Skip to main content
. 2012 Feb 16;7(2):e31791. doi: 10.1371/journal.pone.0031791

Table 2. CP Viability Prediction Performance of Various Procedures.

Dataset Performance measure Closeness+a Farness: Fb+a HI ANN RF SVM Combinedb
Dataset Tc AUC 0.746 0.768 0.828 0.885 0.844 0.819 0.905
Sensitivity 0.577 0.761 0.771 0.852 0.775 0.647 0.857
Specificity 0.677 0.569 0.723 0.846 0.714 0.762 0.790
False positive rate 0.323 0.431 0.277 0.154 0.286 0.238 0.210
MCC 0.264 0.329 0.490 0.690 0.483 0.407 0.632
DHFR AUC 0.814 0.873 0.843 0.833 0.840 0.822 0.906
Sensitivity 0.465 0.849 0.616 0.593 0.733 0.605 0.709
Specificity 0.918 0.740 0.918 0.863 0.808 0.918 0.918
False positive rate 0.082 0.260 0.082 0.137 0.192 0.082 0.069
MCC 0.421 0.594 0.551 0.467 0.539 0.541 0.633
nrCPDB-40 Sensitivity 0.622 0.616 0.733 0.735 0.733 0.778 0.746
nrGIS-40 Sensitivity 0.614 0.590 0.700 0.682 0.698 0.715 0.715
a

Random forest was applied in this experiment to the assess the prediction power of closeness and farness.

b

A combination of the four machine learning methods (HI, ANN, RF and SVM) by averaging their probability scores into a single score. See the main text for details.

c

These results were obtained with 10-fold cross-validation.