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Abstract We study the neural field equations introduced by Chossat and Faugeras to
model the representation and the processing of image edges and textures in the hy-
percolumns of the cortical area V1. The key entity, the structure tensor, intrinsically
lives in a non-Euclidean, in effect hyperbolic, space. Its spatio-temporal behaviour
is governed by nonlinear integro-differential equations defined on the Poincaré disc
model of the two-dimensional hyperbolic space. Using methods from the theory of
functional analysis we show the existence and uniqueness of a solution of these equa-
tions. In the case of stationary, that is, time independent, solutions we perform a sta-
bility analysis which yields important results on their behavior. We also present an
original study, based on non-Euclidean, hyperbolic, analysis, of a spatially localised
bump solution in a limiting case. We illustrate our theoretical results with numerical
simulations.
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1 Introduction

The selectivity of the responses of individual neurons to external features is often the
basis of neuronal representations of the external world. For example, neurons in the
primary visual cortex (V1) respond preferentially to visual stimuli that have a specific
orientation [1–3], spatial frequency [4], velocity and direction of motion [5], color [6].
A local network in the primary visual cortex, roughly 1 mm2 of cortical surface, is
assumed to consist of subgroups of inhibitory and excitatory neurons each of which is
tuned to a particular feature of an external stimulus. These subgroups are the so-called
Hubel and Wiesel hypercolumns of V1. We have introduced in [7] a new approach
to model the processing of image edges and textures in the hypercolumns of area V1
that is based on a nonlinear representation of the image first order derivatives called
the structure tensor [8, 9]. We suggested that this structure tensor was represented
by neuronal populations in the hypercolumns of V1. We also suggested that the time
evolution of this representation was governed by equations similar to those proposed
by Wilson and Cowan [10]. The question of whether some populations of neurons
in V1 can represent the structure tensor is discussed in [7] but cannot be answered
in a definite manner. Nevertheless, we hope that the predictions of the theory we are
developing will help deciding on this issue.

Our present investigations were motivated by the work of Bressloff, Cowan, Gol-
ubitsky, Thomas and Wiener [11, 12] on the spontaneous occurence of hallucinatory
patterns under the influence of psychotropic drugs, and its extension to the structure
tensor model. A further motivation was the following studies of Bressloff and Cowan
[4, 13, 14] where they study a spatial extension of the ring model of orientation of
Ben-Yishai [1] and Hansel, Sompolinsky [2]. To achieve this goal, we first have to
better understand the local model, that is the model of a ‘texture’ hypercolumn iso-
lated from its neighbours.

The aim of this paper is to present a rigorous mathematical framework for the
modeling of the representation of the structure tensor by neuronal populations in V1.
We would also like to point out that the mathematical analysis we are developing
here, is general and could be applied to other integro-differential equations defined
on the set of structure tensors, so that even if the structure tensor were found to be not
represented in a hypercolumn of V1, our framework would still be relevant. We then
concentrate on the occurence of localized states, also called bumps. This is in contrast
to the work of [7] and [15] where ‘spatially’ periodic solutions were considered. The
structure of this paper is as follows. In Section 2 we introduce the structure tensor
model and the corresponding equations. We also link our model to the ring model of
orientations. In Section 3 we use classical tools of evolution equations in functional
spaces to analyse the problem of the existence and uniqueness of the solutions of
our equations. In Section 4 we study stationary solutions which are very important
for the dynamics of the equation by analysing a nonlinear convolution operator and
making use of the Haar measure of our feature space. In Section 5, we push further
the study of stationary solutions in a special case and we present a technical analysis
involving hypergeometric functions of what we call a hyperbolic radially symmetric
stationary-pulse in the high gain limit. Finally, in Section 6, we present some numer-
ical simulations of the solutions to verify the findings of the theoretical results.
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2 The model

By definition, the structure tensor is based on the spatial derivatives of an image in a
small area that can be thought of as part of a receptive field. These spatial derivatives
are then summed nonlinearly over the receptive field. Let I (x, y) denote the original
image intensity function, where x and y are two spatial coordinates. Let Iσ1 denote
the scale-space representation of I obtained by convolution with the Gaussian kernel
gσ (x, y) = 1

2πσ 2 e−(x2+y2)/(2σ 2):

Iσ1 = I � gσ1 .

The gradient ∇Iσ1 is a two-dimensional vector of coordinates I
σ1
x , I

σ1
y which em-

phasizes image edges. One then forms the 2 × 2 symmetric matrix of rank one
T0 = ∇Iσ1(∇Iσ1)T, where T indicates the transpose of a vector. The set of 2×2 sym-
metric positive semidefinite matrices of rank one will be noted S+(1,2) throughout
the paper (see [16] for a complete study of the set S+(p,n) of n × n symmetric pos-
itive semidefinite matrices of fixed-rank p < n). By convolving T0 componentwise
with a Gaussian gσ2 we finally form the tensor structure as the symmetric matrix:

T = T0 � gσ2 =
(

〈(Iσ1
x )2〉σ2 〈Iσ1

x I
σ1
y 〉σ2

〈Iσ1
x I

σ1
y 〉σ2 〈(Iσ1

y )2〉σ2

)
,

where we have set for example:〈(
Iσ1
x

)2〉
σ2

= (
Iσ1
x

)2
� gσ2 .

Since the computation of derivatives usually involves a stage of scale-space
smoothing, the definition of the structure tensor requires two scale parameters. The
first one, defined by σ1, is a local scale for smoothing prior to the computation of
image derivatives. The structure tensor is insensitive to noise and details at scales
smaller than σ1. The second one, defined by σ2, is an integration scale for accumu-
lating the nonlinear operations on the derivatives into an integrated image descriptor.
It is related to the characteristic size of the texture to be represented, and to the size
of the receptive fields of the neurons that may represent the structure tensor.

By construction, T is symmetric and non negative as det(T ) ≥ 0 by the inequal-
ity of Cauchy-Schwarz, then it has two orthonormal eigenvectors e1, e2 and two non
negative corresponding eigenvalues λ1 and λ2 which we can always assume to be
such that λ1 ≥ λ2 ≥ 0. Furthermore the spatial averaging distributes the information
of the image over a neighborhood, and therefore the two eigenvalues are always pos-
itive. Thus, the set of the structure tensors lives in the set of 2 × 2 symmetric positive
definite matrices, noted SPD(2,R) throughout the paper. The distribution of these
eigenvalues in the (λ1, λ2) plane reflects the local organization of the image intensity
variations. Indeed, each structure tensor can be written as the linear combination:

T = λ1e1eT
1 + λ2e2eT

2 = (λ1 − λ2)e1eT
1 + λ2

(
e1eT

1 + e2eT
2

)
= (λ1 − λ2)e1eT

1 + λ2I2,
(1)
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where I2 is the identity matrix and e1eT
1 ∈ S+(1,2). Some easy interpretations can be

made for simple examples: constant areas are characterized by λ1 = λ2 ≈ 0, straight
edges are such that λ1 � λ2 ≈ 0, their orientation being that of e2, corners yield
λ1 ≥ λ2 � 0. The coherency c of the local image is measured by the ratio c = λ1−λ2

λ1+λ2
,

large coherency reveals anisotropy in the texture.
We assume that a hypercolumn of V1 can represent the structure tensor in the re-

ceptive field of its neurons as the average membrane potential values of some of its
membrane populations. Let T be a structure tensor. The time evolution of the average
potential V (T , t) for a given column is governed by the following neural mass equa-
tion adapted from [7] where we allow the connectivity function W to depend upon
the time variable t and we integrate over the set of 2 × 2 symmetric definite-positive
matrices:⎧⎪⎪⎨⎪⎪⎩

∂tV (T , t) = −αV (T , t) +
∫

SPD(2)

W(T , T ′, t)S
(
V (T ′, t)

)
dT ′

+ Iext(T , t) ∀t > 0,

V (T ,0) = V0(T ).

(2)

The nonlinearity S is a sigmoidal function which may be expressed as:

S(x) = 1

1 + e−μx
,

where μ describes the stiffness of the sigmoid. Iext is an external input.
The set SPD(2) can be seen as a foliated manifold by way of the set of spe-

cial symmetric positive definite matrices SSPD(2) = SPD(2) ∩ SL(2,R). Indeed,

we have: SPD(2)
hom= SSPD(2) × R

+∗ . Furthermore, SSPD(2)
isom= D, where D is the

Poincaré Disk, see, for example, [7]. As a consequence we use the following folia-

tion of SPD(2) : SPD(2)
hom= D × R

+∗ , which allows us to write for all T ∈ SPD(2),
T = (z,�) with (z,�) ∈ D×R

+∗ . T , z and � are related by the relation det(T ) = �2

and the fact that z is the representation in D of T̃ ∈ SSPD(2) with T = �T̃ .
It is well-known [17] that D (and hence SSPD(2)) is a two-dimensional Rieman-

nian space of constant sectional curvature equal to −1 for the distance noted d2 de-
fined by

d2(z, z
′) = arctanh

|z − z′|
|1 − z̄z′| .

The isometries of D, that are the transformations that preserve the distance d2 are
the elements of unitary group U(1,1). In Appendix A we describe the basic structure
of this group. It follows, for example, [7, 18], that SDP(2) is a three-dimensional
Riemannian space of constant sectional curvature equal to −1 for the distance noted
d0 defined by

d0(T , T ′) =
√

2(log� − log�′)2 + d2
2 (z, z′).
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As shown in Proposition B.0.1 of Appendix B it is possible to express the volume
element dT in (z1, z2,�) coordinates with z = z1 + iz2:

dT = 8
√

2
d�

�

dz1 dz2

(1 − |z|2)2
.

We note dm(z) = dz1 dz2
(1−|z|2)2 and equation (2) can be written in (z,�) coordinates:

∂tV (z,�, t) = −αV (z,�, t)

+ 8
√

2
∫ +∞

0

∫
D

W
(
z,�, z′,�′, t

)
S
(
V (z′,�′, t)

)d�′

�′ dm(z)

+ Iext(z,�, t).

We get rid of the constant 8
√

2 by redefining W as 8
√

2W .⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tV (z,�, t) = −αV (z,�, t)

+
∫ +∞

0

∫
D

W(z,�, z′,�′, t)S
(
V (z′,�′, t)

)d�′

�′ dm(z)

+ Iext(z,�, t) ∀t > 0,

V (z,�,0) = V0(z,�).

(3)

In [7], we have assumed that the representation of the local image orientations
and textures is richer than, and contains, the local image orientations model which
is conceptually equivalent to the direction of the local image intensity gradient. The
richness of the structure tensor model has been expounded in [7]. The embedding
of the ring model of orientation in the structure tensor model can be explained by
the intrinsic relation that exists between the two sets of matrices SPD(2,R) and
S+(1,2). First of all, when σ2 goes to zero, that is when the characteristic size of
the structure becomes very small, we have T0 � gσ2 → T0, which means that the ten-
sor T ∈ SPD(2,R) degenerates to a tensor T0 ∈ S+(1,2), which can be interpreted
as the loss of one dimension. We can write each T0 ∈ S+(1,2) as T0 = xxT = r2uuT,
where u = (cos θ, sin θ)T and (r, θ) is the polar representation of x. Since, x and −x

correspond to the same T0, θ is equated to θ + kπ , k ∈ Z. Thus S+(1,2) = R
+∗ × P

1,
where P

1 is the real projective space of dimension 1 (lines of R
2). Then the inte-

gration scale σ2, at which the averages of the estimates of the image derivatives are
computed, is the link between the classical representation of the local image ori-
entations by the gradient and the representation of the local image textures by the
structure tensor. It is also possible to highlight this explanation by coming back to the
interpretation of straight edges of the previous paragraph. When λ1 � λ2 ≈ 0 then
T ≈ (λ1 − λ2)e1eT

1 ∈ S+(1,2) and the orientation is that of e2. We denote by P the
projection of a 2 × 2 symmetric definite positive matrix on the set S+(1,2) defined
by:

P :
{

SPD(2,R) → S+(1,2),

T �→ τ = (λ1 − λ2)e1eT
1 ,
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where T is as in equation (1). We can introduce a metric on the set S+(1,2) which is
derived from a well-chosen Riemannian quotient geometry (see [16]). The resulting
Riemannian space has strong geometrical properties: it is geodesically complete and
the metric is invariant with respect to all transformations that preserve angles (orthog-
onal transformations, scalings and pseudoinversions). Related to the decomposition
S+(1,2) = R+∗ × P1, a metric on the space S+(1,2) is given by:

ds2 = 2

(
dr

r

)2

+ dθ2.

The space S+(1,2) endowed with this metric is a Riemannian manifold (see [16]).
Finally, the distance associated to this metric is given by:

d2
S+(1,2)

(τ1, τ2) = 2 log2
(

r1

r2

)
+ |θ1 − θ2|2,

where τ1 = xT
1 x1, τ2 = xT

2 x2 and (ri , θi) denotes the polar coordinates of xi for i =
1,2. The volume element in (r, θ) coordinates is:

dτ = dr

r

dθ

π
,

where we normalize to 1 the volume element for the θ coordinate.
Let now τ = P(T ) be a symmetric positive semidefinite matrix. The average po-

tential V (τ, t) of the column has its time evolution that is governed by the follow-
ing neural mass equation which is just a projection of equation (2) on the subspace
S+(1,2):

∂tV (τ, t) = − αV (τ, t) +
∫

S+(1,2)

W(τ, τ ′, t)S
(
V (τ ′, t)

)
dτ ′

+ Iext(τ, t) ∀t > 0.

(4)

In (r, θ) coordinates, (4) is rewritten as:

∂tV (r, θ, t) = −αV (r, θ, t) +
∫ +∞

0

∫ π

0
W(r, θ, r ′, θ ′, t)S

(
V (r ′, θ ′, t)

)dθ ′

π

dr ′

r ′

+ Iext(r, θ, t).

This equation is richer than the ring model of orientation as it contains an ad-
ditional information on the contrast of the image in the orthogonal direction of the
prefered orientation. If one wants to recover the ring model of orientation tuning in
the visual cortex as it has been presented and studied by [1, 2, 19], it is sufficient i) to
assume that the connectivity function is time-independent and has a convolutional
form:

W(τ, τ ′, t) = w
(
dS+(1,2)(τ, τ

′)
)= w

(√
2 log2

(
r

r ′

)
+ |θ − θ ′|2

)
,
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and ii) to look at semi-homogeneous solutions of equation (4), that is, solutions which
do not depend upon the variable r . We finally obtain:

∂tV (θ, t) = −αV (θ, t) +
∫ π

0
wsh(θ − θ ′)S

(
V (θ ′, t)

)dθ ′

π
+ Iext(θ, t), (5)

where:

wsh(θ) =
∫ +∞

0
w
(√

2 log2(r) + θ2
)dr

r
.

It follows from the above discussion that the structure tensor contains, at a given
scale, more information than the local image intensity gradient at the same scale and
that it is possible to recover the ring model of orientations from the structure tensor
model.

The aim of the following sections is to establish that (3) is well-defined and to
give necessary and sufficient conditions on the different parameters in order to prove
some results on the existence and uniqueness of a solution of (3).

3 The existence and uniqueness of a solution

In this section we provide theoretical and general results of existence and uniqueness
of a solution of (2). In the first subsection (Section 3.1) we study the simpler case of
the homogeneous solutions of (2), that is, of the solutions that are independent of the
tensor variable T . This simplified model allows us to introduce some notations for the
general case and to establish the useful Lemma 3.1.1. We then prove in Section 3.2
the main result of this section, that is the existence and uniqueness of a solution of
(2). Finally we develop the useful case of the semi-homogeneous solutions of (2), that
is, of solutions that depend on the tensor variable but only through its z coordinate
in D.

3.1 Homogeneous solutions

A homogeneous solution to (2) is a solution V that does not depend upon the tensor
variable T for a given homogenous input I (t) and a constant initial condition V0. In
(z,�) coordinates, a homogeneous solution of (3) is defined by:

V̇ (t) = −αV (t) + W(z,�, t)S
(
V (t)

)+ Iext(t),

where:

W(z,�, t)
def=

∫ +∞

0

∫
D

W(z,�, z′,�′, t)d�′

�′
dz′

1 dz′
2

(1 − |z′|2)2
. (6)

Hence necessary conditions for the existence of a homogeneous solution are that:

• the double integral (6) is convergent,
• W(z,�, t) does not depend upon the variable (z,�). In that case, we write W(t)

instead of W(z,�, t).
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In the special case where W(z,�, z′,�′, t) is a function of only the distance d0
between (z,�) and (z′,�′):

W(z,�, z′,�′, t) ≡ w
(√

2(log� − log�′)2 + d2
2 (z, z′), t

)
the second condition is automatically satisfied. The proof of this fact is given in
Lemma D.0.2 of Appendix D. To summarize, the homogeneous solutions satisfy the
differential equation:{

V̇ (t) = −αV (t) + W(t)S
(
V (t)

)+ Iext(t), t > 0,

V (0) = V0.
(7)

3.1.1 A first existence and uniqueness result

Equation (3) defines a Cauchy’s problem and we have the following theorem.

Theorem 3.1.1 If the external input Iext(t) and the connectivity function W(t) are
continuous on some closed interval J containing 0, then for all V0 in R, there exists
a unique solution of (7) defined on a subinterval J0 of J containing 0 such that
V (0) = V0.

Proof It is a direct application of Cauchy’s theorem on differential equations. We
consider the mapping f : J × R → R defined by:

f (t, x) = −αx + W(t)S(x) + Iext(t).

It is clear that f is continuous from J × R to R. We have for all x, y ∈ R and t ∈ J :∣∣f (t, x) − f (t, y)
∣∣≤ α|x − y| + ∣∣W(t)

∣∣S′
m|x − y|,

where S′
m = supx∈R |S′(x)|.

Since, W is continuous on the compact interval J , it is bounded there by C > 0
and: ∣∣f (t, x) − f (t, y)

∣∣≤ (α + CS′
m)|x − y|. �

We can extend this result to the whole time real line if I and W are continuous
on R.

Proposition 3.1.1 If Iext and W are continuous on R
+, then for all V0 in R, there

exists a unique solution of (7) defined on R
+ such that V (0) = V0.

Proof We have already shown the following inequality:∣∣f (t, x) − f (t, y)
∣∣≤ α|x − y| + ∣∣W(t)

∣∣S′
m|x − y|.

Then f is locally Lipschitz with respect to its second argument. Let V be a maximal
solution on J0 and we denote by β the upper bound of J0. We suppose that β < +∞.
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Then we have for all t ≥ 0:

V (t) = e−αtV0 +
∫ t

0
e−α(t−u)W(u)S

(
V (u)

)
du +

∫ t

0
e−α(t−u)Iext(u) du

⇒ ∣∣V (t)
∣∣≤ |V0| + Sm

∫ β

0
eαu

∣∣W(u)
∣∣du +

∫ β

0
eαu

∣∣Iext(u)
∣∣du ∀t ∈ [0, β],

where Sm = supx∈R |S(x)|.
This implies that the maximal solution V is bounded for all t ∈ [0, β], but Theo-

rem C.0.2 of Appendix C ensures that it is impossible. Then, it follows that necessar-
ily β = +∞. �

3.1.2 Simplification of (6) in a special case

Invariance In the previous section, we have stated that in the special case where
W was a function of the distance between two points in D × R

+∗ , then W(z,�, t)

did not depend upon the variables (z,�). As already said in the previous section, the
following result holds (see proof of Lemma D.0.2 of Appendix D).

Lemma 3.1.1 Suppose that W is a function of d0(T , T ′) only. Then W does not
depend upon the variable T .

Mexican hat connectivity In this paragraph, we push further the computation of W

in the special case where W does not depend upon the time variable t and takes the
special form suggested by Amari in [20], commonly referred to as the ‘Mexican hat’
connectivity. It features center excitation and surround inhibition which is an effective
model for a mixed population of interacting inhibitory and excitatory neurons with
typical cortical connections. It is also only a function of d0(T , T ′).

In detail, we have:

W(z,�, z′�′) = w
(√

2(log� − log�′)2 + d2
2 (z, z′)

)
,

where:

w(x) = 1√
2πσ 2

1

e
− x2

σ2
1 − A√

2πσ 2
2

e
− x2

σ2
2

with 0 ≤ σ1 ≤ σ2 and 0 ≤ A ≤ 1.
In this case we can obtain a very simple closed-form formula for W as shown in

the following lemma.

Lemma 3.1.2 When W is the specific Mexican hat function just defined then:

W = π
3
2

2

(
σ1e

2σ 2
1 erf

(√
2σ1

)− Aσ2e
2σ 2

2 erf
(√

2σ2
))

, (8)



Page 10 of 51 Faye et al.

where erf is the error function defined as:

erf(x) = 2√
π

∫ x

0
e−u2

du.

Proof The proof is given in Lemma E.0.3 of Appendix E. �

3.2 General solution

We now present the main result of this section about the existence and uniqueness
of solutions of equation (2). We first introduce some hypotheses on the connectivity
function W . We present them in two ways: first on the set of structure tensors con-
sidered as the set SPD(2), then on the set of tensors seen as D × R

+∗ . Let J be a
subinterval of R. We assume that:

• (H1): ∀(T , T ′, t) ∈ SPD(2) × SPD(2) × J , W(T , T ′, t) ≡ W(d0(T , T ′), t),
• (H2): W ∈ C(J,L1(SPD(2))) where W is defined as W(T , t) = W(d0(T , Id2), t)

for all (T , t) ∈ SPD(2) × J where Id2 is the identity matrix of M2(R),

• (H3): ∀t ∈ J , supt∈J ‖W(t)‖L1 < +∞ where ‖W(t)‖L1
def= ∫

SPD(2)
|W(d0(T ,

Id2), t)|dT .

Equivalently, we can express these hypotheses in (z,�) coordinates:

• (H1bis): ∀(z, z′,�,�′, t) ∈ D
2 × (R+∗ )2 × R, W(z,�, z′,�′, t) ≡ W(d2(z, z

′),
| log(�) − log(�′)|, t),

• (H2bis): W ∈ C(J,L1(D × R
+∗ )) where W is defined as W(z,�, t) = W(d2(z,0),

| log(�)|, t) for all ∀(z,�, t) ∈ D × R
+∗ × J ,

• (H3bis): ∀t ∈ J , supt∈J ‖W(t)‖L1 < +∞ where

∥∥W(t)
∥∥

L1
def=

∫
D×R

+∗

∣∣W (
d2(z,0),

∣∣log(�)
∣∣, t)∣∣d�

�
dm(z).

3.2.1 Functional space setting

We introduce the following mapping f g : (t, φ) → f g(t, φ) such that:

f g(t, φ)(z,�) =
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣, t)S
(
φ(z′,�′)

)d�′

�′ dm(z′). (9)

Our aim is to find a functional space F where (3) is well-defined and the function
f g maps F to F for all ts. A natural choice would be to choose φ as a Lp(D ×
R

+∗ )-integrable function of the space variable with 1 ≤ p < +∞. Unfortunately, the
homogeneous solutions (constant with respect to (z,�)) do not belong to that space.
Moreover, a valid model of neural networks should only produce bounded membrane
potentials. That is why we focus our choice on the functional space F = L∞(D ×
R

+∗ ). As D × R
+∗ is an open set of R

3, F is a Banach space for the norm: ‖φ‖F =
supz∈D sup�∈R

+∗ |φ(z,�)|.
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Proposition 3.2.1 If Iext ∈ C(J, F ) with supt∈J ‖Iext(t)‖F < +∞ and W satisfies
hypotheses (H1bis)-(H3bis) then f g is well-defined and is from J × F to F .

Proof ∀(z,�, t) ∈ D × R
+∗ × R, we have:∣∣∣∣∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣, t)S
(
φ(z′,�′)

)d�′

�′ dm(z′)
∣∣∣∣

≤ Sm sup
t∈J

∥∥W(t)
∥∥

L1 < +∞. �

3.2.2 The existence and uniqueness of a solution of (3)

We rewrite (3) as a Cauchy problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tV (z,�, t) = −αV (z,�, t)

+
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣, t)
× S

(
V (z′,�′, t)

)d�′

�′ dm(z′)
+ Iext(z,�, t),

V (z,�,0) = V0(z,�).

(10)

Theorem 3.2.1 If the external current Iext belongs to C(J, F ) with J an open interval
containing 0 and W satisfies hypotheses (H1bis)-(H3bis), then fo all V0 ∈ F , there
exists a unique solution of (10) defined on a subinterval J0 of J containing 0 such
that V (z,�,0) = V0(z,�) for all (z,�) ∈ D × R

+∗ .

Proof We prove that f g is continuous on J × F . We have(
f g(t, φ) − f g(s,ψ)

)
(z,�)

=
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣, t)(S(φ(z′,�′)
)− S

(
ψ(z′,�′)

))d�′

�′ dm(z′)

+
∫

D×R
+∗

(
W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣, t)− W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣, s))
× S

(
ψ(z′,�′)

)d�′

�′ dm(z′),

and therefore∥∥f g(t, φ) − f g(s,ψ)
∥∥

F ≤ S′
m sup

t∈J

∥∥W(t)
∥∥

L1‖φ − ψ‖F + Sm
∥∥W(t) − W(s)

∥∥
L1 .

Because of condition (H2) we can choose |t − s| small enough so that ‖W(t) −
W(s)‖L1 is arbitrarily small. This proves the continuity of f g . Moreover it follows
from the previous inequality that:∥∥f g(t, φ) − f g(t,ψ)

∥∥
F ≤ S′

mW g

0 ‖φ − ψ‖F



Page 12 of 51 Faye et al.

with W g

0 = supt∈J ‖W(t)‖L1 . This ensures the Lipschitz continuity of f g with
respect to its second argument, uniformly with respect to the first. The Cauchy-
Lipschitz theorem on a Banach space yields the conclusion. �

Remark 3.2.1 Our result is quite similar to those obtained by Potthast and Graben
in [21]. The main differences are that, first, we allow the connectivity function to
depend upon the time variable t and, second, that our space features is no longer a
R

n but a Riemanian manifold. In their article, Potthast and Graben also work with a
different functional space by assuming more regularity for the connectivity function
W and then obtain more regularity for their solutions.

Proposition 3.2.2 If the external current Iext belongs to C(R+, F ) and W satisfies
hypotheses (H1bis)-(H3bis) with J = R

+, then for all V0 ∈ F , there exists a unique
solution of (10) defined on R

+ such that V (z,�,0) = V0(z,�) for all (z,�) ∈ D ×
R

+∗ .

Proof We have just seen in the previous proof that f g is globally Lipschitz with
respect to its second argument:∥∥f g(t, φ) − f g(t,ψ)

∥∥
F ≤ S′

mW g

0 ‖φ − ψ‖F

then Theorem C.0.3 of Appendix C gives the conclusion. �

3.2.3 The intrinsic boundedness of a solution of (3)

In the same way as in the homogeneous case, we show a result on the boundedness
of a solution of (3).

Proposition 3.2.3 If the external current Iext belongs to C(R+, F ) and is bounded
in time supt∈R+ ‖Iext(t)‖F < +∞ and W satisfies hypotheses (H1bis)-(H3bis) with
J = R+, then the solution of (10) is bounded for each initial condition V0 ∈ F .

Let us set:

ρg def= 2

α

(
SmW g

0 + sup
t∈R+

∥∥Iext(t)
∥∥

F

)
,

where W g

0 = supt∈R+ ‖W(t)‖L1 .

Proof Let V be a solution defined on R
+. Then we have for all t ∈ R

+∗:

V (z,�, t) = e−αtV0(z,�) +
∫ t

0
e−α(t−u)

∫
D×R

+∗
W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣, u)
× S

(
V (z′,�′, u)

)d�′

�′ dm(z′) du

+
∫ t

0
e−α(t−u)Iext(z,�,u)du.
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The following upperbound holds

∥∥V (t)
∥∥

F ≤ e−αt‖V0‖F + 1

α

(
SmW g

0 + sup
t∈R+

∥∥Iext(t)
∥∥

F

)(
1 − e−αt

)
. (11)

We can rewrite (11) as:

∥∥V (t)
∥∥

F ≤ e−αt

(
‖V0‖F − 1

α

(
SmW g

0 + sup
t∈R+

∥∥Iext(t)
∥∥

F

))
+ 1

α

(
SmW0 +g sup

t∈R+

∥∥Iext(t)
∥∥

F

)
= e−αt

(
‖V0‖F − ρg

2

)
+ ρg

2
.

(12)

If V0 ∈ B
g
ρ this implies ‖V (t)‖F ≤ ρg

2 (1 + e−αt ) for all t > 0 and hence ‖V (t)‖F <

ρg for all t > 0, proving that Bρ is stable. Now assume that ‖V (t)‖F > ρg for all
t ≥ 0. The inequality (12) shows that for t large enough this yields a contradiction.
Therefore there exists t0 > 0 such that ‖V (t0)‖F = ρg . At this time instant we have

ρg ≤ e−αt0

(
‖V0‖F − ρg

2

)
+ ρg

2
,

and hence

t0 ≤ 1

α
log

(
2‖V0‖F − ρg

ρg

)
. �

The following corollary is a consequence of the previous proposition.

Corollary 3.2.1 If V0 /∈ Bρg and T g = inf{t > 0 such that V (t) ∈ Bρg } then:

T g ≤ 1

α
log

(
2‖V0‖F − ρg

ρg

)
.

3.3 Semi-homogeneous solutions

A semi-homogeneous solution of (3) is defined as a solution which does not depend
upon the variable �. In other words, the populations of neurons is not sensitive to
the determinant of the structure tensor, that is to the contrast of the image intensity.
The neural mass equation is then equivalent to the neural mass equation for tensors
of unit determinant. We point out that semi-homogeneous solutions were previously
introduced in [7] where a bifurcation analysis of what they called H-planforms was
performed. In this section, we define the framework in which their equations make
sense without giving any proofs of our results as it is a direct consequence of those
proven in the general case. We rewrite equation (3) in the case of semi-homogeneous
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solutions:⎧⎪⎪⎨⎪⎪⎩
∂tV (z, t) = −αV (z, t) +

∫
D

W sh(z, z′, t)S
(
V (z′, t)

)
dm(z′)

+ Iext(z, t), t > 0,

V (z,0) = V0(z),

(13)

where

W sh(z, z′, t) =
∫ +∞

0
W(z,�, z′,�′, t)d�′

�′ .

We have implicitly made the assumption, that W sh does not depend on the coordinate
�. Some conditions under which this assumption is satisfied are described below
and are the direct transductions of those of the general case in the context of semi-
homogeneous solutions.

Let J be an open interval of R. We assume that:

• (C1): ∀(z, z′, t) ∈ D
2 × J , W sh(z, z′, t) ≡ wsh(d2(z, z

′), t),
• (C2): Wsh ∈ C(J,L1(D)) where Wsh is defined as Wsh(z, t) = wsh(d2(z,0), t) for

all (z, t) ∈ D × J ,

• (C3): supt∈J ‖Wsh(t)‖L1 < +∞ where ‖Wsh(t)‖L1
def= ∫

D
|W sh(d2(z,0),

t)|dm(z).

Note that conditions (C1)-(C2) and Lemma 3.1.1 imply that for all z ∈ D,∫
D

|W sh(z, z′, t)|dm(z′) = ‖Wsh(t)‖L1 . And then, for all z ∈ D, the mapping z′ →
W sh(z, z′, t) is integrable on D.

From now on, F = L∞(D) and the Fischer-Riesz’s theorem ensures that L∞(D)

is a Banach space for the norm: ‖ψ‖∞ = inf{C ≥ 0, |ψ(z)| ≤ C for almost every
z ∈ D}.

Theorem 3.3.1 If the external current Iext belongs to C(J, F ) with J an open interval
containing 0 and W sh satisfies conditions (C1)-(C3), then for all V0 ∈ F , there exists
a unique solution of (13) defined on a subinterval J0 of J containing 0.

This solution, defined on the subinterval J of R can in fact be extended to the
whole real line, and we have the following proposition.

Proposition 3.3.1 If the external current Iext belongs to C(R+, F ) and W sh satisfies
conditions (C1)-(C3) with J = R

+, then for all V0 ∈ F , there exists a unique solution
of (13) defined on R

+.

We can also state a result on the boundedness of a solution of (13):

Proposition 3.3.2 Let ρ
def= 2

α
(SmW sh

0 + supt∈R+ ‖I (t)‖F ), with W sh
0 =

supt∈J ‖Wsh(t)‖L1 . The open ball Bρ of F of center 0 and radius ρ is stable un-
der the dynamics of equation (13). Moreover it is an attracting set for this dynamics
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and if V0 /∈ Bρ and T = inf{t > 0 such that V (t) ∈ Bρ} then:

T ≤ 1

α
log

(
2‖V0‖F − ρ

ρ

)
.

4 Stationary solutions

We look at the equilibrium states, noted V 0
μ of (3), when the external input I and the

connectivity W do not depend upon the time. We assume that W satisfies hypotheses
(H1bis)-(H2bis). We redefine for convenience the sigmoidal function to be:

S(x) = 1

1 + e−x
,

so that a stationary solution (independent of time) satisfies:

0 = −αV 0
μ(z,�) +

∫
D×R

+∗
W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)S
(
μV 0

μ(z′,�′)
)d�′

�′ dm(z′)

+ Iext(z,�). (14)

We define the nonlinear operator from F to F , noted Gμ, by:

Gμ(V )(z,�) =
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)S
(
μV (z′,�′)

)d�′

�′ dm(z′). (15)

Finally, (14) is equivalent to:

αV 0
μ(z,�) = Gμ(V )(z,�) + Iext(z,�).

4.1 Study of the nonlinear operator Gμ

We recall that we have set for the Banach space F = L∞(D × R
+∗ ) and Proposi-

tion 3.2.1 shows that Gμ : F → F . We have the further properties:

Proposition 4.1.1 Gμ satisfies the following properties:

• ‖Gμ(V1) − Gμ(V2)‖F ≤ μW
g

0 S′
m‖V1 − V2‖F for all μ ≥ 0,

• μ → Gμ is continuous on R
+.

Proof The first property was shown to be true in the proof of Theorem 3.3.1. The
second property follows from the following inequality:∥∥Gμ1(V ) − Gμ2(V )

∥∥
F ≤ |μ1 − μ2|Wg

0 S′
m‖V ‖F . �

We denote by Gl and G∞ the two operators from F to F defined as follows for all
V ∈ F and all (z,�) ∈ D × R

+∗ :

Gl (V )(z,�) =
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)V (z′,�′)d�′

�′ dm(z′), (16)
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and

G∞(V )(z,�) =
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)H
(
V (z′,�′)

)d�′

�′ dm(z′),

where H is the Heaviside function.
It is straightforward to show that both operators are well-defined on F and map F

to F . Moreover the following proposition holds.

Proposition 4.1.2 We have

Gμ −→
μ→∞ G∞.

Proof It is a direct application of the dominated convergence theorem using the fact
that:

S(μy) −→
μ→∞ H(y) a.e. y ∈ R. �

4.2 The convolution form of the operator Gμ in the semi-homogeneous case

It is convenient to consider the functional space F sh = L∞(D) to discuss semi-
homogeneous solutions. A semi-homogeneous persistent state of (3) is deduced from
(14) and satisfies:

αV 0
μ(z) = G sh

μ

(
V 0

μ

)
(z) + Iext(z), (17)

where the nonlinear operator G sh
μ from F sh to F sh is defined for all V ∈ F sh and

z ∈ D by:

G sh
μ (V )(z) =

∫
D

W sh(d2(z, z
′)
)
S
(
μV (z′)

)
dm(z′).

We define the associated operators, G sh
l , G sh∞:

G sh
l (V )(z) =

∫
D

W sh(d2(z, z
′)
)
V (z′)dm(z′),

G sh∞(V )(z) =
∫

D

W sh(d2(z, z
′)
)
H
(
V (z′)

)
dm(z′).

We rewrite the operator G sh
μ in a convenient form by using the convolution in the

hyperbolic disk. First, we define the convolution in a such space. Let O denote the
center of the Poincaré disk that is the point represented by z = 0 and dg denote the
Haar measure on the group G = SU(1,1) (see [22] and Appendix A), normalized by:∫

G

f (g · O)dg
def=

∫
D

f (z)dm(z),
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for all functions of L1(D). Given two functions f1, f2 in L1(D) we define the convo-
lution ∗ by:

(f1 ∗ f2)(z) =
∫

G

f1(g · O)f2
(
g−1 · z)dg.

We recall the notation Wsh(z)
def= W sh(d2(z,O)).

Proposition 4.2.1 For all μ ≥ 0 and V ∈ F sh we have:

G sh
μ (V ) = Wsh ∗ S(μV ), G sh

l (V ) = Wsh ∗ V and

G sh∞(V ) = Wsh ∗ H(V ).
(18)

Proof We only prove the result for Gμ. Let z ∈ D, then:

G sh
μ (V )(z) =

∫
D

W sh(d2(z, z
′)
)
S
(
μV (z′)

)
dm(z′)

=
∫

G

W sh(d2(z, g · O)
)
S
(
μV (g · O)

)
dg

=
∫

G

W sh(d2
(
gg−1 · z, g · O))

S
(
μV (g · O)

)
dg

and for all g ∈ SU(1,1), d2(z, z
′) = d2(g · z, g · z′) so that:

G sh
μ (V )(z) =

∫
G

W sh(d2
(
g−1 · z,O))

S
(
μV (g · O)

)
dg = Wsh ∗ S(μV )(z). �

Let b be a point on the circle ∂D. For z ∈ D, we define the ‘inner product’ 〈z, b〉 to
be the algebraic distance to the origin of the (unique) horocycle based at b through z

(see [7]). Note that 〈z, b〉 does not depend on the position of z on the horocycle. The
Fourier transform in D is defined as (see [22]):

h̃(λ, b) =
∫

D

h(z)e(−iλ+1)〈z,b〉 dm(z) ∀(λ, b) ∈ R × ∂D

for a function h : D → C such that this integral is well-defined.

Lemma 4.2.1 The Fourier transform in D, W̃sh(λ, b) of Wsh does not depend upon
the variable b ∈ ∂D.

Proof For all λ ∈ R and b = eiθ ∈ ∂D,

W̃sh(λ, b) =
∫

D

Wsh(z)e(−iλ+1)〈z,b〉 dm(z).



Page 18 of 51 Faye et al.

We recall that for all φ ∈ R rφ is the rotation of angle φ and we have Wsh(rφ · z) =
Wsh(z), dm(z) = dm(rφ · z) and 〈z, b〉 = 〈rφ · z, rφ · b〉, then:

W̃sh(λ, b) =
∫

D

Wsh(r−θ · z)e(−iλ+1)〈r−θ ·z,1〉 dm(z)

=
∫

D

Wsh(z)e(−iλ+1)〈z,1〉 dm(z)
def= W̃sh(λ). �

We now introduce two functions that enjoy some nice properties with respect to
the Hyperbolic Fourier transform and are eigenfunctions of the linear operator G sh

l .

Proposition 4.2.2 Let eλ,b(z) = e(−iλ+1)〈z,b〉 and �λ(z) = ∫
∂D

e(iλ+1)〈z,b〉 db then:

• G sh
l (eλ,b) = W̃sh(λ)eλ,b ,

• G sh
l (�λ) = W̃sh(λ)�λ.

Proof We begin with b = 1 ∈ ∂D and use the horocyclic coordinates. We use the
same changes of variables as in Lemma 3.1.1:

G sh
l (eλ,1)(nsat · O) =

∫
R2

W sh(d2(nsat · O,ns′at ′ · O)
)
e(−iλ−1)t ′ dt ′ ds′

=
∫

R2
W sh(d2(ns−s′at · O,at ′ · O)

)
e(−iλ−1)t ′ dt ′ ds′

=
∫

R2
W sh(d2(atn−x · O,at ′ · O)

)
e(−iλ−1)t ′+2t dt ′ dx

=
∫

R2
W sh(d2(O,nxat ′−t · O)

)
e(−iλ−1)t ′+2t dt ′ dx

=
∫

R2
W sh(d2(O,nxay · O)

)
e(−iλ−1)(y+t)+2t dy dx

= e(−iλ+1)〈nsat ·O,1〉W̃sh(λ).

By rotation, we obtain the property for all b ∈ ∂D.
For the second property [22, Lemma 4.7] shows that:

Wsh ∗ �λ(z) =
∫

∂D

e(iλ+1)〈z,b〉W̃sh(λ) db = �λ(z)W̃sh(λ). �

A consequence of this proposition is the following lemma.

Lemma 4.2.2 The linear operator G sh
l is not compact and for all μ ≥ 0, the nonlin-

ear operator G sh
μ is not compact.

Proof The previous Proposition 4.2.2 shows that G sh
l has a continuous spectrum

which iimplies that is not a compact operator.
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Let U be in F sh, for all V ∈ F sh we differentiate G sh
μ and compute its Frechet

derivative:

D
(

G sh
μ

)
U

(V )(z) =
∫

D

W sh(d2(z, z
′)
)
S′(U(z′)

)
V (z′)dm(z′).

If we assume further that U does not depend upon the space variable z, U(z) = U0
we obtain:

D
(

G sh
μ

)
U0

(V )(z) = S′(U0)G sh
l (V )(z).

If G sh
μ was a compact operator then its Frechet derivative D(G sh

μ )U0 would also be
a compact operator, but it is impossible. As a consequence, G sh

μ is not a compact
operator. �

4.3 The convolution form of the operator Gμ in the general case

We adapt the ideas presented in the previous section in order to deal with the general
case. We recall that if H is the group of positive real numbers with multiplication
as operation, then the Haar measure dh is given by dx

x
. For two functions f1, f2 in

L1(D × R
+∗ ) we define the convolution � by:

(f1 � f2)(z,�)
def=

∫
G

∫
H

f1(g · O,h · 1)f2
(
g−1 · z,h−1 · �)dg dh.

We recall that we have set by definition: W(z,�) = W(d2(z,0), | log(�)|).

Proposition 4.3.1 For all μ ≥ 0 and V ∈ F we have:

Gμ(V ) = W � S(μV ), Gl (V ) = W � V and G∞(V ) = W � H(V ). (19)

Proof Let (z,�) be in D×R
+∗ . We follow the same ideas as in Proposition 4.2.1 and

prove only the first result. We have

Gμ(V )(z,�) =
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)S
(
μV (z′,�′)

) d�′

�′ dm(z′)

=
∫

G

∫
R

+∗
W

(
d2
(
g−1 · z,O)

,

∣∣∣∣log

(
�

�′

)∣∣∣∣)S
(
μV (g · O,�′)

)
dg

d�′

�′

=
∫

G

∫
H

W
(
d2
(
g−1 · z,O)

,
∣∣log

(
h−1 · �)∣∣)S(μV (g · O,h · 1)

)
dg dh

= W � S(μV )(z,�). �

We next assume further that the function W is separable in z, � and more precisely
that W(z,�) = W1(z)W2(log(�)) where W1(z) = W1(d2(z,0)) and W2(log(�)) =
W2(| log(�)|) for all (z,�) ∈ D×R

+∗ . The following proposition is an echo to Propo-
sition 4.2.2.
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Proposition 4.3.2 Let eλ,b(z) = e(−iλ+1)〈z,b〉, �λ(z) = ∫
∂D

e(iλ+1)〈z,b〉 db and
hξ (�) = eiξ log(�) then:

• Gl (eλ,bhξ ) = W̃1(λ)Ŵ2(ξ)eλ,bhξ ,
• Gl (�λhξ ) = W̃1(λ)Ŵ2(ξ)�λhξ ,

where Ŵ2 is the usual Fourier transform of W2.

Proof The proof of this proposition is exactly the same as for Proposition 4.2.2. In-
deed:

Gl (eλ,bhξ )(z,�) = W1 ∗ eλ,b(z)

∫
R

+∗
W2

(
log

(
�

�′

))
eiξ log(�′) d�′

�′

= W1 ∗ eλ,b(z)

(∫
R

W2(y)e−iξy dy

)
eiξ log(�). �

A straightforward consequence of this proposition is an extension of Lemma 4.2.2
to the general case:

Lemma 4.3.1 The linear operator G sh
l is not compact and for all μ ≥ 0, the nonlin-

ear operator G sh
μ is not compact.

4.4 The set of the solutions of (14)

Let Bμ be the set of the solutions of (14) for a given slope parameter μ:

Bμ = {
V ∈ F | − αV + Gμ(V ) + Iext = 0

}
.

We have the following proposition.

Proposition 4.4.1 If the input current Iext is equal to a constant I 0
ext, that is, does not

depend upon the variables (z,�) then for all μ ∈ R
+, Bμ �= ∅. In the general case

Iext ∈ F , if the condition μS′
mW

g

0 < α is satisfied, then Card(Bμ) = 1.

Proof Due to the properties of the sigmoid function, there always exists a constant
solution in the case where Iext is constant. In the general case where Iext ∈ F , the
statement is a direct application of the Banach fixed point theorem, as in [23]. �

Remark 4.4.1 If the external input does not depend upon the variables (z,�) and if
the condition μS′

mW
g

0 < α is satisfied, then there exists a unique stationary solution
by application of Proposition 4.4.1. Moreover, this stationary solution does not de-
pend upon the variables (z,�) because there always exists one constant stationary
solution when the external input does not depend upon the variables (z,�). Indeed
equation (14) is then equivalent to:

0 = −αV 0 + βS
(
V 0)+ I 0

ext where
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β =
∫

D×R
+∗

W

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)d�′

�′ dm(z′)

and β does not depend upon the variables (z,�) because of Lemma 3.1.1. Because
of the property of the sigmoid function S, the equation 0 = −αV 0 + βS(V 0) + I 0

ext
has always one solution.

If on the other hand the input current does depend upon these variables, is invari-
ant under the action of a subgroup of U(1,1), the group of the isometries of D (see
Appendix A), and the condition μS′

mW
g

0 < α is satisfied, then the unique stationary
solution will also be invariant under the action of the same subgroup. We refer the
interested reader to our work [15] on equivariant bifurcation of hyperbolic planforms
on the subject.

When the condition μS′
mW

g

0 < α is satisfied we call primary stationary solution
the unique solution in Bμ.

4.5 Stability of the primary stationary solution

In this subsection we show that the condition μS′
mW

g

0 < α guarantees the stability of
the primary stationary solution to (3).

Theorem 4.5.1 We suppose that I ∈ F and that the condition μS′
mW

g

0 < α is satis-
fied, then the associated primary stationary solution of (3) is asymtotically stable.

Proof Let V 0
μ be the primary stationary solution of (3), as μS′

mW
g

0 < α is satisfied.
Let also Vμ be the unique solution of the same equation with some initial condition
Vμ(0) = φ ∈ F , see Theorem 3.3.1. We introduce a new function X = Vμ−V 0

μ which
satisfies:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tX(z,�, t) = −αX(z,�, t)

+
∫

D×R
+∗

Wm

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)�
(
X(z′,�′, t)

)d�′

�′ dm(z′),

X(z,�,0) = φ(z,�) − V 0
μ(z,�),

where Wm(d2(z, z
′), | log( �

�′ )|) = S′
mW(d2(z, z

′), | log( �
�′ )|) and the vector �(X(z,

�, t)) is given by �(X(z,�, t)) = S(μVμ(z,�, t)) − S(μV 0
μ(z,�)) with S =

(S′
m)−1S. We note that, because of the definition of � and the mean value theorem

|�(X(z,�, t))| ≤ μ|X(z,�, t)|. This implies that |�(r)| ≤ |r| for all r ∈ R.

∂tX(z,�, t) = −αX(z,�, t)

+
∫

D×R
+∗

Wm

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)�
(
X(z′,�′, t)

)d�′

�′ dm(z′)

⇒ ∂t

(
eαtX(z,�, t)

)
= eαt

∫
D×R

+∗
Wm

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)�
(
X(z′,�′, t)

)d�′

�′ dm(z′)
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⇒ X(z,�, t)

= e−αtX(z,�,0) +
∫ t

0
e−α(t−u)

∫
D×R

+∗
Wm

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)
× �

(
X(z′,�′, u)

)d�′

�′ dm(z′) du

⇒ ∣∣X(z,�, t)
∣∣

≤ e−αt
∣∣X(z,�,0)

∣∣
+ μ

∫ t

0
e−α(t−u)

∫
D×R

+∗

∣∣∣∣Wm

(
d2(z, z

′),
∣∣∣∣log

(
�

�′

)∣∣∣∣)∣∣∣∣
× ∣∣X(z′,�′, u)

∣∣d�′

�′ dm(z′) du

⇒ ∥∥X(t)
∥∥∞ ≤ e−αt

∥∥X(0)
∥∥∞ + μW

g

0 S′
m

∫ t

0
e−α(t−u)

∥∥X(u)
∥∥∞ du.

If we set: G(t) = eαt‖X(t)‖∞, then we have:

G(t) ≤ G(0) + μW
g

0 S′
m

∫ t

0
G(u)du

and G is continuous for all t ≥ 0. The Gronwall inequality implies that:

G(t) ≤ G(0)eμW
g
0 S′

mt

⇒ ∥∥X(t)
∥∥∞ ≤ e(μW

g
0 S′

m−α)t
∥∥X(0)

∥∥∞,

and the conclusion follows. �

5 Spatially localised bumps in the high gain limit

In many models of working memory, transient stimuli are encoded by feature-
selective persistent neural activity. Such stimuli are imagined to induce the forma-
tion of a spatially localised bump of persistent activity which coexists with a stable
uniform state. As an example, Camperi and Wang [24] have proposed and studied
a network model of visuo-spatial working memory in prefontal cortex adapted from
the ring model of orientation of Ben-Yishai and colleagues [1]. Many studies have
emerged in the past decades to analyse these localised bumps of activity [25–29], see
the paper by Coombes for a review of the domain [30]. In [25, 26, 28], the authors
have examined the existence and stability of bumps and multi-bumps solutions to an
integro-differential equation describing neuronal activity along a single spatial do-
main. In [27, 29] the study is focused on the two-dimensional model and a method
is developed to approximate the integro-differential equation by a partial differential
equation which makes possible the determination of the stability of circularly sym-
metric solutions. It is therefore natural to study the emergence of spatially localized
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bumps for the structure tensor model in a hypercolumn of V1. We only deal with
the reduced case of equation (13) which means that the membrane activity does not
depend upon the contrast of the image intensity, keeping the general case for future
work.

In order to construct exact bump solutions and to compare our results to previous
studies [25–29], we consider the high gain limit μ → ∞ of the sigmoid function. As
above we denote by H the Heaviside function defined by H(x) = 1 for x ≥ 0 and
H(x) = 0 otherwise. Equation (13) is rewritten as:

∂tV (z, t) = −αV (z, t) +
∫

D

W(z, z′)H
(
V (z′, t) − κ

)
dm(z′) + I (z, t)

= −αV (z, t) +
∫

{z′∈D|V (z′,t)≥κ}
W(z, z′)dm(z′) + I (z).

(20)

We have introduced a threshold κ to shift the zero of the Heaviside function. We
make the assumption that the system is spatially homogeneous that is, the external
input I does not depend upon the variables t and the connectivity function depends
only on the hyperbolic distance between two points of D : W(z, z′) = W(d2(z, z

′)).
For illustrative purposes, we will use the exponential weight distribution as a specific
example throughout this section:

W(z, z′) = W
(
d2(z, z

′)
)= exp

(
−d2(z, z

′)
b

)
. (21)

The theoretical study of equation (20) has been done in [21] where the authors
have imposed strong regularity assumptions on the kernel function W, such as Hölder
continuity, and used compactness arguments and integral equation techniques to ob-
tain a global existence result of solutions to (20). Our approach is very different, we
follow that of [25–29, 31] by proceeding in a constructive fashion. In a first part,
we define what we call a hyperbolic radially symmetric bump and present some pre-
liminary results for the linear stability analysis of the last part. The second part is
devoted to the proof of a technical Theorem 5.1.1 which is stated in the first part. The
proof uses results on the Fourier transform introduced in Section 4, hyperbolic ge-
ometry and hypergeometric functions. Our results will be illustrated in the following
Section 6.

5.1 Existence of hyperbolic radially symmetric bumps

From equation (20) a general stationary pulse satisfies the equation:

αV (z) =
∫

{z′∈D|V (z′)≥κ}
W(z, z′)dm(z′) + Iext(z).

For convenience, we note M(z,K) the integral
∫
K

W(z, z′)dm(z′) with K = {z ∈
D|V (z) ≥ κ}. The relation V (z) = κ holds for all z ∈ ∂K .
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Definition 5.1.1 V is called a hyperbolic radially symmetric stationary-pulse solu-
tion of (20) if V depends only upon the variable r and is such that:

V (r) > κ, r ∈ [0,ω[,
V (ω) = κ,

V (r) < κ, r ∈]ω,∞[,
V (∞) = 0,

and is a fixed point of equation (20):

αV (r) = M(r,ω) + Iext(r), (22)

where Iext(r) = Ie
− r2

2σ2 is a Gaussian input and M(r,ω) is defined by the following
equation:

M(r,ω)
def= M

(
z,Bh(0,ω)

)
and Bh(0,ω) is a hyperbolic disk centered at the origin of hyperbolic radius ω.

From symmetry arguments there exists a hyperbolic radially symmetric stationary-
pulse solution V (r) of (20), furthermore the threshold κ and width ω are related
according to the self-consistency condition

ακ = M(ω) + Iext(ω)
def= N(ω), (23)

where

M(ω)
def= M(ω,ω).

The existence of such a bump can then be established by finding solutions to (23)
The function N(ω) is plotted in Figure 1 for a range of the input amplitude I . The
horizontal dashed lines indicate different values of ακ , the points of intersection de-
termine the existence of stationary pulse solutions. Qualitatively, for sufficiently large
input amplitude I we have N ′(0) < 0 and it is possible to find only one solution
branch for large ακ . For small input amplitudes I we have N ′(0) > 0 and there al-
ways exists one solution branch for αβ < γc ≈ 0.06. For intermediate values of the
input amplitude I , as αβ varies, we have the possiblity of zero, one or two solutions.
Anticipating the stability results of Section 5.3, we obtain that when N ′(ω) < 0 then
the corresponding solution is stable.

We end this subsection with the usefull and technical following formula.

Theorem 5.1.1 For all (r,ω) ∈ R
+ × R

+:

M(r,ω) = 1

4
sinh(ω)2 cosh(ω)2

∫
R

W̃(λ)�
(0,0)
λ (r)�

(1,1)
λ (ω)λ tanh

(
π

2
λ

)
dλ, (24)
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Fig. 1 Plot of N(ω) defined in (23) as a function of the pulse width ω for several values of the input
amplitude I and for a fixed input width σ = 0.05. The horizontal dashed lines indicate different values of
ακ . The connectivity function is given in equation (21) and the parameter b is set to b = 0.2.

where W̃(λ) is the Fourier Helgason transform of W(z)
def= W(d2(z,0)) and

�
(α,β)
λ (ω) = F

(
1

2
(ρ + iλ),

1

2
(ρ − iλ);α + 1;− sinh(ω)2

)
,

with α + β + 1 = ρ and F is the hypergeometric function of first kind.

Remark 5.1.1 We recall that F admits the integral representation [32]:

F(α,β;γ ; z) = �(α)

�(β)�(γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1(1 − tz)−α dt

with �(γ ) > �(β) > 0.

Remark 5.1.2 In Section 4 we introduced the function �λ(z) = ∫
∂D

e(iλ+1)〈z,b〉 db.
In [22], it is shown that:

�
(0,0)
λ (r) = �λ

(
tanh(r)

)
if z = tanh(r)eiθ .

Remark 5.1.3 Let us point out that this result can be linked to the work of Folias and
Bressloff in [31] and then used in [29]. They constructed a two-dimensional pulse for
a general, radially symmetric synaptic weight function. They obtain a similar formal
representation of the integral of the connectivity function w over the disk B(O,a)

centered at the origin O and of radius a. Using their notations,

M(a, r) =
∫ 2π

0

∫ a

0
w
(|r − r′|)r ′ dr ′ dθ = 2πa

∫ ∞

0
w̆(ρ)J0(rρ)J1(aρ)dρ,
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where Jν(x) is the Bessel function of the first kind and w̆ is the real Fourier transform
of w. In our case, instead of the Bessel function, we find �

(ν,ν)
λ (r) which is linked to

the hypergeometric function of the first kind.

We now show that for a general monotonically decreasing weight function W ,
the function M(r,ω) is necessarily a monotonically decreasing function of r . This
will ensure that the hyperbolic radially symmetric stationary-pulse solution (22) is
also a monotonically decreasing function of r in the case of a Gaussian input. The
demonstration of this result will directly use Theorem 5.1.1.

Proposition 5.1.1 V is a monotonically decreasing function in r for any monotoni-
cally decreasing synaptic weight function W .

Proof Differentiating M with respect to r yields:

∂M
∂r

(r,ω) = 1

2

∫ ω

0

∫ 2π

0

∂

∂r

(
W
(
d2
(
tanh(r), tanh(r ′)eiθ

)))
sinh(2r ′) dr ′ dθ.

We have to compute

∂

∂r

(
W
(
d2
(
tanh(r), tanh(r ′)eiθ

)))
= W ′(d2

(
tanh(r), tanh(r ′)eiθ

)) ∂

∂r

(
d2
(
tanh(r), tanh(r ′)eiθ

))
.

It is result of elementary hyperbolic trigonometry that

d2
(
tanh(r), tanh(r ′)eiθ

)
= tanh−1

(√
tanh(r)2 + tanh(r ′)2 − 2 tanh(r) tanh(r ′) cos(θ)

1 + tanh(r)2 tanh(r ′)2 − 2 tanh(r) tanh(r ′) cos(θ)

) (25)

we let ρ = tanh(r), ρ′ = tanh(r ′) and define

Fρ′,θ (ρ) = ρ2 + ρ′2 − 2ρρ′ cos(θ)

1 + ρ2ρ′2 − 2ρρ′ cos(θ)
.

It follows that

∂

∂ρ
tanh−1(√Fρ′,θ (ρ)

)=
∂
∂ρ

Fρ′,θ (ρ)

2(1 − Fρ′,θ (ρ))
√

Fρ′,θ (ρ)
,

and

∂

∂ρ
Fρ′,θ (ρ) = 2(ρ − ρ′ cos(θ)) + 2ρρ′(ρ′ − ρ cos(θ))

(1 + ρ2ρ′2 − 2ρρ′ cos(θ))2
.

We conclude that if ρ > tanh(ω) then for all 0 ≤ ρ′ ≤ tanh(ω) and 0 ≤ θ ≤ 2π

2
(
ρ − ρ′ cos(θ)

)+ 2ρρ′(ρ′ − ρ cos(θ)
)
> 0,
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which implies M(r,ω) < 0 for r > ω, since W ′ < 0.
To see that it is also negative for r < ω, we differentiate equation (24) with respect

to r :

∂M
∂r

(r,ω) = 1

4
sinh(ω)2 cosh(ω)2

×
∫

R

W̃(λ)
∂

∂r
�

(0,0)
λ (r)�

(1,1)
λ (ω)λ tanh

(
π

2
λ

)
dλ.

The following formula holds for the hypergeometric function (see Erdelyi in [32]):

d

dz
F (a, b; c; z) = ab

c
F (a + 1, b + 1; c + 1; z).

It implies

∂

∂r
�

(0,0)
λ (r) = −1

2
sinh(r) cosh(r)

(
1 + λ2)�(1,1)

λ (r).

Substituting in the previous equation giving ∂M
∂r

we find:

∂M
∂r

(r,ω) = − 1

64
sinh(2ω)2 sinh(2r)

×
∫

R

W̃(λ)
(
1 + λ2)�(1,1)

λ (r)�
(1,1)
λ (ω)λ tanh

(
π

2
λ

)
dλ,

implying that:

sgn
(

∂M
∂r

(r,ω)

)
= sgn

(
∂M
∂r

(ω, r)

)
.

Consequently, ∂M
∂r

(r,ω) < 0 for r < ω. Hence V is monotonically decreasing in r

for any monotonically decreasing synaptic weight function W . �

As a consequence, for our particular choice of exponential weight function (21),
the radially symmetric bump is monotonically decreasing in r , as it will be recover
in our numerical experiments in Section 6.

5.2 Proof of Theorem 5.1.1

The proof of Theorem 5.1.1 goes in four steps. First we introduce some notations and
recall some basic properties of the Fourier transform in the Poincaré disk. Second we
prove two propositions. Third we state a technical lemma on hypergeometric func-
tions, the proof being given in Lemma F.0.4 of Appendix F. The last step is devoted
to the conclusion of the proof.

5.2.1 First step

In order to calculate M(r,ω), we use the Fourier transform in D which has already
been introduced in Section 4. First we rewrite M(r,ω) as a convolution product:
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Proposition 5.2.1 For all (r,ω) ∈ R
+ × R

+:

M(r,ω) = 1

4π

∫
R

W̃(λ)�λ ∗ 1Bh(0,ω)(z)λ tanh

(
π

2
λ

)
dλ. (26)

Proof We start with the definition of M(r,ω) and use the convolutional form of the
integral:

M(r,ω) = M
(
z,Bh(0,ω)

)=
∫

Bh(0,ω)

W(z, z′)dm(z′)

=
∫

D

W(z, z′)1Bh(0,ω)(z
′)dm(z′) = W ∗ 1Bh(0,ω)(z).

In [22], Helgason proves an inversion formula for the hyperbolic Fourier transform
and we apply this result to W:

W(z) = 1

4π

∫
R

∫
∂D

W̃(λ, b)e(iλ+1)〈z,b〉λ tanh

(
π

2
λ

)
dλdb

= 1

4π

∫
R

W̃(λ)

(∫
∂D

e(iλ+1)〈z,b〉 db

)
λ tanh

(
π

2
λ

)
dλ

the last equality is a direct application of Lemma 4.2.1 and we can deduce that

W(z) = 1

4π

∫
R

W̃(λ)�λ(z)λ tanh

(
π

2
λ

)
dλ. (27)

Finally we have:

M(r,ω) = W ∗ 1Bh(0,ω)(z) = 1

4π

∫
R

W̃(λ)�λ ∗ 1Bh(0,ω)(z)λ tanh

(
π

2
λ

)
dλ.

which is the desired formula. �

It appears that the study of M(r,ω) consists in calculating the convolution product
�λ ∗ 1Bh(0,ω)(z).

Proposition 5.2.2 For all z = k · O for k ∈ G = SU(1,1) we have:

�λ ∗ 1Bh(0,ω)(z) =
∫

Bh(0,ω)

�λ

(
k−1 · z′)dm(z′).

Proof Let z = k · O for k ∈ G we have:

�λ ∗ 1Bh(0,ω)(z) =
∫

G

1Bh(0,ω)(g · O)�λ

(
g−1 · z)dg

=
∫

G

1Bh(0,ω)(g · O)�λ

(
g−1k · O)

dg
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for all g, k ∈ G, �λ(g
−1k · O) = �λ(k

−1g · O) so that:

�λ ∗ 1Bh(0,ω)(z) =
∫

G

1Bh(0,ω)(g · O)�λ

(
k−1g · O)

dg

=
∫

D

1Bh(0,ω)(z
′)�λ

(
k−1 · z′)dm(z′)

=
∫

Bh(0,ω)

�λ

(
k−1 · z′)dm(z′). �

5.2.2 Second step

In this part, we prove two results:

• the mapping z = k · O = tanh(r)eiθ → �λ ∗ 1Bh(0,ω)(z) is a radial function, that
is, it depends only upon the variable r .

• the following equality holds for z = tanh(r)eiθ :

�λ ∗ 1Bh(0,ω)(z) = �λ(ar · O)

∫
Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′).

Proposition 5.2.3 If z = k · O and z is written tanh(r)eiθ with r = d2(z,O) in hy-
perbolic polar coordinates the function �λ ∗ 1Bh(0,ω)(z) depends only upon the vari-
able r .

Proof If z = tanh(r)eiθ , then z = rotθ ar · O and k−1 = a−r rot−θ . Similarly z′ =
rotθ ′ar ′ · O . We can write thanks to the previous Proposition 5.2.2:

�λ ∗ 1Bh(0,ω)(z) =
∫

Bh(0,ω)

�λ

(
k−1 · z′)dm(z′)

= 1

2

∫ ω

0

∫ 2π

0
�λ(a−r rotθ ′−θ ar ′ · O) sinh(2r ′) dr ′ dθ ′

= 1

2

∫ ω

0

∫ 2π

0
�λ(a−r rotψar ′ · O) sinh(2r ′) dr ′ dψ

=
∫

Bh(0,ω)

�λ(a−r · z′)dm(z′),

which, as announced, is only a function of r . �

We now give an explicit formula for the integral
∫
Bh(0,ω)

�λ(a−r · z′)dm(z′).

Proposition 5.2.4 For all z = tanh(r)eiθ we have:

�λ ∗ 1Bh(0,ω)(z) = �λ(ar · O)

∫
Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′).
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Proof We first recall a formula from [22].

Lemma 5.2.1 For all g ∈ G the following equation holds:

�λ

(
g−1 · z)=

∫
∂D

e(−iλ+1)〈g·O,b〉e(iλ+1)〈z,b〉 db.

Proof See [22]. �

It follows immediately that for all z ∈ D and r ∈ R we have:

�λ(a−r · z) =
∫

∂D

e(−iλ+1)〈ar ·O,b〉e(iλ+1)〈z,b〉 db.

We integrate this formula over the hyperbolic ball Bh(0,ω) which gives:∫
Bh(0,ω)

�λ(a−r · z′)dm(z′) =
∫

Bh(0,ω)

(∫
∂D

e(−iλ+1)〈ar ·O,b〉e(iλ+1)〈z′,b〉 db

)
dm(z′),

and we exchange the order of integration:

=
∫

∂D

e(−iλ+1)〈ar ·O,b〉
(∫

Bh(0,ω)

e(iλ+1)〈z′,b〉 dm(z′)
)

db.

We note that the integral
∫
Bh(0,ω)

e(iλ+1)〈z′,b〉 dm(z′) does not depend upon the vari-

able b = eiφ . Indeed:∫
Bh(0,ω)

e(iλ+1)〈z′,b〉 dm(z′)

= 1

2

∫ ω

0

∫ 2π

0

(
1 − tanh(x)2

| tanh(x)eiθ − eiφ |2
) iλ+1

2

sinh(2x)dx dθ

= 1

2

∫ ω

0

∫ 2π

0

(
1 − tanh(x)2

| tanh(x)ei(θ−φ) − 1|2
) iλ+1

2

sinh(2x)dx dθ

= 1

2

∫ ω

0

∫ 2π

0

(
1 − tanh(x)2

| tanh(x)eiθ ′ − 1|2
) iλ+1

2

sinh(2x)dx dθ ′,

and indeed the integral does not depend upon the variable b:∫
Bh(0,ω)

e(iλ+1)〈z′,b〉 dm(z′) =
∫

Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′).

Finally, we can write:∫
Bh(0,ω)

�λ(a−r · z′)dm(z′) =
∫

∂D

e(−iλ+1)〈ar ·O,b〉 db

∫
Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′)
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= �−λ(ar · O)

∫
Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′)

= �λ(ar · O)

∫
Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′),

because �λ = �−λ (as solutions of the same equation).
This completes the proof that:

�λ

(
g−1 · z)=

∫
Bh(0,ω)

�λ(a−r · z′)dm(z′) = �λ(ar · O)

∫
Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′).

�

5.2.3 Third step

We state a useful formula.

Lemma 5.2.2 For all ω > 0 the following formula holds:∫
Bh(0,ω)

�λ(z)dm(z) = π sinh(ω)2 cosh(ω)2�
(1,1)
λ (ω).

Proof See Lemma F.0.4 of Appendix F. �

5.2.4 The main result

At this point we have proved the following proposition thanks to Propositions 5.2.1
and 5.2.4.

Proposition 5.2.5 If z = tanh(r)eiθ ∈ Bh(0,ω), M(r,ω) is given by the following
formula:

M(r,ω) = 1

4π

∫
R

W̃(λ)�λ(ar · O)�λ(ω)λ tanh

(
π

2
λ

)
dλ

= 1

4π

∫
R

W̃(λ)�
(0,0)
λ (r)�λ(ω)λ tanh

(
π

2
λ

)
dλ,

where

�λ(ω)
def=

∫
Bh(0,ω)

e(iλ+1)〈z′,1〉 dm(z′).

We are now in a position to obtain the analytic form for M(r,ω) of Theorem 5.1.1.
We prove that

�λ(ω) =
∫

Bh(0,ω)

�λ(z)dm(z).



Page 32 of 51 Faye et al.

Indeed, in hyperbolic polar coordinates, we have:

�λ(ω) = 1

2

∫ ω

0

∫ 2π

0
e(iλ+1)〈rotθ ar ·O,1〉 sinh(2r) dr dθ

= 1

2

∫ ω

0

∫ 2π

0
e(iλ+1)〈ar ·O,e−iθ 〉 sinh(2r) dr dθ

= π

∫ ω

0

∫
∂D

e(iλ+1)〈ar ·O,b〉 db sinh(2r) dr

= π

∫ ω

0
�λ(ar · O) sinh(2r) dr.

On the other hand:∫
Bh(0,ω)

�λ(z)dm(z) = 1

2

∫ ω

0

∫ 2π

0
�λ(ar · O) sinh(2r) dr dθ

= π

∫ ω

0
�λ(ar · O) sinh(2r) dr.

This yields

�λ(ω) =
∫

Bh(0,ω)

�λ(z)dm(z) = π sinh(ω)2 cosh(ω)2�
(1,1)
λ (ω),

and we use Lemma 5.2.2 to establish (24).

5.3 Linear stability analysis

We now analyse the evolution of small time-dependent perturbations of the hyper-
bolic stationary-pulse solution through linear stability analysis. We use classical tools
already developped in [29, 31].

5.3.1 Spectral analysis of the linearized operator

Equation (20) is linearized about the stationary solution V (r) by introducing the time-
dependent perturbation:

v(z, t) = V (r) + φ(z, t).

This leads to the linear equation:

∂tφ(z, t) = −αφ(z, t) +
∫

D

W
(
d2(z, z

′)
)
H ′(V (r ′) − κ

)
φ(z′, t)dm(z′).

We separate variables by setting φ(z, t) = φ(z)eβt to obtain the equation:

(β + α)φ(z) =
∫

D

W
(
d2(z, z

′)
)
H ′(V (r ′) − κ

)
φ(z′)dm(z′).
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Introducing the hyperbolic polar coordinates z = tanh(r)eiθ and using the result:

H ′(V (r) − κ
)= δ

(
V (r) − κ

)= δ(r − ω)

|V ′(ω)|
we obtain:

(β + α)φ(z) = 1

2

∫ ω

0

∫ 2π

0
W
(
d2
(
tanh(r)eiθ , tanh(r ′)eiθ ′))δ(r ′ − ω)

|V ′(ω)|
× φ

(
tanh(r ′)eiθ ′)

sinh(2r ′) dr ′ dθ ′

= sinh(2ω)

2|V ′(ω)|
∫ 2π

0
W
(
d2
(
tanh(r)eiθ , tanh(r ′)eiθ ′))

φ
(
tanh(ω)eiθ ′)

dθ ′.

Note that we have formally differentiated the Heaviside function, which is permis-
sible since it arises inside a convolution. One could also develop the linear stability
analysis by considering perturbations of the threshold crossing points along the lines
of Amari [20]. Since we are linearizing about a stationary rather than a traveling
pulse, we can analyze the spectrum of the linear operator without the recourse to
Evans functions.

With a slight abuse of notation we are led to study the solutions of the integral
equation:

(β + α)φ(r, θ) = sinh(2ω)

2|V ′(ω)|
∫ 2π

0
W (r,ω; θ ′ − θ)φ(ω, θ ′) dθ ′, (28)

where the following equality derives from the definition of the hyperbolic distance in
equation (25):

W (r,ω;ϕ)
def= W ◦ tanh−1

(√
tanh(r)2 + tanh(ω)2 − 2 tanh(r) tanh(ω) cos(ϕ)

1 + tanh(r)2 tanh(ω)2 − 2 tanh(r) tanh(ω) cos(ϕ)

)
.

Essential spectrum If the function φ satisfies the condition∫ 2π

0
W (r,ω; θ ′)φ(ω, θ − θ ′) dθ ′ = 0 ∀r,

then equation (28) reduces to:

β + α = 0

yielding the eigenvalue:

β = −α < 0.

This part of the essential spectrum is negative and does not cause instability.
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Discrete spectrum If we are not in the previous case we have to study the solutions
of the integral equation (28).

This equation shows that φ(r, θ) is completely determined by its values φ(ω, θ)

on the circle of equation r = ω. Hence, we need only to consider r = ω, yielding the
integral equation:

(β + α)φ(ω, θ) = sinh(2ω)

2|V ′(ω)|
∫ 2π

0
W (ω,ω; θ ′)φ(ω, θ − θ ′) dθ ′.

The solutions of this equation are exponential functions eγ θ , where γ satisfies:

(β + α) = sinh(2ω)

2|V ′(ω)|
∫ 2π

0
W (ω,ω; θ ′)e−γ θ ′

dθ ′.

By the requirement that φ is 2π -periodic in θ , it follows that γ = in, where n ∈ Z.
Thus the integral operator with kernel W has a discrete spectrum given by:

(βn + α)

= sinh(2ω)

2|V ′(ω)|
∫ 2π

0
W (ω,ω; θ ′)e−inθ ′

dθ ′

= sinh(2ω)

2|V ′(ω)|

×
∫ 2π

0
W ◦ tanh−1

(√
2 tanh(ω)2(1 − cos(θ ′))

1 + tanh(ω)4 − 2 tanh(ω)2 cos(θ ′)

)
e−inθ ′

dθ ′

= sinh(2ω)

|V ′(ω)|

×
∫ π

0
W ◦ tanh−1

(
2 tanh(ω) sin(θ ′)√

(1 − tanh(ω)2)2 + 4 tanh(ω)2 sin(θ ′)2

)
e−i2nθ ′

dθ ′.

βn is real since:

�(βn)

= − sinh(2ω)

|V ′(ω)|

×
∫ π

0
W ◦ tanh−1

(
2 tanh(ω) sin(θ ′)√

(1 − tanh(ω)2)2 + 4 tanh(ω)2 sin(θ ′)2

)
sin(2nθ ′) dθ ′

= 0.

Hence,

βn = �(βn)

= −α + sinh(2ω)

|V ′(ω)|
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×
∫ π

0
W ◦ tanh−1

(
2 tanh(ω) sin(θ ′)√

(1 − tanh(ω)2)2 + 4 tanh(ω)2 sin(θ ′)2

)
cos(2nθ ′) dθ ′.

We can state the folliwing proposition:

Proposition 5.3.1 Provided that for all n ≥ 0, βn < 0 then the hyperbolic stationary
pulse is stable.

We now derive a reduced condition linking the parameters for the stability of hy-
perbolic stationary pulse.

Reduced condition Since W ◦ tanh−1(r) is a positive function of r , it follows that:

βn ≤ β0.

Stability of the hyperbolic stationary pulse requires that for all n ≥ 0, βn < 0. This
can be rewritten as:

sinh(2ω)

|V ′(ω)|
∫ π

0
W ◦ tanh−1

(
2 tanh(ω) sin(θ ′)√

(1 − tanh(ω)2)2 + 4 tanh(ω)2 sin(θ ′)2

)
× cos(2nθ ′) dθ ′ < α, n ≥ 0.

Using the fact that βn ≤ β0 for all n ≥ 1, we obtain the reduced stability condition:

W0(ω)

|V ′(ω)| < α,

where

W0(ω)
def= sinh(2ω)

∫ π

0
W ◦ tanh−1

(
2 tanh(ω) sin(θ ′)√

(1 − tanh(ω)2)2 + 4 tanh(ω)2 sin(θ ′)2

)
dθ ′.

From (22) we have:

V ′(ω) = 1

α

(−Mr (ω) + I ′(ω)
)
,

where

Mr (ω)
def= −∂M

∂r
(ω,ω)

= 1

64
sinh(2ω)3

∫
R

W̃(λ)
(
1 + λ2)�(1,1)

λ (ω)�
(1,1)
λ (ω)λ tanh

(
π

2
λ

)
dλ.

We have previously established that Mr (ω) > 0 and I ′(ω) is negative by definition.
Hence, letting D(ω) = |I ′(ω)|, we have∣∣V ′(ω)

∣∣= 1

α

(
Mr (ω) + D(ω)

)
.
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By substitution we obtain another form of the reduced stability condition:

D(ω) > W0(ω) − Mr (ω). (29)

We also have:

M′(ω) = d

dω
M(ω,ω) = ∂M

∂r
(ω,ω) + ∂M

∂ω
(ω,ω) = W0(ω) − Mr (ω),

and

N ′(ω) = M′(ω) + I ′(ω) = W0(ω) − Mr (ω) − D(ω),

showing that the stability condition (29) is satisfied when N ′(ω) < 0 and is not satis-
fied when N ′(ω) > 0.

Proposition 5.3.2 (Reduced condition) If N ′(ω) < 0 then for all n ≥ 0, βn < 0 and
the hyperbolic stationary pulse is stable.

6 Numerical results

The aim of this section is to numerically solve (13) for different values of the parame-
ters. This implies developing a numerical scheme that approaches the solution of our
equation, and proving that this scheme effectively converges to the solution.

Since equation (13) is defined on D, computing the solutions on the whole hyper-
bolic disk has the same complexity as computing the solutions of usual Euclidean
neural field equations defined on R

2. As most authors in the Euclidean case [26, 27,
29, 31], we reduce the domain of integration to a compact region of the hyperbolic
disk. Practically, we work in the Euclidean ball of radius a = 0.5 and center 0. Note
that a Euclidean ball centered at the origin is also a centered hyperbolic ball, their
radii being different.

We have divided this section into four parts. The first part is dedicated to the study
of the discretization scheme of equation (13). In the following two parts, we study the
solutions for different connectivity functions: an exponential function, Section 6.2,
and a difference of Gaussians, Section 6.3.

6.1 Numerical schemes

Let us consider the modified equation of (13):⎧⎪⎪⎨⎪⎪⎩
∂tV (z, t) = −αV (z, t)

+
∫

B(0,a)

W(z, z′)S
(
V (z′, t)

)
dm(z′) + I (z, t), t ∈ J,

V (z,0) = V0(z).

(30)

We assume that the connectivity function satisfies the conditions (C1)-(C2). More-
over we express z in (Euclidean) polar coordinates such that z = reiθ , V (z, t) =
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V (r, θ, t) and W(z, z′) = W(r, θ, r ′, θ ′). The integral in equation (30) is then:∫
B(0,a)

W(z, z′)S
(
V (z′, t)

)
dm(z′)

=
∫ a

0

∫ 2π

0
W(r, θ, r ′, θ ′)S

(
V (r ′, θ ′, t)

) r ′ dr ′ dθ ′

(1 − r ′2)2
.

We define R to be the rectangle R def= [0, a] × [0,2π].

6.1.1 Discretization scheme

We discretize R in order to turn (30) into a finite number of equations. For this
purpose we introduce h1 = a

N
, N ∈ N

∗ = N\{0} and h2 = 2π
M

, M ∈ N
∗,

∀i ∈ [[1,N + 1]] ri = (i − 1)h1,

∀j ∈ [[1,M + 1]] θj = (j − 1)h2,

and obtain the (N + 1)(M + 1) equations:

dV

dt
(ri , θj , t) = −αV (ri, θj , t) +

∫
R

W(ri, θj , r
′, θ ′)S

(
V (r ′, θ ′, t)

) r ′ dr ′ dθ ′

(1 − r ′2)2

+ I (ri, θj , t)

which define the discretization of (30):⎧⎪⎨⎪⎩
dṼ

dt
(t) = −αṼ (t) + W · S(Ṽ )(t) + Ĩ (t), t ∈ J,

Ṽ (0) = Ṽ0,

(31)

where Ṽ (t) ∈ MN+1,M+1(R), Ṽ (t)i,j = V (ri, θj , t). Similar definitions apply to Ĩ

and Ṽ0. Moreover:

W · S(Ṽ )(t)i,j =
∫

R
W(ri, θj , r

′, θ ′)S
(
V (r ′, θ ′, t)

) r ′ dr ′ dθ ′

(1 − r ′2)2
.

Mn,p(R) is the space of the matrices of size n × p with real coefficients. It remains
to discretize the integral term. For this as in [33], we use the rectangular rule for the
quadrature so that for all (r, θ) ∈ R we have:∫ a

0

∫ 2π

0
W(r, θ, r ′, θ ′)S

(
V (r ′, θ ′, t)

) r ′ dr ′ dθ ′

(1 − r ′2)2

∼= h1h2

N+1∑
k=1

M+1∑
l=1

W(r, θ, rk, θl)S
(
V (rk, θl, t)

) rk

(1 − r2
k )2

.
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We end up with the following numerical scheme, where Vi,j (t) (resp. Ii,j (t)) is an
approximation of Ṽi,j (t) (resp. Ĩi,j ), ∀(i, j) ∈ [[1,N + 1]] × [[1,M + 1]]:

dVi,j

dt
(t) = −αVi,j (t) + h1h2

N+1∑
k=1

M+1∑
l=1

W̃
i,j
k,l S(Vk,l)(t) + Ii,j (t)

with W̃
i,j
k,l

def= W(ri, θj , rk, θl)
rk

(1−r2
k )2 .

6.1.2 Discussion

We discuss the error induced by the rectangular rule for the quadrature. Let f be a
function which is C 2 on a rectangular domain [a, b] × [c, d]. If we denote by Ef this

error, then |Ef | ≤ (b−a)2(d−c)2

4mn
‖f ‖C 2 where m and n are the number of subintervals

used and ‖f ‖C 2 =∑
|α|≤2 sup[a,b]×[c,d] |∂αf | where, as usual, α is a multi-index. As

a consequence, if we want to control the error, we have to impose that the solution is,
at least, C 2 in space.

Four our numerical experiments we use the specific function ode45 of Matlab
which is based on an explicit Runge-Kutta formula (see [34] for more details on
Runge-Kutta methods).

We can also establish a proof of the convergence of the numerical scheme which
is exactly the same as in [33] excepted that we use the theorem of continuous depen-
dence of the solution for ordinary differential equations.

6.2 Purely excitatory exponential connectivity function

In this subsection, we give some numerical solutions of (13) in the case where the

connectivity function is an exponential function, w(x) = e− |x|
b , with b a positive pa-

rameter. Only excitation is present in this case. In all the experiments we set α = 0.1
and S(x) = 1

1+e−μx with μ = 10.

6.2.1 Constant input

We fix the external input I (z) to be of the form:

I (z) = Ie
− d2(z,0)2

σ2 .

In all experiments we set I = 0.1 and σ = 0.05, this means that the input has a sharp
profile centered at 0.

We show in Figure 2 plots of the solution at time T = 2,500 for three different
values of the width b of the exponential function. When b = 1, the whole network
is highly excited, whereas as b changes from 1 to 0.1 the amplitude of the solution
decreases, and the area of high excitation becomes concentrated around the external
input.
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Fig. 2 Plots of the solution of equation (13) at T = 2,500 for the values μ = 10, α = 0.1 and for decreas-
ing values of the width b of the connectivity, see text.

6.2.2 Variable input

In this paragraph, we allow the external current to depend upon the time variable. We
have:

I (z, t) = Ie
− d2(z,z0(t))2

σ2 ,

where z0(t) = r0e
i�0t . This is a bump rotating with angular velocity �0 around the

circle of radius r0 centered at the origin. In our numerical experiments we set r0 =
0.4, �0 = 0.01, I = 0.1 and σ = 0.05. We plot in Figure 3 the solution at different
times T = 100,150,200,250.

6.2.3 High gain limit

We consider the high gain limit μ → ∞ of the sigmoid function and we propose to
illustrate Section 5 with a numerical simulation. We set α = 1, κ = 0.04, ω = 0.18.
We fix the input to be of the form:

I (z) = Ie
− d2(z,0)2

σ2

with I = 0.04 and σ = 0.05. Then the condition of existence of a stationary pulse
(23) is satisfied, see Figure 1. We plot a bump solution according to (23) in Figure 4.
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Fig. 3 Plots of the solution of equation (13) in the case of an exponential connectivity function with
b = 0.1 at different times with a time-dependent input, see text.

6.3 Excitatory and inhibitory connectivity function

We give some numerical solutions of (13) in the case where the connectivity function
is a difference of Gaussians, which features an excitatory center and an inhibitory
surround:

w(x) = 1√
2πσ 2

1

e
− x2

σ2
1 − A√

2πσ 2
2

e
− x2

σ2
2 with σ1 = 0.1, σ2 = 0.2 and A = 1.

We illustrate the behaviour of the solutions when increasing the slope μ of the
sigmoid. We set the sigmoid S(x) = 1

1+e−μx − 1
2 so that it is equal to 0 at the origin

and we choose the external input equal to zero, I (z, t) = 0. In this case the constant
function equal to 0 is a solution of (13).

Fig. 4 Plot of a bump solution
of equation (22) for the values
α = 1, κ = 0.04, ω = 0.18 and
for b = 0.2 for the width of the
connectivity, see text.
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For small values of the slope μ, the dynamics of the solution is trivial: every so-
lution asymptotically converges to the null solution, as shown in top left hand corner
of Figure 5 with μ = 1. When increasing μ, the stability bound, found in Section 4.5
is no longer satisfied and the null solution may no longer be stable. In effect this so-
lution may bifurcate to other, more interesting solutions. We plot in Figure 5, some
solutions at T = 2,500 for different values of μ (μ = 3,5,10,20 and 30). We can see
exotic patterns which feature some interesting symmetries. The formal study of these
bifurcated solutions is left for future work.

7 Conclusion

In this paper, we have studied the existence and uniqueness of a solution of the evo-
lution equation for a smooth neural mass model called the structure tensor model.
This model is an approach to the representation and processing of textures and edges
in the visual area V1 which contains as a special case the well-known ring model
of orientations (see [1, 2, 19]). We have also given a rigorous functional framework
for the study and computation of the stationary solutions to this nonlinear integro-
differential equation. This work sets the basis for further studies beyond the spatially
periodic case studied in [15], where the hypothesis of spatial periodicity allows one
to replace the unbounded (hyperbolic) domain by a compact one, hence making the
functional analysis much simpler.

We have completed our study by constructing and analyzing spatially localised
bumps in the high-gain limit of the sigmoid function. It is true that networks with
Heaviside nonlinearities are not very realistic from the neurobiological perspective
and lead to difficult mathematical considerations. However, taking the high-gain limit
is instructive since it allows the explicit construction of stationary solutions which is
impossible with sigmoidal nonlinearities. We have constructed what we called a hy-
perbolic radially symmetric stationary-pulse and presented a linear stability analysis
adapted from [31]. The study of stationary solutions is very important as it conveys
information for models of V1 that is likely to be biologically relevant. Moreover our
study has to be thought of as the analog in the case of the structure tensor model to
the analysis of tuning curves of the ring model of orientations (see [1, 2, 19, 35]).
However, these solutions may be destabilized by adding lateral spatial connections
in a spatially organized network of structure tensor models; this remains an area of
future investigation. As far as we know, only Bressloff and coworkers looked at this
problem (see [3, 4, 11–14]).

Finally, we illustrated our theoretical results with numerical simulations based on
rigorously defined numerical schemes. We hope that our numerical experiments will
lead to new and exciting investigations such as a thorough study of the bifurcations
of the solutions of our equations with respect to such parameters as the slope of the
sigmoid and the width of the connectivity function.

Appendix A: Isometries of D

We briefly descrbies the isometries of D, that is, the transformations that preserve the
distance d2. We refer to the classical textbooks in hyperbolic goemetry for details,
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Fig. 5 Plots of the solutions of equation (13) in the case where the connectivity function is the difference
of two Gaussians at time T = 2,500 for α = 0.1 and for increasing values of the slope μ of the sigmoid,
see text.
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for example, [17]. The direct isometries (preserving the orientation) in D are the
elements of the special unitary group, noted SU(1,1), of 2 × 2 Hermitian matrices
with determinant equal to 1. Given:

γ =
(

α β

β̄ ᾱ

)
such that |α|2 − |β|2 = 1,

an element of SU(1,1), the corresponding isometry γ in D is defined by:

γ · z = αz + β

β̄z + ᾱ
, z ∈ D. (32)

Orientation reversing isometries of D are obtained by composing any transformation
(32) with the reflection κ : z → z̄. The full symmetry group of the Poincaré disc is
therefore:

U(1,1) = SU(1,1) ∪ κ · SU(1,1).

Let us now describe the different kinds of direct isometries acting in D. We first define
the following one parameter subgroups of SU(1,1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
def=

{
rotφ =

(
ei

φ
2 0

0 e−i
φ
2

)
, φ ∈ S

1

}
,

A
def=

{
ar =

(
cosh r sinh r

sinh r cosh r

)
, r ∈ R

}
,

N
def=

{
ns =

(
1 + is −is

is 1 − is

)
, s ∈ R

}
.

Note that rotφ · z = eiφz and also ar · O = tanh r , with O being the center of the
Poincaré disk that is the point represented by z = 0.

The group K is the orthogonal group O(2). Its orbits are concentric circles. It is
possible to express each point z ∈ D in hyperbolic polar coordinates: z = rotφar ·O =
tanh reiφ and r = d2(z,0).

The orbits of A converge to the same limit points of the unit circle ∂D, b±1 = ±1
when r → ±∞. They are circular arcs in D going through the points b1 and b−1.

The orbits of N are the circles inside D and tangent to the unit circle at b1. These
circles are called horocycles with base point b1. N is called the horocyclic group. It
is also possible to express each point z ∈ D in horocyclic coordinates: z = nsar · O ,
where ns are the transformations associated with the group N (s ∈ R) and ar the
transformations associated with the subroup A (r ∈ R).

A.1 Iwasawa decomposition

The following decomposition holds, see [36]:

SU(1,1) = KAN.

This theorem allows us to decompose any isometry of D as the product of at most
three elements in the groups, K , A and N .
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Appendix B: Volume element in structure tensor space

Let T be a structure tensor

T =
[
x1 x3
x3 x2

]
,

�2 its determinant, � ≥ 0. T can be written

T = �T̃ ,

where T̃ has determinant 1. Let z = z1 + iz2 be the complex number representation
of T̃ in the Poincaré disk D. In this part of the appendix, we present a simple form
for the volume element in full structure tensor space, when parametrized as (�, z).

Proposition B.0.1 The volume element in (�, z1, z2) coordinates is

dV = 8
√

2
d�

�

dz1 dz2

(1 − |z|2)2
. (33)

Proof In order to compute the volume element in (�, z1, z2) space, we need to ex-
press the metric gT in these coordinates. This is obtained from the inner product
in the tangent space TT at point T of SDP(2). The tangent space is the set S(2) of
symmetric matrices and the inner product is defined by:

gT (A,B) = tr(T −1AT −1B), A,B ∈ S(2).

We note that gT (A,B) = gT̃ (A,B)/�2. We write g instead of gT̃ . A basis of TT
(or TT̃ for that matter) is given by:

∂

∂x1
=
[

1 0
0 0

]
,

∂

∂x2
=
[

0 0
0 1

]
,

∂

∂x3
=
[

0 1
1 0

]
,

and the metric is given by:

gij = gT̃

(
∂

∂xi

,
∂

∂xj

)
, i, j = 1,2,3.

The determinant GT of gT is equal to G/�6, where G is the determinant of g = gT̃ .
G is found to be equal to 2. The volume element is thus:

dV =
√

2

�3
dx1 dx2 dx3.

We then use the relations:

x1 = �x̃1, x2 = �x̃2, x3 = �x̃3,
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where x̃i , i = 1,2,3, is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1 = (1 + z1)
2 + z2

2

1 − z2
1 − z2

2

,

x̃2 = (1 − z1)
2 + z2

2

1 − z2
1 − z2

2

,

x̃3 = 2z2

1 − z2
1 − z2

2

.

The determinant of the Jacobian of the transformation (x1, x2, x3) → (�, z1, z2)

is found to be equal to:

− 8�2

(1 − |z|2)2
.

Hence, the volume element in (�, z1, z2) coordinates is

dV = 8
√

2
d�

�

dz1 dz2

(1 − |z|2)2
. �

Appendix C: Global existence of solutions

Theorem C.0.1 Let O be an open connected set of a real Banach space F and J be
an open interval of R. We consider the initial value problem:{

V′(t) = f
(
t,V(t)

)
,

V(t0) = V0.
(34)

We suppose that f ∈ C(J × O, F ) and is locally Lipschitz with respect to its second
argument. Then for all (t0,V0) ∈ J × O, there exists τ > 0 and V ∈ C 1(]tτ , t0 +τ [, O)

unique solution of (34).

Lemma C.0.1 Under hypotheses of Theorem C.0.1, if V1 ∈ C 1(J1, O) and V2 ∈
C 1(J2, O) are two solutions and if there exists t0 ∈ J1 ∩ J2 such that V1(t0) = V2(t0)

then:

V1(t) = V2(t) for all t ∈ J1 ∩ J2.

This lemma shows the existence of a larger interval J0 on which the initial value
problem (34) has a unique solution. This solution is called the maximal solution.

Theorem C.0.2 Under hypotheses of Theorem C.0.1, let V ∈ C 1(J0, O) be a max-
imal solution. We denote by b the upper bound of J and β the upper bound of J0.
Then either β = b or for all compact set K ⊂ O, there exists η < β such that:

V(t) ∈ O|K, for all t ≥ η with t ∈ J0·
We have the same result with the lower bounds.



Page 46 of 51 Faye et al.

Theorem C.0.3 We suppose f ∈ C(J × F , F ) and is globally Lipschitz with respect
to its second argument. Then for all (t0,V0) ∈ J × F , there exists a unique V ∈
C 1(J, F ) solution of (34).

Appendix D: Proof of Lemma 3.1.1

Lemma D.0.2 When W is only a function of d0(T , T ′), then W does not depend
upon the variable T .

Proof We work in (z,�) coordinates and we begin by rewriting the double integral
(6) for all (z,�) ∈ R

+∗ × D:

W(z,�, t) =
∫ +∞

0

∫
D

W
(√

2(log� − log�′)2 + d2
2 (z, z′), t

)d�′

�′
dz′

1 dz′
2

(1 − |z′|2)2
.

The change of variable �′ → �′
�

yields:

W(z,�, t) =
∫ +∞

0

∫
D

W
(√

2(log�′)2 + d2
2 (z, z′), t

)d�′

�′
dz′

1 dz′
2

(1 − |z′|2)2
.

And it establishes that W does not depend upon the variable �. To finish the proof,
we show that the following integral does not depend upon the variable z ∈ D:

�(z) =
∫

D

f
(
d2(z, z

′)
) dz′

1 dz′
2

(1 − |z′|2)2
, (35)

where f is a real-valued function such that �(z) is well defined.
We express z in horocyclic coordinates: z = nsar · O (see Appendix A) and (35)

becomes:

�(z) =
∫

R

∫
R

f
(
d2(nsar · O,ns′ar ′ · O)

)
e−2r ′

ds′ dr ′

=
∫

R

∫
R

f
(
d2(ns−s′ar · O,ar ′ · O)

)
e−2r ′

ds′ dr ′.

With the change of variable s − s′ = −xe2r , this becomes:

�(z) =
∫

R

∫
R

f
(
d2(n−xe2r ar · O,ar ′ · O)

)
e−2(r ′−r) dx dr ′.

The relation n−xe2r ar · O = arn−x · O (proved, for example, in [22]) yields:

�(z) =
∫

R

∫
R

f
(
d2(arn−x · O,ar ′ · O)

)
e−2(r−r)′ dx dr ′

=
∫

R

∫
R

f
(
d2(O,nxar ′−r · O)

)
e−2(r ′−r) dx dr ′
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=
∫

R

∫
R

f
(
d2(O,nxay · O)

)
e−2y dx dy

=
∫

D

f
(
d2(O, z′)

)
dm(z′)

with z′ = z′
1 + iz′

2 and dm(z′) = dz′
1 dz′

2
(1−|z′|2)2 , which shows that �(z) does not depend

upon the variable z, as announced. �

Appendix E: Proof of Lemma 3.1.2

In this section we prove the following lemma.

Lemma E.0.3 When W is the following Mexican hat function:

W(z,�, z′�′) = w
(√

2(log� − log�′)2 + d2
2 (z, z′)

)
,

where:

w(x) = 1√
2πσ 2

1

e
− x2

σ2
1 − A√

2πσ 2
2

e
− x2

σ2
2

with 0 ≤ σ1 ≤ σ2 and 0 ≤ A ≤ 1.
Then:

W = π
3
2

2

(
σ1e

2σ 2
1 erf

(√
2σ1

)− Aσ2e
2σ 2

2 erf
(√

2σ2
))

,

where erf is the error function defined as:

erf(x) = 2√
π

∫ x

0
e−u2

du.

Proof We consider the following double integrals:

�i =
∫ +∞

0

∫
D

1√
2πσ 2

i

e
− (log�−log�′)2

σ2
i e

− d2
2 (z,z′)
2σ2

i
d�′

�′
dz′

1 dz′
2

(1 − |z′|2)2
, i = 1,2, (36)

so that:

W = �1 − A�2.

Since the variables are separable, we have:

�i =
(∫ +∞

0

1√
2πσ 2

i

e
− (log�−log�′)2

σ2
i

d�′

�′

)(∫
D

e
− d2

2 (z,z′)
2σ2

i
dz′

1 dz′
2

(1 − |z′|2)2

)
.
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One can easily see that:∫ +∞

0

1√
2πσ 2

i

e
− (log�−log�′)2

σ2
i

d�′

�′ = 1√
2
.

We now give a simplified expression for �i . We set fi(x) = e−x2/(2σ 2
i ) and then

we have, because of Lemma 3.1.1:

�i = 1√
2

∫
D

fi

(
d2(O, z′)

)
dm(z′) = 1√

2

∫
D

fi

(
arctanh

(|z′|))dm(z′)

= 1√
2

∫ 1

0

∫ 2π

0
fi

(
arctanh(r)

) r dr dθ

(1 − r2)2
= √

2π

∫ 1

0
fi

(
arctanh(r)

) r dr

(1 − r2)2

= √
2π

∫ 1

0
e
− arctanh2(r)

2σ2
i

r dr

(1 − r2)2
.

The change of variable x = arctanh(r) implies dx = dr

1−r2 and yields:

�i = √
2π

∫ +∞

0
e
− x2

2σ2
i

tanh(x)

1 − tanh2(x)
dx = √

2π

∫ +∞

0
e
− x2

2σ2
i sinh(x) cosh(x) dx

= π√
2

∫ +∞

0
e
− x2

2σ2
i sinh(2x)dx

= π

2
√

2

(∫ +∞

0
e
− x2

2σ2
i

+2x

dx −
∫ +∞

0
e
− x2

2σ2
i

−2x

dx

)

= π

2
√

2
e2σ 2

i

(∫ +∞

0
e
− (x−2σ2

i
)2

2σ2
i dx −

∫ +∞

0
e
− (x+2σ2

i
)2

2σ2
i dx

)

= π

2
σie

2σ 2
i

(∫ +∞

−√
2σi

e−u2
du −

∫ +∞
√

2σi

e−u2
du

)
= π

2
σie

2σ 2
i

∫ √
2σi

−√
2σi

e−u2
du

then we have a simplified expression for �i :

�i = π
3
2

2
σie

2σ 2
i erf

(√
2σi

)
. �

Appendix F: Proof of Lemma 5.2.2

Lemma F.0.4 For all ω > 0 the following formula holds:∫
Bh(0,ω)

�λ(z)dm(z) = π sinh(ω)2 cosh(ω)2�
(1,1)
λ (ω).
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Proof We write z in hyperbolic polar coordinates, z = tanh(r)eiθ (see Appendix A).
We have:∫

Bh(0,ω)

�λ(z)dm(z) = 1

2

∫ ω

0

∫ 2π

0
�λ

(
tanh(r)eiθ

)
sinh(2r) dr dθ.

Because of the above definition of �λ, this reduces to

π

∫ ω

0
�λ

(
tanh(r)

)
sinh(2r) dr.

In [22] Helgason proved that:

�λ

(
tanh(r)

)= F
(
ν,1 − ν;1;− sinh(r)2)

with ν = 1
2 (1 + iλ). We then use the formula obtained by Erdelyi in [32]:

F(ν,1 − ν;1; z) = d

dz

(
zF (ν,1 − ν;2; z)).

Using some simple hyperbolic trigonometry formulae we obtain:

sinh(2r)F
(
ν,1 − ν;1;− sinh(r)2)= d

dr

(
sinh(r)2F

(
ν,1 − ν;2;− sinh(r)2)),

from which we deduce∫
Bh(0,ω)

�λ(z)dm(z) = π sinh(ω)2F
(
ν,1 − ν;2;− sinh(ω)2).

Finally we use the equality shown in [32]:

F(a, b; c; z) = (1 − z)c−a−bF (c − a, c − b; c; z).
In our case we have: a = ν, b = 1 − ν, c = 2 and z = − sinh(ω)2, so 2 − ν = 1

2 (3 −
iλ), 1 + ν = 1

2 (3 + iλ). We obtain∫
Bh(0,ω)

�λ(z)dm(z)

= π sinh(ω)2 cosh(ω)2F

(
1

2
(3 − iλ),

1

2
(3 + iλ);2;− sinh(ω)2

)
.

Since Hypergeometric functions are symmetric with respect to the first two variables:

F(a, b; c; z) = F(b, a; c; z),
we write

F

(
1

2
(3 − iλ),

1

2
(3 + iλ);2;− sinh(ω)2

)
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= F

(
1

2
(3 + iλ),

1

2
(3 − iλ);2;− sinh(ω)2

)
= �

(1,1)
λ (ω),

which yields the announced formula∫
Bh(0,ω)

�λ(z)dm(z) = π sinh(ω)2 cosh(ω)2�
(1,1)
λ (ω). �
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