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Abstract
Missing data are common in medical and social science studies and often pose a serious challenge
in data analysis. Multiple imputation methods are popular and natural tools for handling missing
data, replacing each missing value with a set of plausible values that represent the uncertainty
about the underlying values. We consider a case of missing at random (MAR) and investigate the
estimation of the marginal mean of an outcome variable in the presence of missing values when a
set of fully observed covariates is available. We propose a new nonparametric multiple imputation
(MI) approach that uses two working models to achieve dimension reduction and define the
imputing sets for the missing observations. Compared with existing nonparametric imputation
procedures, our approach can better handle covariates of high dimension, and is doubly robust in
the sense that the resulting estimator remains consistent if either of the working models is
correctly specified. Compared with existing doubly robust methods, our nonparametric MI
approach is more robust to the misspecification of both working models; it also avoids the use of
inverse-weighting and hence is less sensitive to missing probabilities that are close to 1. We
propose a sensitivity analysis for evaluating the validity of the working models, allowing
investigators to choose the optimal weights so that the resulting estimator relies either completely
or more heavily on the working model that is likely to be correctly specified and achieves
improved efficiency. We investigate the asymptotic properties of the proposed estimator, and
perform simulation studies to show that the proposed method compares favorably with some
existing methods in finite samples. The proposed method is further illustrated using data from a
colorectal adenoma study.
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1 Introduction
Missing data are common in medical and social science studies. When the missingness does
not depend on the data values, missing or observed, the data are called missing completely at
random (MCAR) and one can perform a so-called complete case analysis by ignoring the
observations with missing values (Little and Rubin (2002)). In practice, the assumption of
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MCAR is rarely satisfied, and a complete case analysis can lead to biased estimation. A
more realistic missing mechanism is that the data are missing at random (MAR) (Rubin
(1987); Little and Rubin (2002)), which means that the missing status is independent of
missing values conditional on observed covariates.

1.1 The Problem
Let Y denote the outcome variable of interest with missing values, δ denote the missingness
indicator, δ = 0 if Y is missing and δ = 1 if Y is observed, and X = (X1, X2, ..., Xp) denote a
set of fully observed covariates that are predictive of Y or δ. Suppose (Yi, Xi, δi) (i = 1, . . . ,
n) constitute an independent and identically distributed sample from n subjects. The
observed data can be written as (δiYi, Xi, i) (i = 1, . . . , n) where δiYi is missing when δi = 0.
We consider the estimation of μ = E(Y) when Y is independent of δ given X. For this type of
problems, one can use imputation methods (either single or multiple) or the inverse
probability weighting methods that are doubly robust.

1.2 Imputation Methods
An imputation method replaces each missing value with one “plausible” value (single
imputation) or a set of “plausible” values (multiple imputation, MI), and subsequently
standard analysis is performed using the imputed datasets. Adjustments are necessary for
computing standard errors to account for the uncertainty of the imputed values (Rubin
(1987); Little and Rubin (2002)). The imputation models can be parametric (Matloff (1981);
Little and Rubin (2002)), semiparametric (Wang, Linton, and Härdle (2004)) or
nonparametric (Titterington and Sedransk (1989); Cheng (1994); Aerts et al. (2002)).
Despite being efficient when the parametric component is correctly specified, the parametric
and semiparametric imputation methods are sensitive to model misspecifications. While a
nonparametric imputation approach is more robust to model misspecification, a different
challenge arises. Most existing nonparametric regression imputation methods focus on the
case of a single fully observed covariate. For example, Cheng (1994) studied a single
imputation approach that imputes missing values with kernel estimates of the conditional
mean of an outcome variable given a continuous covariate; Aerts et al. (2002) studied an MI
approach, which was based on the nonparametrically estimated distribution of the outcome
variable conditional on the covariate using kernel methods, among others. The main
difficulty with nonparametric imputation methods is that as the number of covariates
increases, it becomes increasingly difficult to estimate either the conditional distribution or
the conditional expectation of the outcome variable given the covariates, due to the curse of
dimensionality. In practice, performance loss for the nonparametric imputation methods can
be substantial even when only a small number of covariates are used. It is important to have
a nonparametric approach that alleviates the curse of dimensionality in the presence of
multiple covariates.

1.3 Doubly Robust Methods
The earliest doubly robust method for missing data is the calibration estimator (CE), also
known as the the generalized regression estimator (Cassel, Sarndal, and Wretman (1976)),
which extended the inverse probability weighting method (Horvitz and Thompson (1952)).
The CE uses two working models based on the observed covariates: one model predicts the
missing values, and the other model predicts the missing probabilities. Specifically, the
estimator is a result of expressing the mean of Y as a sum of prediction and inverse
probability-weighted prediction errors,
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where π(X) = E(δ|X). Plugging the estimate of each parameter into the expression leads to

(1)

where Ŷ is the prediction based on a regression model for E(Y|X) which is fit using the
complete cases,  is the inverse of the estimated probabilities of being observed
that is often computed using a regression model for π(X), and . On the right hand
side (RHS) of (1), the first term is equivalent to imputing all Y values using a model for E(Y|
X), and the second term is a sum of inverse probability-weighted prediction errors due to the
model for E(Y|X) based on the weights estimated using π(X). If the model for E(Y|X) is
correctly specified, then the second term converges to 0 and  converges to μ. If the model
for π(X) is correctly specified, then one can show that the second term consistently removes
any bias that may be associated with the first term and hence  still converges to μ. As a
result,  is consistent if either of the two models is correctly specified.

Other doubly robust estimators have been introduced that use a parametric model to impute
missing values and inverse probability-weighted prediction errors to correct potential bias
that is associated with the parametric model for imputation. In particular, doubly robust
methods were extended to regression settings (Robins, Rotnitzky, and Zhao (1994)) and
repeated measurement data (Robins, Rotnitzky, and Zhao (1995)). In the context of
estimating a population mean, Qin, Shao, and Zhang (2008) and Cao, Tsiatis, and Davidian
(2009) proposed two elegant approaches to improve the efficiency of the CE when the
imputation model is incorrectly specified, and their methods achieve the semiparametric
efficient lower bound when both models are correctly specified. During the review process,
a recent related work by Hu, Follmann, and Qin (2010) was brought to our attention; they
extended the CE estimator through the use of a nonparametric imputation model, where the
dimension of the covariates is reduced through a parametric working index.

The double-robustness property of the CE and its extensions, though attractive, has its
limitations. If one working model is misspecified, especially if it is seriously misspecified, a
doubly robust estimator, although consistent, can have increased bias or variance in small
samples. When both models are misspecified, a doubly robust estimator can underperform
other estimators that are not doubly robust (Kang and Schafer (2007)). In addition, the
inverse probability weighting step can be sensitive to missing probabilities that are close to
1. Therefore, it is desirable to develop an inference procedure, that reduces the impact of the
misspecification of both working models, allows us to select and rely more heavily on the
working model that is correctly specified, and is less sensitive to missing probabilities that
are close to 1.

1.4 Doubly Robust Multiple Imputation
We propose a new nonparametric MI method, and the method alleviates the curse of
dimensionality, that limits the usefulness of existing nonparametric imputation methods. The
proposed method is doubly robust, and differs from the CE and its extensions in that it does
not use inverse-probability weighting. Our method has several advantages. First, it is more
robust to two misspecified working models, being nonparametric. Second, it lessens the
adverse impact of extreme missing probabilities. The method avoids the inverse probability
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weighting and relies only on imputation based on two working models; since one imputation
creates only one pseudo observation for each observation with missing values, its impact is
considerably less than that of inverse probability weighting in the presence of extreme
missing probabilities. We also propose a new sensitivity analysis for empirically evaluating
the validity of working models through varying weights that are used to define similarity
between observations based on two working models. We note that for the CE and its related
estimators the existing sensitivity analyses primarily focus on the impact of non-ignorable
missingness (Rotnitzky, Robins, and Scharfstein (1998); Scharfstein, Rotnitzky, and Robins
(1999)), and one that is similar to ours is neither available nor obvious. The proposed
sensitivity analysis allows investigators to select optimal weights so that the resulting
estimator relies completely or more heavily on the working model that is likely to be
correctly specified to achieve improved efficiency. Furthermore, the use of two weights
allows investigators to incorporate their prior beliefs on the validity of two working models.
In summary, our approach is intended to combine the strengths of nonparametric imputation
methods and the CE method, and to overcome their respective limitations. Our main goal is
not to achieve a gain in efficiency; thus, we primarily focus on comparing our approach with
existing imputation methods and the CE.

The rest of the paper is organized as follows. In Section 2, we present the doubly robust
nonparametric MI approach and its sensitivity analysis. In Section 3, we evaluate finite
sample performance in simulation studies. In Section 4, we illustrate the proposed approach
using data from a colorectal adenoma study. We conclude with some discussion in Section
5.

2 The Methodology
We first introduce the working models, then describe in detail the doubly robust
nonparametric multiple imputation procedures.

2.1 Working Models and Predictive Scores
In order to use the fully observed X to define an imputing set for each observation with
missing Y , we consider two working models. Based on the idea of predictive mean
matching (Rubin (1987)), the first model is for the outcome Y ,

(2)

where l1 is a specified real-valued smooth function, Xo is a set of p1 observed covariates,
and β = (β1, . . . , βp1)T is a vector of regression coefficients. Here l1 is considered a
predictive score of Y , for example, one can use the linear regression model, l1(Xo, β) =
βTXo. When the working model (2) for Y is correctly specified, an imputing set for each
missing Y defined through the predictive score can lead to an improvement in efficiency
when the missing mechanism is MCAR, i.e., E(δ|X, Y) = E(δ), and a reduction in bias when
missing mechanism is MAR, i.e., E(δ|X, Y) = E(δ|X). If the working regression model for Y
is misspecified, bias may remain even under a MAR mechanism. Hence, based on the idea
of propensity score matching (Rosenbaum and Rubin (1983)), we take a model for
predicting missingness to be

(3)

where l2 is a specified real-valued smooth function, Xm is a set of p2 observed covariates,
and α = (α1, . . . , αp2)T is a vector of regression coefficients. Here l2 is considered a
predictive score of δ, for example, one can use the logistic regression model, l2(Xm, α) =
exp(αTXm)/(1 + exp(αTXm)). We note that more complicated models can be used in (2) and
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(3). For instance, when p1 and p2 are large, a Lasso regression (Tibshirani (1996)) can be
used for Model (2), and a generalized boosted model (GBM) (McCaffrey, Ridgewar, and
Morral (2004)) can be used for Model (3). The functions l1(Xo) and l2(Xm) may include
higher order terms of X. We denote the estimators based on (2) and (3) by  and ;
throughout,  and  are assumed to be  M-estimators or Z-estimators (van der
Vaart (1998)). The incorrect specification of working models can be in the functional forms
of l1 and l2 or in the set of covariates included. In practical applications, it is difficult to
correctly choose a model for E(Y|Xo) = l1(Xo, β) and there is no guarantee that the assumed
model is correct. Our hope is that the proposed method can improve estimation efficiency if
the assumed model is reasonably good, though not perfect.

Let Z1 = l1(Xo, β) and Z2 = l2(Xm, α). After (2) and (3) are fit using methods such as the
maximum likelihood estimation or estimation equations that achieve , the

estimated predictive scores are . Alternatively, one could take
the predictive scores as a monotonic transformation of (Z1, Z2). For example, if l2(Xm, α) =
exp(αTXm)/(1+exp(αTXm)), the linear combination αTXm could be taken as the predictive
score for δ. The proposed strategy summarizes the multi-dimensional X with a two-
dimensional predictive score, Z ≡ (Z1, Z2). In the presence of only one predictive covariate,
the predictive score is the covariate itself, and there is no need to fit the two working
models.

2.2 Multiple Imputation (MI) Estimator
To stabilize the imputation, each predictive score is standardized by subtracting its mean and
dividing by its standard deviation; the resulting score is denoted by S ≡ (S1, S2). Given S, for
each subject with missing Y we create an imputing set that consists of observed responses
from subjects who are similar. Specifically, S is used to select the imputing set by
calculating the distance between subjects as

(4)

where ωo and ωm are non-negative weights for the predictive scores from (2) and (3),
respectively, satisfying ωo + ωm = 1. This choice of the weights (ωo, ωm) can reflect the
confidence of investigators on each working model. While the double-robustness property
no longer holds when ωo or ωm is 1, such weights are useful in sensitivity analysis, as will
be illustrated in Section 2.5. For each subject i with missing Y , the distance d(i, j) is used to
define a set of a neighborhood, denoted by RK(i), that consists of K subjects who have the
smallest K distances (d) from subject i.

Given the imputing sets, we propose a multiple imputation (MI) estimator for the parameter
of interest, μ. In the lth imputation, given the RK(i) for each subject i with missing outcome,
a  is randomly drawn with equal probability from RK(i) to replace the missing Y for
subject i. We repeat this step for all subjects with missing Y , and let

 and  be the lth imputed data set and
the associated mean estimator, respectively. The imputation scheme is independently
repeated L times to obtain L imputed data sets, and the subsequent analysis of multiple
imputed data sets follows well-established rules in Rubin (1987) and Little and Rubin
(2002). The final MI estimator of μ is
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(5)

We refer to this method as MI(K, ωo, ωm), where K is the number of the nearest neighbors,
and ωo and ωm are the weights used to define the distance in (4).

2.3 Theoretical Properties of MI Estimator
We set forth the asymptotic properties of the proposed MI estimator as n → ∞ and L → ∞;
a sketch of the proofs is provided in Appendix. Let →p denote convergence in probability.

Proposition 1. Under Conditions (B1) and (B2) in Appendix, there exist β0 and α0 such that

 and .

Proposition 1 implies that the limits of  and  exist even if both working models are
misspecified. When the working models (2) and (3) are correctly specified, then β0 and α0

are the true parameter values. Take the true predictive scores evaluated at the limits of  and

 as .

Proposition 2. If Y is independent of δ conditional on X and if either (2) or (3) is correctly
specified, then E(Y|δ, Z0) = E(Y|Z0).

Note that the result in Proposition 2 is weaker than the conditional independence between Y
and δ given Z, as (2) is postulated on the mean of Y only, not on the distribution of Y.

We consider here the multiple imputation estimator computed using Z0 instead of ,

denoted by . Take μ(Z0) = E(Y|Z0), π(Z0) = Pr(δ = 1|Z0), and σ2(Z0) = var(Y|Z0).

Theorem 1. Under Conditions (A1)-(A3) in Appendix, if ωo and ωm are positive and either

(2) or (3) is correctly specified,  has an asymptotic normal distribution with
mean 0 and variance

where , ,

, and .

Theorem 1 implies that  is doubly robust and achieves a  convergence rate. We note
that the results in Theorem 1 hold for all fixed positive weights; this is analogous to the
results using kernel methods (Cheng (1994); Aerts et al. (2002)): the asymptotic results do
not depend on the specific form of a kernel function. In finite samples, the impact of varying
weights can be appreciable, as seen later in simulation studies. In Theorem 1, we do not
need to specify the full conditional distribution of Y given X in (2), and Y can be continuous
or discrete. Given additional conditions, one can simplify the asymptotic variance in
Theorem 1.
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Corollary 1. If ωo and ωm are positive and either (2) or (3) is correctly specified, and if Y is

independent of δ given Z0 or E(Y|δ, Z0) = E(Y|Z0) and E(Y2|δ, Z0) = E(Y2|Z0), 

is asymptotically normal with mean 0 and variance .

Two remarks are in order. First, when a monotonic transformation of Z0 is defined as the
predictive scores, the asymptotic results in Theorem 1 still hold. In our numerical examples
in Sections 3 and 4, predictive scores are defined as linear combinations of the covariates
(allowing possibly higher order terms of the covariates to be included) in both the linear and
logistic regression models. Second, since β0 and α0 are unknown in practice, we need to
replace them with their  estimators (  and ) to compute Ẑ and subsequently
the MI estimator . Using the influence functions for  and , and similar arguments as in
the proof of Theorem 1, it is straightforward to show that  has the same asymptotic
normal distribution as in Theorem 1.

We can rewrite the asymptotic variance of  in Corollary 1 as n–1 (var(Y) + E[{π(Z0)–1 –
1}σ2(Z0)]). When both working models are correctly specified, the asymptotic variance of

 reduces to n–1 var(Y) + E[{π(X)–1 – 1}σ2(X)]), which is the same as the asymptotic
variance of  as shown in Table 1 of Hu et al. (2010). Furthermore, when (2) is correctly
specified and (3) is incorrectly specified, one can perform sensitivity analysis as described in
Section 2.5, likely leading to a  that relies only on the correctly specified working model
for E(Y|X); as shown in Tsiatis and Davidian (2007), this estimator is optimal and the
propensity score is not needed.

As shown in Theorem 1 and Corollary 1, the formula for the asymptotic variance is fairly
complicated and involves the density functions of the estimated predictive scores (Ẑ). In
practice, these density functions are often estimated using nonparametric methods, so the
practical usefulness of the asymptotic variance is limited in small samples, in particular. We
propose a more convenient alternative for estimating the variance of the proposed estimator,
the well-established method (Rubin (1987); Little and Rubin (2002)) for estimating the
variance of an MI estimator through combining within-imputation and between-imputation
variances. However, it follows from Little and Rubin (2002) that the MI procedure in
Section 2.2 is improper in the sense that it fails to incorporate the variability of estimating 
and . As a result, the standard method cannot be directly applied.

2.4 Bootstrap Multiple Imputation

To overcome the difficulty of estimating the variance of , we incorporate a bootstrap
step. In the lth imputation, it consists of the following steps.

1. Draw a random sample of equal size with replacement from the original data set, fit

models (2) and (3) using this bootstrap sample, and compute .

2. Compute the distance between a subject with a missing outcome, say subject i, and
all other subjects that have an observed outcome, in the bootstrap sample as defined

above. The imputing set for subject i is the nearest neighborhood  consisting
of K subjects in the bootstrap sample with the K smallest distances from subject i.

Draw a value  for subject i from .

3.
Take , . . . , n, and  be the lth
bootstrap imputed data set and the associated mean estimator, respectively.
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Repeating the bootstrap imputation L times, the final bootstrap MI estimator is

, which is referred to as MIB(K, ωo, ωm). The bootstrap MI is a proper
imputation (Little and Rubin (2002)) and hence its variance can be readily estimated using
the sum of a between-imputation and a within-imputation component. The addition of a
bootstrap step has been shown to allow the estimation of the variance of MI estimators in
other settings (Heitjan and Little (1991); Rubin and Schenker (1991)). In our experience, L =
5 imputations suffice to achieve good performances in finite samples. We note that the
bootstrap MI method in Aerts et al. (2002) uses a different bootstrap scheme that only
resamples the complete observations, whereas our bootstrap scheme allows a resampling of
the observations with missing values. In practice, non-convergence may arise when
repeatedly fitting working models, say the logistic regression model, in bootstrap samples;
when this happens, the bootstrap samples with the non-convergence issue are discarded.

2.5 Sensitivity Analysis
The choice of (ωo, ωm) plays an important role in computing MIB(K, ωo, ωm), and multiple
estimates can be obtained using different weights. As a natural extension, a sensitivity
analysis can be performed to evaluate the validity of (2) and (3). Specifically, since MIB(K,
ωo, ωm) with nonzero weights are doubly robust and the MIB(K, 1, 0) and MIB(K, 0, 1)
estimators are not, the differences between MIB(K, ωo, ωm) with nonzero weights, MIB(K,
1, 0), and MIB(K, 0, 1) can inform on the validity of both working models, and hence
provide a justification for a sensitivity analysis. For example, if the working model (2) is
correctly specified and (3) is not, then one can expect a MIB(K, ωo, ωm) estimator with
nonzero weights to be similar to the MIB(K, 1, 0) estimator, with both estimators different
from the MIB(K, 0, 1) estimator due to its bias. In this case, the MIB(K, 1, 0) estimator may
be preferred to a MIB(K, ωo, ωm) estimator with nonzero weights, as the use of a
misspecified working model (3) may introduce extra noise to estimation. If the MIB
estimates do not vary considerably when changing the values of weights from one extreme
(ωo = 1, ωm = 0) to another (ωo = 0, ωm = 1), one might have more confidence in the results
and choose the optimal weight (ωo = 1, ωm = 0). In addition, the specification of (ωo, ωm)
provides a natural way to incorporate prior beliefs on the validity of the two working
models.

3 Simulation Studies
We conducted simulations to evaluate the finite sample performance and, in particular, the
impact of incorrect specification of one or both working models and the choice of weights
(ωo, ωm). The following estimators are compared: the sample mean of observed Y values
(CC); the calibration estimator (CE) proposed by Cassel et al. (1976); a parametric MI
estimator (PMI), where a regression model with the fully observed covariates is fit and then
used to draw imputes for each missing observation; the proposed bootstrap nonparametric
MI estimator (MIB) . The CE, PMI, and MIB estimators involve fitting a regression
model for Y , and the CE and MIB estimators also involve fitting a regression model for. In
our simulation studies and data example, working models were fit using the method of
maximum likelihood.

Five fully observed covariates (X = (X1, . . . , X5)) were generated from independent uniform
distributions on (–1, 1). For the outcome of interest (Y), two true models were considered:
Model (O1) where, conditional on X, Y was generated from a normal distribution with a
mean E(Y|X) = 10 + 2X1 – 2X2 + 3X3 – 3X4 + 1.5X5 and a variance of 9; Model (O2) where,
conditional on X, log(Y) was normal with a mean of 0.5 + 0.5X1 – X2 + 1.5X3 – 2X4 + 0.5X5
and a variance of 3. For the missingness indicator (δ), two true models were considered:
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Model (M1) where δ was generated from a logit model, logit[Pr(δ = 1|X)] = 0.5X1 – X2 + X3
– X4 + X5; Model (M2) where δ was generated from another logit model, logit[Pr(δ = 1|X)]
= 0.5 + 2X1 – 4X2 + 2X3 – 2X4 + 2X5. Model (M1) generates missing probabilities that are
mostly bounded away from 1, whereas Model (M2) generates more missing probabilities
that are close to 1; specifically, the probability of being missing is greater than 0.95 in 0.5%
of observations under Model (M1) and in 15.5% of observations under Model (M2).
Simulations were conducted for combinations of the true models for Y and δ, and the
following incorrect working models were used: only three predictors, X1, X2, and X3, were
included in the working models for Y and δ, denoted by Model (O1W), (O2W), (M1W), and
(M2W), respectively; when the true model for Y is Model (O2), Model (O1) was also used
as an incorrect working model (2). For each simulation scenario, the following measures
were evaluated using 1000 Monte Carlo data sets: the average relative bias (RB) computed
using the ratio of the bias to the absolute value of the nonzero true value; the average
standard error (SE) computed using a bootstrap method for CE and by combining the within
and between variances for PMI and MIB; the mean squared error (MSE); the coverage rate
of 95% Wald confidence intervals (CI).

The MIB estimators were computed using five different sets of values for (ωo, ωm): (1,0),
(0.8,0.2), (0.5,0.5), (0.2,0.8) and (0,1). Note that MIB(K, 1, 0) is similar to the local multiple
imputation estimator (LMI) (Aerts et al. (2002)); they both use only the outcome prediction
model. Still, as the number of covariates increases, LMI is subject to the curse of
dimensionality, and MIB(K, 1, 0) is not.

The simulation results for n = 400 are reported in Tables 1-3, in which K = 3 is used for the
MIB estimators. Note that the CC estimator exhibits substantial bias in all cases. In Table 1,
the true models for Y and δ are Models (O1) and (M1), respectively, and the missing
probabilities are moderate. When both working models are correctly specified, the bias is
negligible for all estimators including the MIB estimators with different weighting schemes;
among them, the PMI estimator has the worst coverage rate. While the bias is negligible for
all MIB estimators with non-zero weights, the MIB method leads to an even smaller bias
when a larger weight is assigned to the working model for Y (ωo). When only the working
model for Y is misspecified as Model (O1W), the PMI and MIB(3,1,0) estimators exhibit
considerable bias, both of which rely solely on the correct specification of the working
model for Y. The other four MIB estimators and CE estimator show negligible bias. In this
case, as the weight increases from 0.2 to 1 for the correct working model for δ, the bias of
MIB estimator decreases slightly; these MIB estimators also have slightly lower MSE
compared to the CE estimator. Similarly, when only the working model for δ is misspecified
as Model (M1W), the MIB(3,0,1) exhibits considerable bias due to its sole reliance on the
working model for δ, whereas the other four MIB estimators and CE estimators exhibit
negligible bias. In this case, the CE estimator has slightly lower MSE compared to the MIB
estimators. A similar pattern regarding the impact of weights on bias is also observed in
Tables 2-3, which indicates that a sensitivity analysis using different weights is useful in
choosing better weighting schemes. In addition, the impact of weights on SE is minimal for
MIB estimators with nonzero weights when the missing probabilities are moderate. In all
cases considered in Table 1, the doubly robust MIB estimators achieve similar performance
in terms of MSE when compared to the CE estimator. In addition, the doubly robust MIB
estimators show slightly larger bias and MSE when the working model for Y is misspecified
compared to when the working model for δ is misspecified.

In Table 2, the true models for Y and δ are Models (O1) and (M2), respectively. The true
outcome model is the same as in Table 1, but the missing probabilities are more extreme.
Since the estimated missing probabilities are unstable, the performance of all estimators
degrades, though to different degrees. When both working models are correctly specified, or
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only the working model for Y is misspecified, the CE estimator has considerably larger MSE
than the MIB estimators with nonzero weights, and its SE substantially underestimates the
sampling standard deviation (SD) indicating that the CE estimate is not stable. When only
the working model for δ is misspecified, the weights for CE are stabilized while the correct
working model for Y protects CE from being inconsistent; as a result, its performance is
slightly better than that of MIB estimators. Also in this case, the impact of weights on SE is
appreciable for MIB estimators with nonzero weights due to unstable estimated missing
probabilities; specifically, a larger weight for the predictive score for δ tends to result in
larger SD. The results regarding PMI and the impact of weighting on bias are similar to what
are observed in Table 1.

Table 3 presents the simulation results when Y was generated from Model (O2), and δ was
generated from Model (M1). When both working models are correctly specified, the results
are similar to those in Tables 1 and 2 and hence are not included in Table 3. Two incorrect
working models were used for Y : Model (O2W) which used a wrong set of covariates, and
Model (O1) which used the correct set of covariates but assumed an incorrect mean
function. In addition, we considered a case where both working models were misspecified.
Since Y does not follow a normal distribution, we also computed the sample mean of all Y
values, which is regarded as the gold standard (GS), and the coverage rate for GS is shown
to be somewhat below the nominal level. When the working model for Y is misspecified as
Model (O2W), CE achieves satisfactory performance; when the working model for Y is
misspecified as Model (O1), CE shows appreciable bias and larger MSE compared to the
MIB estimators with nonzero weights. In both cases, the MIB estimators with nonzero
weights achieve satisfactory performance and PMI shows substantial bias. Interestingly, the
MIB(3,1,0) estimator exhibits substantial bias when the incorrect working model (O2W) is
used, whereas it shows negligible bias when the incorrect working model (O1) is used; this
suggests that the MIB(3,1,0) estimator is robust to the misspecification of the working
model for Y if the correct set of covariates are included. As discussed previously, the MIB
method is nonparametric and only uses the predictive scores to evaluate the similarity
between subjects, hence its dependence on two working models is weaker than that of the
CE estimator. As long as the estimated predictive scores (Ẑ) are highly correlated with the
true scores, the MIB method, say, MIB(3,1,0), is expected to work. Similarly, when using
the two incorrect working models (O1) and (M1W), the MIB estimators with nonzero
weights still achieve performances that are comparable to GS, whereas the CE estimator
shows substantial bias and coverage well below the nominal level. When the working model
for δ is misspecified as Model (M1W), the CE estimator also exhibits appreciable and
greater bias compared to the results in Tables 1 and 2. We note that the coverage rates of the
CE estimator can be misleading in this case, since it usually exhibits large sample variation
in addition to its appreciable bias. In this setting, the impact of extreme missing probabilities
was also examined; it is similar to what is observed in Tables 1 and 2.

We conducted additional simulations to investigate the impact of the number of the nearest
neighbors (K) and the sample size (n). As K increases, the bias of the MIB estimator
increases and its SE decreases slightly (results not shown). The MSE is comparable for
different K's, though K = 3 in general leads to slightly lower MSEs. As the sample size
increases, the performances of MIB and CE methods improve, whereas the performances of
CC and PMI methods remain unsatisfactory when the mean model for Y is misspecified.

To summarize, the proposed MIB estimators achieve similar or better performance in all
settings compared with other estimators considered in our simulation studies. Our results
suggest that it is more important to correctly specify the working model for Y, and larger
weight for the predictive score for δ can lead to larger SD for MIB estimators. Thus, it is
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recommended to choose larger ωo value (say, ≥ 0.5) in the absence of prior knowledge on
the working models.

4 Data Example
We illustrate the proposed method using a colorectal adenoma data set. A colorectal polyp
prevention trial was conducted at the Arizona Cancer Center, in which data were collected
from 1192 patients who underwent removal of a colorectal adenoma. Demographic
information such as age, gender, body mass index (BMI), and dietary information (e.g.
vitamin D), based on the Arizona Food Frequency Questionnaire (AFFQ) (Martnez et al.
(1999)), were collected for all participants. The dietary intake based on the AFFQ is known
to be subject to measurement error. To have a more accurate measurement, an assay based
on blood/tissue samples was performed to measure the dietary intake at serum level for a
subpopulation of the 1192 participants. In particular, 598 participants were selected to have
their serum vitamin D levels (Y) measured. For those participants who were not selected,
their serum vitamin D levels were regarded as missing data (δ = 0). We were interested in
estimating the mean serum vitamin D level in the overall study population. While the
selection for performing the assay was not explicitly based on demographics or disease
characteristics, practical constraints in the implementation of the selection procedure may
well have led to an imbalance between those who were selected and who were not. To
account for a potential MAR mechanism, we applied the proposed method to estimating the
overall mean serum vitamin D level.

We first constructed working models for Y and δ. Based on linear regression analyses, the
serum vitamin D level was shown to be significantly associated with gender and the BMI of
a patient, the number of baseline adenomas, and the vitamin D intake derived from the
AFFQ. Based on logistic regression analyses for the missingness, its association with the
number of baseline adenomas achieves statistical significance with an estimated odds ratio
(OR) 1.18 and a 95% CI (1.04, 1.34), and its association with the gender of a patient
achieves marginal statistical significance with an estimated OR 1.27 and a 95% CI (0.99,
1.61). Consequently, to compute the CE and MI estimators, we included the gender and
BMI of a patient, the number of baseline adenomas, and the vitamin D intake from the
AFFQ as covariates to fit a linear regression model for predicting serum vitamin D level,
and included the patient's gender and the number of baseline adenomas as covariates to fit a
logistic regression model for predicting the missing probability. To compute MIB estimators
with different weighting schemes, we chose K = 3 and L = 5.

The results are reported in Table 4 for CC, CE, and MIB. All methods produce a similar
point estimate of the mean serum vitamin D level. The CE method produces a lower
estimate (5.4% lower) of standard error (SE) compared to the CC analysis. The MIB method
produces a lower SE (19.8% lower) compared to the CC analysis when a small weight (e.g.
0.2) is used for the predictive score for the missing probability. When building the working
model for δ, one sees that the association between missingness and other covariates is in
general weak, i.e., ORs close to 1. Thus, it is likely that the missing data mechanism is close
to MCAR in this dataset. In addition, our results seem to indicate that the working model for
Y is approximately correct. Consequently, a larger weight for the predictive score of the
missing probability may introduce extra noise to the estimation in a single data set, which
can manifest itself in the form of higher SE, larger bias, or both. In summary, the working
model for the missing probability is likely incorrect, whereas the working model for the
outcome is likely close to the truth. As a result, either MIB(3, 0.8, 0.2) or MIB(3, 1, 0) could
be chosen as the estimate of the overall mean serum vitamin D level.
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5 Discussion
Under MAR, we have investigated a nonparametric multiple imputation approach to
estimating the marginal mean of a continuous or discrete random variable that is missing for
some subjects. Working models are used to achieve two main goals: dimension reduction
and double-robustness. Compared to CE and its related estimators, our approach has weak
reliance on both working models in the sense that it only uses the estimated predictive scores
to evaluate the similarity between subjects; along the lines of Hu et al. (2010) (in particular,
DEFINITION 1, p. 306), as long as our predictive scores Z1 and Z2 are an atom of E(Y|X)
and E(δ|X), respectively, the results in Section 2 still hold. Our approach also incorporates a
bootstrap step, which provides a convenient way to estimate the variance of the estimator. In
addition, our proposed sensitivity analysis allows investigators to incorporate prior beliefs
on the validity of the working models, and, more importantly, evaluate the validity of the
working models, which in turn enables investigators to choose an optimal estimator. For CE
and its related estimators, a similar sensitivity analysis is lacking and it is not obvious how
to develop such a sensitivity analysis. The proposed approach can be extended to other
settings such as regression analysis in the presence of missing data. Based on our numerical
results, we recommend that investigators always perform the sensitivity analysis and set ωo
to a larger value in the absence of strong prior knowledge.

In the context of surveys, Haziza and Beaumont (2007) proposed imputation methods based
on two scores that are similar to our Z. They proposed to use a classification algorithm to
partition the sample into disjoint classes and then to impute the missing values within each
class; this differs from our approach in that our method allows the K-nearest neighbors to
overlap. Their approach may encounter difficulty when no obvious clusters exist in the data,
and its theoretical properties are unknown. We have used a K-nearest neighbor method to
allow for adaptation to the local density of the data and missing probabilities. It is a future
interest to study principled approaches for selecting K as well as additional adaptations.
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APPENDIX: PROOFS
Let h1(Z0) be the density function of Z0. The following regularity conditions are stated for
Theorem 1 and Corollary 1.

(A1) Y has finite first and second moments, and , , , and σ23 as defined in
Theorem 1 are finite.

(A2)  and .

(A3) h1(Z0) and π(Z0) are continuous and bounded away from 0 in the compact support
of Z0.

A Proof of Proposition 1

We prove Proposition 1 for  only, since the arguments for  are similar. The following
conditions are assumed to hold for :
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(B1)  is the maximizer of a strictly concave objective function, , or the unique
solution to a set of estimation equations, Un(β) = 0.

(B2)  (or Un(β)) converges almost surely to  (or U(β) = E{Un(β)}),
uniformly in β;  is strictly concave with a unique maximizer β0 (or U(β) has a
unique solution β0).

Note that Conditions (B1) and (B2) are satisfied for most regression models including linear
and generalized linear models and for many estimation equations. In either case, it follows

from arguments similar to those in Section 5.2 of van der Vaart (1998) that . As
discussed in Section 5.2 of van der Vaart (1998), Conditions (B1) and (B2) can be relaxed
and Proposition 1 holds for most, if not all, potential working models for Y .

B Proof of Proposition 2

If (3) is correctly specified,  is the propensity score defined in Rosenbaum and
Rubin (1983) and Proposition 2 follows from arguments similar to theirs. If (2) is correctly

specified, then  and

, where
the second equality is due to MAR. The proof is complete.

C Proof of Theorem 1
Under MAR, if the weights (ωo, ωm) are positive and either of the working models (2) and
(3) is correctly specified, then it follows from Proposition 2 that E(Y|Z0, δ) = E(Y|Z0); this
implies that we can use E(Y|Z0, δ = 1) based on observed data to impute E(Y|Z0, δ = 0) for
observations with missing Y . This result is used implicitly throughout the proof.

To derive the asymptotic distribution of  with positive weights, we first consider another
estimator, the K-nearest-neighbor plug-in estimator

where RK(i) is the set of K nearest observed neighbors of Yi defined using the distance in (4).
We note that the K nearest neighbors are chosen from the subjects with observed outcomes,
i.e., δ = 1.

C.1 Asymptotic Distribution of 
Consider a more general case where

and  are consistent probability weights as defined in Stone (1977). Then we
write
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where , ,

, and

.

It is straightforward to show that  and , where

 and . Let

where  can be estimated by . Next, we show
that  and . Since proofs are similar, we only focus on
T3. Appealing to previous work on the uniform convergency of nearest neighbor density
estimates (Devroye and Wagner (1977)) and kernel density estimates (Silverman (1978)), it
is straightforward to show the strong uniform convergency of ĥ(Z0) to h(Z0) under
Conditions (A2) and (A3). Note that

Following the proof of the asymptotic distribution of  that is discussed later, it can be

shown that , the RHS of which is bounded. Then, given the uniform

integrability of  and the uniform convergence of ĥ(Z0), one can establish the
asymptotic mean square equivalence of  and . It follows that .
Similarly one can prove that .

We now show that . Take , we can reexpress  as
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where , . Now,

 is a standard U-Statistic and . It is straightforward to
show that . Applying standard U-statistic theory, let the projection of U be

Û and then  where

It can be readily shown that Var  with

. Since the  are mutually independent,

it follows that  and hence . Similarly, one can show that
.

Finally, it is straightforward to show that T1 ⊥ T2, T1 ⊥ Û, and ,

where . It then follows that

, where .

C.2 Asymptotic Distribution of 
After rearranging terms, we have

where lij is the number of imputed data sets in which Yj is used to impute Yi, and .
Then we have

where , , and . One can then show that

, where C = EY2 and is finite under Condition (A1). If , then
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 converges to 0 in L2, and hence in probability. The asymptotic distributon of

 is therefore  where . The proof of Theorem 1 is
now complete.

Two remarks are in order. First, X may include both categorical or continuous variables;
when X are all categorical in one or both working models, one or both components of Z0 are
discrete, and continuity and compactness are then defined given the usual topology for a
discrete space. It is well known that a compact discrete space is finite; as a result, it is
straightforward to show that the results of Theorem 1 still hold. Secondly, the main result in
Theorem 1 is proved under Condition (A3); this can be relaxed using a trimming technique
similar to that in Härdle, Janssen, and Serfling (1988).

D Proof of Corollary 1
If Y is independent of δ given Z0, or E(Y|δ,Z0) = E(Y|Z0) and E(Y2|δ, Z0) = E(Y2|Z0), then it

is straightforward to show that .

Similarly, one can show that  and .

It follows that . The proof is complete.
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Table 4

Estimation of the overall mean level of serum vitamin D for a colon cancer study.

Method Estimate SE 95% CI

CC 26.262 0.385 (25.508, 27.016)

CE 26.267 0.364 (25.554, 26.981)

MIB(3,1.0, 0.0) 26.133 0.315 (25.516, 26.751)

MIB(3,0.8, 0.2) 26.364 0.309 (25.759, 26.969)

MIB(3,0.5, 0.5) 26.249 0.500 (25.269, 27.229)

MIB(3,0.2, 0.8) 26.558 0.330 (25.911, 27.206)

MIB(3,0.0, 1.0) 26.438 1.642 (23.220, 29.656)
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