completion test)

Mean (SD) Mean (SD) T p Mean (SD) Mean (SD) T p T p

Reaction time (s) 2466 (584) 2440 (543) 0.71 0.81 2505 (679) 2471 (543) 0.25 0.81 0.33 0.74

Word Appro-priateness 3.01 (0.51) 3.02 (0.64) 0.17 0.96 2.86 (0.561) 2.91 (0.56) 0.40 0.69 1.25 0.22

Abbreviations: HAM-D, Hamilton Rating Scale for Depression; IQR, interquartile range; NART, National Adult Reading Test; RISK�, non-risk haplotype carriers; RISK+,
risk haplotype homozygotes; TEMPS-A, Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire; YMRS, Young Mania Rating Scale.
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Task-Related Brain Activation Patterns

All subjects demonstrated the expected patterns of brain
activation and behavioral responses indicating subjects
were performing the tasks appropriately in the scanner (see
Supplementary Figure) (Whalley et al, 2004; McIntosh et al,
2008a; Whalley et al, 2011). Regions activated across the
groups for the sentence completion vs baseline contrast
included the left medial and lateral prefrontal regions, left
lateral temporal cortex, subcortical structures, left lateral
parietal cortex, occipital lobes bilaterally, and right
cerebellum. For the parametric contrast, all groups demon-
strated activation in similar areas including left lateral and
medial prefrontal cortex, left lateral temporal cortex, and
right cerebellum. Regions of reduced activation during the
task (greater activation during baseline) involved anterior
medial prefrontal regions, precuneus, posterior cingulate
cortex, and parahippocampal regions.

Haplotype-Dependent Differences in Brain Activation

Sentence completion vs baseline. For sentence completion
vs baseline, there were significant haplotype*group inter-
actions in several clusters in the left medial frontal gyrus
extending to the anterior cingulate (p¼ 0.04, KE¼ 470,
Z¼ 3.76, x¼�10, y¼ 54, and z¼ 4, with a small volume
correction for the prefrontal cortex), in the left precuneus
extending to posterior cingulate (po0.01, KE¼ 1149,
Z¼ 3.80, x¼�6, y¼�32, and z¼ 50, at the whole brain
level), and in the right parahippocampal region (p¼ 0.04,
KE¼ 7 07, Z¼ 3.86, x¼ 16, y¼�42, and z¼ 2, at the whole
brain level), see Figure 1, Table 2. For all regions, there was
relatively greater activation during task conditions in the
high-risk RISK + group vs the high-risk RISK� group, with
the reverse seen in the control groups, see Figure 2.

Post-hoc pair-wise significance tests between RISK� and
RISK + within the control and high-risk groups separately
indicated these clusters were also significantly different
between the haplotype groups (controls RISK� vs RISK + :
po0.05, po0.01, po0.01; high-risk RISK� group vs
RISK + group: po0.01, po0.05, po0.05 for prefrontal,
precuneus, and parahippocampal clusters, respectively).

Parametric contrast. For the parametric contrast, there was
a significant haplotype*group interaction in the posterior
cingulate cortex (po0.01, KE¼ 1317, Z¼ 4.07, x¼ 4,
y¼�66, and z¼ 20, at the whole brain level, see Figure 3,
Table 2). This interaction was in the direction of a decreased
gradient of activation with increasing sentence difficulty in
RISK + vs RISK� high-risk subjects. The reverse pattern
was seen in the control group.

Post-hoc pair-wise significance tests between RISK� and
RISK + within the control and high-risk groups separately
indicated this cluster was also significantly different
between haplotype groups (controls RISK� vs RISK + :
po0.01; high-risk RISK� vs RISK + subjects: po0.05, for
posterior cingulate cluster).

Correlation Analyses

We examined correlations across all subjects between data
extracted from the clusters of difference reported above

(medial prefrontal cortex, precuneus, parahippocampal
gyrus, and posterior cingulate) and the clinical data
(HAM-D score, Young Mania Rating Scale score, and
individual components of the TEMPS-A). None remained
significant after controlling for multiple comparisons.

DISCUSSION

In the current study, we have demonstrated differential
effects of DGKH haplotypes on brain activation in the
medial prefrontal cortex, precuneus, parahippocampus, and
posterior cingulate between healthy controls and a cohort at
familial risk of BD during a verbal initiation task. The task
was found to engage typical language-related regions, as
well as demonstrating reduced activation in regions
typically disengaged during cognitive paradigms as pre-
viously described (Raichle et al, 2001; Whalley et al, 2004;
Whalley et al, 2011), and see Supplementary Figure 1. The
advantage of studying such effects in a high genetic risk
group allows the examination of the impact of the gene on
brain function in the absence of confounding disease and
medication effects associated with studies on patient
groups.

From Figure 2, the origin of the haplotype*group
interactions for the clusters originating from the sentence

Figure 1 Haplotype*group interactions for DGKH for sentence
completion vs baseline. Images are overlaid onto standard brain in MNI
space using Mango software package (http://ric.uthscsa.edu/mango). Map
represents F-statistic images thresholded at FX8, equivalent to p
uncorrected¼ 0.005, see Materials and Methods for further details.
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Table 2 Significant Haplotype*Group Interactions

Contrast Region MNI coordinates x, y, z (mm) Cluster size (k) Z p

Sentence completion vs baseline Left medial frontal gyrus �10, 54, 4 470 3.76 o0.05

Left precuneus �6, �32, 50 1149 3.80 o0.01

Right parahippocampus 16, �42, 2 707 3.86 o0.05

Parametric Right posterior cingulate 4, �66, 20 1317 4.07 o0.01

Abbreviations: MNI, Montreal Neurological Institute; k, number of voxels.

Figure 2 Graph of effect size for clusters of significant interaction. For sentence completion vs baseline, RISK� represents non-risk haplotype carriers and
RISK + represents risk haplotype homozygotes. The Y axis denotes BOLD effect size.
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completion vs baseline contrast appeared to be a reduced
disengagement, or failure to suppress activation in the high-
risk RISK + haplotype group vs high-risk RISK� during
task conditions. The reverse was demonstrated in the
control group, Figure 2 (ie., there was greater suppression in
the control RISK + group vs the control RISK� group). The
clusters demonstrating interaction effects for this contrast,
the medial prefrontal cortex, parahippocampal gyrus,
precuneus, and posterior cingulate are indeed typically
associated with default-mode patterns of activation. The
default-mode network refers to a set of regions that
consistently demonstrate synchronous task-independent
deactivation across a range of cognitive tasks compared
with baseline conditions (Raichle et al, 2001; Greicius et al,
2003; Raichle and Snyder, 2007). The posterior cingulate
cortex was also found to demonstrate significant interaction
effects for the parametric contrast, Figure 4. This contrast
focusses on a gradation of neural activity in relation to task
difficulty, rather than the sentence completion contrast,
which relates activation across all levels of task condition to
a simple visual baseline. In the posterior cingulate for the
parametric contrast, the RISK� high-risk subjects and
RISK + controls demonstrate small increases in activation
with increasing task difficulty. The RISK + high-risk

subjects, however, demonstrated decreases in activation
with increasing task difficulty. In summary therefore, in
the posterior cingulate, the RISK + high-risk subjects
have poor suppression when looking across all task
conditions; however, when looking at the relationship
between activation and task load, the RISK + high-risk
subjects demonstrate a greater decrease in activation with
increasing task difficulty.

Default-mode regions are considered to subserve self-
referential mental activity, autobiographical memory, and
aspects of internal emotion processing (Gusnard and
Raichle, 2001; Cabeza et al, 2002). Failure to deactivate
these regions has been linked to performance deficits in
healthy subjects (Weissman et al, 2006; Mason et al, 2007;
Eichele et al, 2008). It has also been suggested that
abnormalities within this network may underlie deficits in
cognitive and affective processing seen in psychiatric
disorders (Ongur et al, 2010). Indeed, abnormalities in the
default-mode network have been reported in BD patients
(Calhoun et al, 2008; Ongur et al, 2010; Costafreda et al,
2011). Further, the default-mode network is also considered
to be strongly influenced by genetic factors (Glahn et al,
2010).

As the specific molecular role of DGKH in not yet known,
the precise mechanisms of action of DGKH variation in
conferring risk for the disorder is as yet unclear. All SNPs
contributing to this haplotype are indeed located within
intronic regions and are therefore noncoding. We would
argue, however, that this does not necessarily mean that
they are nonfunctional, rather that any function is currently
unknown. We could speculate that, given previous evidence
for the involvement of the gene in BD, they may be involved
in gene regulation, or may be in LD with another as yet
unknown functional variant of the gene, which may have

Figure 3 Haplotype*group interactions for DGKH for the parametric
contrast. Images are overlaid onto standard brain in Montreal Neurological
Institute space using Mango software package (http://ric.uthscsa.edu/
mango). Map represents F-statistic images thresholded at FX8, equivalent
to p uncorrected¼ 0.005.

Figure 4 Graph of effect size for cluster of significant interaction.
For parametric contrast, RISK� represents non-risk haplotype carriers,
RISK + represents risk haplotype homozygotes. The Y axis denotes
BOLD effect size.
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downstream influence on BOLD signal. In the context of the
current findings, they suggest that there is an influence of
the DGKH gene on function in default-mode brain regions,
and this differs between those at risk for the disorder and
healthy controls. In other words the risk haplotype appears
to alter the ability to disengage regions involved in self-
referential and internal emotional processing during cogni-
tive tasks in the bipolar high-risk group, as compared to
healthy controls. One possible explanation for this differ-
ence is that additional genetic or environmental risk factors
interacting with the effects of DGKH in the high-risk group.
Presumably, controls carrying the risk haplotype are able to
compensate and allocate cognitive resources more effi-
ciently during task conditions than the bipolar high-risk
subjects carrying the risk haplotype, who also importantly
carry additional background risk factors. We interpret these
results to suggest therefore that the relationship between
DGKH genotype and functional architecture in the high-risk
group may differ from controls based on an already present
genetic loading for the disorder.

In terms of its biological relevance, DGKH is an upstream
regulator of protein kinase C (PKC). It catalyzes the
conversion of diacylglycerol to phosphatidic acid, thereby
leading to reductions in diacylglycerol. The latter is
essential for activating several isoforms of PKC; a family
of enzymes that is heterogeneously distributed in the
brain and has a pivotal role in regulating pre- and post-
synaptic neurotransmission (Casabona 1997; Catapano
and Manji, 2008). Accordingly, it has been proposed that
variations in the DGKH gene might result in reductions of
diacylglycerol kinase activity, thereby leading to increased
PKC signaling (Robbins and Arnsten, 2009). Numerous
lines of evidence suggest the importance of PKC in the
pathophysiology and treatment of BD. Investigations of
peripheral blood and postmortem studies indicate altered
PKC levels in BD, and lithium interacts with the PKC
pathway resulting in decreasing downstream PKC levels and
activity (Catapano and Manji, 2008). Similarly, the mood
stabilizer valproate inhibits PKC, suggesting a commonality
in the pathway of therapeutic effect (Catapano and Manji,
2008). Moreover, the PKC antagonist tamoxifen has been
shown to reduce manic symptoms in BD patients (Yildiz
et al, 2008). Hence, DGKH is predicted to have a role in
lithium response and in mood control and therefore in the
etiology of the disorder.

Although there is limited literature relating specifically to
the effects of DGKH on brain functioning, there is evidence
of increased gene expression of DGKH in the prefrontal
cortex of patients with BD vs controls (Moya et al, 2010).
There are also several lines of evidence suggesting that PKC
impacts on cognitive functioning. Research has focussed on
its role in mediating the effects of chronic stress on the
prefrontal cortex (Hains et al, 2009), in regulating optimal
prefrontal activity during working memory performance
(Birnbaum et al, 2004), and in association with age-related
cognitive decline (Brennan et al, 2009). Although spec-
ulative, these may fit with neurobiological models of BD
where there is altered prefrontal modulation of other
cortical and subcortical structures involved in emotional
processing leading to impaired emotional regulation and
increased mood fluctuation in the disorder (Phillips et al,
2003).

In summary, these findings suggest that variation in the
DGKH gene is associated with differential modulation of
default network suppression during a sentence completion
paradigm in bipolar high-risk individuals when compared
with healthy controls. Differential effects of DGKH haplo-
types in those at high familial risk of BD vs controls
supports previous evidence that the DGKH gene may be
involved in the pathogenesis of BD. Further replication in
patient groups and/or during resting state scanning may
help confirm the nature of these effects.
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