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Effect of Biocontrol Agent Pseudomonas fluorescens
2P24 on Soil Fungal Community in Cucumber
Rhizosphere Using T-RFLP and DGGE
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Abstract

Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as
natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical
pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia
solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc, and was isolated from the wheat rhizosphere take-all
decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this
study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was
monitored weekly. The amount decreased from 10° to 10° CFU/g dry soils. The effect of 2P24 on soil fungal community in
cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed
that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf | and Taq |. However,
there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was
greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was
little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal
community in cucumber rhizosphere was just transient.
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Introduction

Fungi play important roles in soil ecosystem as major
decomposers of plant residues, releasing nutrients that sustain and
stimulate plant growth in the process [1,2]. Besides, the phyloge-
netic diversity of microorganisms can act as natural antagonists of
various plant pathogens [3]. A well-developed and diverse
rhizosphere community is thought to be critical in the suppression
of pathogens [4,5]. Knowledge of the structure and diversity of the
fungal community in the plant rhizosphere will lead to a better
understanding of pathogen-antagonist interactions [6].

It is suggested that only 17% of the known fungi can be readily
grown in culture [7]. As traditional methods have many pitfalls,
culture-independent methods show great potential in monitoring
shifts or diversity of microbial community in a variety of
environmental samples, such as Phospholipid Fatty Acid analysis
(PLFA), Fatty Acid Methyl Ester profile (FAME), Terminal
Restriction Fragment Length Polymorphism (T-RFLP), Ribosom-
al Intergenic Spacer Analysis (RISA), Denaturing/T'emperature
Gradient Gel Electrophoresis (DGGE/TGGE), Single Strand
Configuration Polymorphism (SSCP), Amplified Ribosomal DNA
Restriction Analysis (ARDRA), etc. Among these, T-RFLP and
DGGE are two most widely used and effective methods in
analyzing the spatial and temporal shifts of microbial community.
T-RFLP method takes advantage in high throughputs, reproduc-
ible and web-based RDP database [8], while DGGE has high
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resolution by separating the same size fragments and sequencing
each band [9]. Thus, in this study, the combination of the two
methods would give a better understanding of the soil fungal
community in cucumber rhizosphere.

Pesticides are widely used in agriculture to improve the yield of
crops. However, chemical pesticides have residues and may
influence the ecological system, soil fertility and underground
water [10,11], thus cause seriously environment pollution.
Biological control had been a significant approach to plant health
management during the twentieth century and promised through
modern biotechnology to be even more significant in the twenty-
first century [12]. At present, the global markets of biopesticides
become larger and larger especially in North America and Europe
[13], and the predicted rate of growth is 10% per year [14].

Pseudomonas spp. commonly inhabits in soil and has been applied
for biocontrol, promoting plant growth and bioremediation. 2, 4-
diacetylphloroglucinol(DAPG)-producing  strains major
groups in biocontrol microorganisms, because of their easy
colonization, good competition and broad antimicrobial spectrum.
Thus, they were widely used by more and more researchers [15—
18]. For example, P. fluorescens F113 could inhibit Frwinia carotovora,
which is the agent of soft rot of potato [19]. It has been also
reported that P. fluorescens and 2, 4-diacetylphloroglucinol (DAPG)
that it produced could prevent Fusarium oxysporum, Septoria tritict,
Thielaviopsis basicola, Rhizoctonia solani etc [20,21].

were
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P. fluorescens 2P24, which has strong inhibitory on Rastonia
solanacearum, F. oxysporum and R. solani, was isolated from the wheat
rhizosphere take-all decline soils in Shandong province, China
[22]. The root colonization and biocontrol mechanism of it have
been studied [23-25] and it has been commercialized. However,
the potential effect of P. fluorescens 2P24 on agricultural soil fungal
community 1s still unknown, as it is important to address the
displacements of indigenous microorganisms by inoculates and
assess the potential effects on soil microcosm [26].

This was the first study to investigate the effect of P. fluorescens
2P24 on soil fungal community in cucumber rhizosphere. Changes
in soil fungal community were detected with T-RFLP and DGGE.

Materials and Methods

1 Bacterial strain and inoculation preparation

The gfp-labeled P. fluorescens 2P24 was cultured on King’s
medium B (KB) agar plates containing 100 mg of ampicillin and
kanamycin liter”'. The bacteria were growing in liquid KB
medium at 28°C, 150 r/min with 100 mg of ampicillin and
kanamycin liter ™! for 24 h. Bacterial density was measured as the
absorbance of the fermentation broth at 600 nm, with reference to
a standard curve calibrated by plate enumeration.

2 Experimental site and description

The experimental site was located in the field of National
Southern Pesticide Research Centre of Shanghai, China (31.17°N,
121.13°E), where the average annual temperature is 18°C and
total rainfall is about 1200 mm per year. Ten plots were
established in the experimental area, while each plot contained
fifteen cucumber plants. Five plots were treated with P. fluorescens
2P24. The fermentation broth of P. fluorescens 2P24 was centrifuged
to concentrate and then diluted to 2x10? CFU/L by water. And
then, 1 liter of these diluents was pooled to the root rhizosphere of
each cucumber plant in each plot directly. The other five plots
were treated with the same volume water as control.

3 Sampling

All soil samples were taken 5-10 cm below the surface and 5 cm
away from the plants, the soils were separated by shaking the roots.
Soil samples were collected weekly from each treatment and five
samples were taken from each plot at each time, mixed and stored
at 4°C.

Soil pH and moisture content were immediately determined
after sampling. Soil pH was measured using a pH probe and soil
moisture was calculated by drying soil at 115°C to a constant dry
weight. The soil organic carbon and nitrogen were also measured
[27,28].

The soil fungal quantity was calculated by traditional cultivation
method. 1 g of each soil sample was mixed with 99 ml sterile water
and then diluted to different concentration gradients. 100 pl of
these diluents was cultured on PDA plates with 4 days and counted
(each with three replicates).

4 Survival of bacterial strain 2P24

Soil samples were dispersed and decimally diluted into sterile
water. The dilutions were plated on to KB agar containing 100 mg
of ampicillin and kanamycin liter™'. The colonies were calculated
after culturing for 48 h.

5 DNA extraction

750 mg of each soil sample and 1.25 g of silica beads were
beaten for 5 min with 3 ml TENP washing buffer (50 mM Tris,
20 mM EDTA, 100 mM NaCl, 1% PVPP, pH 8.5), followed by
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centrifugation for 5 min. 3ml SDS, 500 pul lysozyme
(20 mg ml™"), 500 ul cellulose solution (20 mg ml™") and 15 pl
protease K (20 mg ml™") were added and vortexed for 10 min.
After incubation at 37°C for 30 min, 125 pul of SDS (20%) and
0.15 g of PVPP were added to the mixture and then incubated at
65°C for 2 h, followed by centrifugation for 10 min (8,000 xg).
The supernatants were transferred to fresh micro-centrifuge tubes
and extracted by mixing an equal volume of phenol-chloroform-
isoamyl alcohol (25:24:1; pH 8.0) followed by centrifugation for
10 min (12,000 xg). The aqueous phase was removed by addition
of an equal volume of chloroform-isoamyl alcohol (24:1) followed
by centrifugation for 10 min (12,000 xg). Ten percent of total
volume of NaAC (3 mol 17!, pH 5.2) and sixty percent of total
volume of isopropyl alcohol was added, and the total nucleic
acids was precipitated at 4°C for 1 h followed by centrifugation
for 10 min (12,000xg). The final nucleic acids were washed in
70% (v/v) ice-cold ethanol and air dried before re-suspension in
100 ul TE buffer (pH 8.0). At last, DNA solutions were stored at
—20°C.

6 T-RFLP method

The universal fungal specific primers ITSI-F (5'-
CTTGGTCATTTAGAGGAAGTAA-3") [29] and ITS4 (5'-
TCCTCCGCTTATTGATATGC-3") [30] were used in this
study with the forward primer labeled with 6-FAM. PCR was
conducted in 25 pl reaction with 12.5 pl Ex Taq (Takara, Japan),
1 pl of extracted DNA, 0.5 uM of each primer and 1% BSA. The
thermo cycler reaction conditions were: 5 min initial denaturation
at 94°C followed by 35 cycles of 45 s at 94°C, 30 s of annealing at
51°C, and 1 min extension at 72°C. The final extension was 7 min
at 72°C. PCR products were purified with PCR purification kits
and detected by 1% agarose gel electrophoresis.

Two different restriction enzymes (Hinfl, Taql) were used
separately. Restriction digests contained 5 U of enzyme, 5 pL of
labeled and purified PCR product in a 20-uL total volume.
Restrictions were performed with water bath at 37°C for 2 h
followed by an inactivation step at 65°C for 15 min.

The samples were separated with GeneScan 1000 Rox (Applied
Biosystems) as an internal size standard on an ABI 310 DNA
sequencer (Applied Biosystems) using POP6 polymer. Terminal
fragments were evaluated by GeneScan Analytical Software.

7 DGGE method

NS1 (5'-GTAGTCATATGCTTGTCTC-3") [30] and GCFung
(5’-CGCCCGLaGlGLeaeaaLeecaareesreaeecece-
CGCCCCATTCCCCGTTACCCGTTG-3') [31] were chosen for
amplification of fungal sequences, which had been proved to be the
most suitable for detecting fungal diversities in soil using DGGE
analysis [32]. A GC-clamp was added to the terminal primer to
improve electrophoretic separation amplicons by DGGE. The PCR
reactions were carried out in 50 pl volumes containing 25 pl Ex Taq
(TAKARA, Japan), 2 ul of extracted soil DNA and 1.0 uM of each
primer, 1% DMSO. The thermo cycling program was: 2 min initial
denaturation at 94°C, followed by 35 cycles of 30 s at 94°C, 30 s of
annealing at 55°C, and 1 min extension at 72°C. The final extension
was 5 min at 72°C. Products were checked by electrophoresis in 1%
(w/v) agarose gels and ethidium bromide staining. PCR products
from each sample were separated by DGGEK-2401 system (C.B.S.
Scientific Company, Inc., USA). The PCR products were separated
as follows: 8% polyacrylamide gels and denaturing gradient from
25% to 45% were used; gels were electrophoresed in 1 xTAE buffer
at 60°C and 80 V for 16 h.
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8 Data analysis

For T-RFLP analysis, profiles in the range of 50-600 bp were
used for principal component analysis [33], which was conducted
using the Statistical Product and Service Solutions statistics
software 17.0 (SPSS Inc.). Further more, the similarity of different
TRYF clusters was calculated based on Pearson correlation method
by SPSS.

For DGGE analysis, the similarity of cluster analysis was
calculated based on the density of different bands in different lane.
DGGE banding pattern analysis was conducted to compare by
cluster analysis via the underweighted pair group method with
mathematical averages (UPGMA), using the VisionWorksLS
software (UVP, US).

Results

1 Soil characteristics and culturable fungi

The average pH value of soil samples was 5.0, while the average
water content was 19%. This kind of acid soil is very typical in
south China. The soil total organic carbon content was about
1.8 g/kg, and the total nitrogen content was about 0.19 g/kg.

As can be seen from Figure 1, the amount of soil culturable
fungi in cucumber root rhizosphere decreased after inoculation of
P. fluorescens 2P24 compared to the controls during the following
three weeks. However, the discrimination between the treated and
control became to be not very obvious. Through the whole
experiment, the amount of soil culturable fungi was about
1x10” CFU/g dry soil on average.

2 Survival of P. fluorescens 2P24 in cucumber rhizosphere
soil

The fermentation broth of P. fluorescens 2P24 was inoculated into
the cucumber root soil directly. The initial amount of organisms in
root soil reached at about 2x10% CFU/g of dry soil. Survival of P.
Sluorescens 2P24 was detected through cultivation method with
gradient dilution by distilled water and then calculated after 48 h.
During the following days after inoculation, survival of P. fluorescens
9P24 decreased sharply (Figure 2). On the 28" day, populations of
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Figure 1. The shifts of soil culturable fungi in cucumber root
rhizosphere after inoculation. “CK” was on behalf of the controls
amended with water, while “2P24"” was on behalf of the treatments
amended with P. fluorescens 2P24.
doi:10.1371/journal.pone.0031806.g001
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9P24 dropped to 3.6 x10° CFU/g of dry soil. Then, the survival of
2P24 was not significantly decreased. At the end of this study, the
survival of 2P24 still sustained at about 10° CFU/g of dry soil.

3 T-RFLP results

T-RFLP was used to detect the fungal community structure in
cucumber rhizosphere soil. Although only dominant fungal
populations were detected in the T-RFLP method, we assumed
that these data represented the total fungal community structure.
All of the replicates showed similar results, typical samples were
analyzed as follows.

As can be clearly seen from Figures 3 and 4, a substantial
change in the T-RFLP pattern was observed as shown by the
Principle Component Analysis (PCA) of the TRI data. However,
changes between the control and treatments were significantly
different as digested by different enzymes.

Digested by Hinf' I (Figure 3), C7 and P7, C14 and P14, C21
and P21, C28 and P28 were far from each other. P7, P14, P21 and
C28 cluster together and they could be regarded as one group.
Although C7, C14, C21 and P28 were in the same direction, but
there was a long distance from them. It suggested that the soil
fungal diversity was greatly changed after the inoculation of 2P24.
However, the soil fungal diversity of the treatment became close to
the control after four weeks. As can be seen in figure 3, the control
and treatment on the 35®, 49nd, 49, 56, 63rd day got very
close to each other.

Digested by Tag I (Figure 4), the soil fungal diversity of control
and treatment on the 7" day were totally different. But after one
week, the distance between them became shorter and shorter. It
indicated that the soil fungal diversity was greatly influenced by
the inoculation of 2P24 on the 7™ day, and then the soil fungal
diversity was gradually recovered.

Even with regard to the soil fungal community of controls, there
were some changes as the cucumber grew. Whether digested by
Hinf I or Tag 1, the controls could not cluster together as one
group.

Besides PCA analysis, proximity matrix of different treatments
digested by Hinf1 and Tag I also showed the similar result (Table 1
and Table 2). For example, in table 1, the correlation coefficient
between C7 and P7, C14 and P14, C21 and P21, C28 and P28

was less than 0.8, which meant that these treatments had little

Log CFU/g Dry Soil
(=)
1
1

Figure 2. Survival of P. fluorescens 2P24 in cucumber rhizo-
sphere soil microcosms after inoculation.
doi:10.1371/journal.pone.0031806.g002
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Figure 3. Principal component analysis (PCA) of T-RFLP profiles of soil samples (Hinf1). Symbols referred to individual replicates of
different treatments. “C” was on behalf of the controls amended with water, and “P” was on behalf of the treatments amended with P. fluorescens
2P24. The number (7, 14, 21, 28, 35, 42, 49, 56, 63) following the abbreviation letters “C” and “P” represented the sampling day after inoculation.
Numbers in parenthesis were percentage variance explained by each principal component (PC).

doi:10.1371/journal.pone.0031806.g003

relationships. However, the correlation coefficient between control
and treatment was between 0.8 and 1, which meant that these
treatments had strong relationships. But in table 2, there was no
such obvious differences, only the correlation coefficient between
C7 and P7 was less than 0.8, while all of the others were more than
0.8, which was similar to the result of PCA analysis.

4 DGGE results

The mixed DNA samples were separated by DGGE fingerprints
method. Significant changes between the control and treatment
could be observed through the results (Figure 5). All of the
replicates showed similar results, typical samples were analyzed as
follows.

More than 10 bands could be detected through DGGE analysis.
On the 7" day after 2P24 inoculation, bands 3, 4 and 9 of lane P7
almost disappeared compared to lane C7. At the same time, bands
5, 6 and 7 of lane P7 were less concentrated than lane C7. On the
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14™ day, bands 3, 4 and 9 of lane P14 appeared but were still very
dim. Bands 5, 6 and 7 got to be more concentrated than lane P7,
but still less than that of lane C14. On the 21* day, the bands of
lane P21 came close to the lane C21 except the bands 3 and 4. On
the 28™ day, the bands of C28 and P28 were mostly similar to
each other. After four weeks, the difference between the control
and treatment lessened.

The results of cluster analysis by UPGMA method showed that
Co, C7, C14, C21, C28, P21, P28 clustered together as one group
while others clustered as one group (Figure 6). CO was divided as a
single branch. P7 and P14 were close to the control and treatment
of the following five weeks. There was no big difference between
the control and treatment after four weeks.

Opverall, the soil fungal community was greatly influenced by the
inoculation of 2P24 at first. However, this situation lasted about
only two weeks. Four weeks later, the effect of biocontrol agent
2P24 had almost vanished.
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Figure 4. Principal component analysis (PCA) of T-RFLP profiles
of soil samples (7aq 1). Symbols referred to individual replicates of
different treatments. “C” was on behalf of the controls amended with
water, and “P” was on behalf of the treatments amended with P.
fluorescens 2P24. The number (7, 14, 21, 28, 35, 42, 49, 56, 63) following
the abbreviation letters “C" and “P" represented the sampling day after
inoculation. Numbers in parenthesis were percentage variance ex-
plained by each principal component (PC).
doi:10.1371/journal.pone.0031806.g004
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Discussion

Soil microbial community could be affected by various soil
conditions, such as pH, moisture, temperature, COq, etc [34]. In
this study, the soil was acid soil types, probably because of yearly
high temperature and rainfall. However, this kind of soil is a
typical agricultural soil both in China and other countries in the
world. In general, fungi have been found to be more acid tolerant
than bacteria leading to increased fungal dominance in acidic soils
[35-37]. The soil organic carbon (SOC) and total soil microor-
ganisms mass correlate with the soil water content [38], and it has
been proved that 19% of soil water content was most suitable for
plant growth and the activities of soil microorganisms [39].

The amount of soil culturable fungi was about 10” CFU/g dry
soil. Inoculation of P. fluorescens 2P24 decreased the total amount of
soil culturable fungi during the following three weeks. It could
probably be related with the biocontrol function of P. fluorescens
2P24. Afier that, there was no continued and obvious difference
between the treated samples and the controls, which may probably
caused by the decreasing of P. fluorescens 2P24. Although the
amount of total soil fungi was calculated in the experiment, our
finally aim was to study the changes of soil fungal diversity, as
traditional culture method had a lot of faults.

Many factors could affect the survival of P. fluorescens in soil, such
as inoculate formulation, soil conditions etc [40,41]. Thus, P.
Sluorescens would decrease quickly after inoculating into soils, just
from 10’~10° o 10°~10° CFU/g dry soil in a month. The
difference between variance was mostly dependent on the soil
types and initiative inoculation concentrations.

Microorganisms will undergo a large variety of processes
following their inoculation, including growth, death, and physio-
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Table 1. Proximity matrix of T-RFLP profiles of soil samples (Hinf I).
Proximity Matrix (Hinf1)
Correlation between Vectors of Values
c7 P7 C14 P14 c21 P21 C28 P28 (C35 P35 C42 P42 C48 P48 C56 P56 (63 P63
c7 1.000
P7 536 1.000
c14 440 253 1.000
P14 154 180 .704 1.000
C21 353 325 .876 .298 1.000
P21 .346 930 265 .036 209 1.000
c28 245 .898 .168 .010 116 992 1.000
P28 579 391 814 .188 954 194 .084 1.000
C35 252 458 415 172 518 665 749 .590 1.000
P35 536 .047 658 128 815 .207 318 910 .860 1.000
Cc42 .550 .099 552 .027 763 192 298 .887 .823 .984 1.000
P42 554 .074 525 .073 672 351 459 .807 915 976 971 1.000
c48 469 276 410 .091 522 537 635 660 967 .909 .896 973 1.000
P48 428 405 409 241 431 612 .704 551 965 .827 .784 .908 973 1.000
C56 671 175 427 216 418 410 516 .600 .863 .826 .801 909 943 955 1.000
P56 .580 313 .358 247 321 522 618 490 875 .759 722 .861 930 97 .987 1.000
c63 .536 .290 432 215 458 518 619 .603 937 .853 .818 929 977 991 .983 983 1.000
P63 668 .073 .530 186 .583 328 440 743 .884 921 .896 966 963 941 978 944 974 1.000
“C" was on behalf of the controls amended with water, and “P” was on behalf of the treatments amended with P. fluorescens 2P24. The number (7, 14, 21, 28, 35, 42, 49,
56, 63) following the abbreviation letters “C” and “P” represented the sampling day after inoculation.
doi:10.1371/journal.pone.0031806.t001
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logical adaption, conversion to nonculturable cells, physical speed
and gene transfer [42]. In the view point of biological invasion, the
inoculation of a microorganism may break the original ecological
balance of soil microbial community. Our results also showed that
the inoculation of P. fluorescens 2P24 had a significant effect on the
soil fungal community at first. But the effect of P. fluorescens 2P24
just lasted about one month, after that, the soil fungal community
recovered as the control. Some researchers also found that there
were only transient effects on soil microbial communities following
the inoculation with biocontrol agents, such as P.fluorescens [43],
Streptomyces  melanosporofaciens |44] and Corynebacterium  glutamicum
[45].

In T-RFLP analysis, the great change of soil fungal community
could be detected. However, the shift of soil fungal community was
different as digested by different enzymes either analyzed by PCA
method or by proximity matrix method. The soil fungal
community was significantly influenced by the inoculation of
biocontrol agent at first. But the process of recovering was totally
different as digested by different enzyme. The PCA analysis of
data digested by Hinf'T showed that the effect of P. fluorescens 2P24
on soil fungal community was very strong until 5 weeks later, while
there was slight recovery of soil fungal community by PCA analysis
of data digested by Tag 1.

In DGGE analysis, it could be clearly seen that the soil fungal
community recovered little by little after the inoculation of P.
Sluorescens 2P24, and the effect of P. fluorescens 2P24 lasted about
three weeks. This result was mostly close to the result of T-RFLP
analysis digested by Tag L.

T-RFLP and DGGE methods have already been applied in
analyzing many different environmental samples. T-RFLP takes
advantage of analyzing quantitative variances, while DGGE is a
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Table 2. Proximity matrix of T-RFLP profiles of soil samples (Taq |).
Proximity Matrix (Taq I)
Correlation between Vectors of Values
c7 P7 c14 P14 C21 P21 c28 P28 C35 P35 c42 P42 c48 P48 C56 P56 Cc63 P63
c7 1.000
P7 .026 1.000
c14 221 .906 1.000
P14 411 .900 .870 1.000
Cc21 223 628 .887 578  1.000
P21 144 879 993 815 915  1.000
c28 687 644 849 810 812 .812  1.000
P28 .536 476 792 559 936 795 911 1.000
C35 422 410 742 436 944 761 .833 983  1.000
P35 810 .070 417 297 626 394 .790 .856 .832 1.000
C42 A47 605 879 650 970 .884 922 986 966 .766  1.000
P42 .686 448 .752 .606 .857 735 954 .980 938 91 954 1.000
c48 .201 613 875 .554 999 907 798 930 946 621 965 .849 1.000
P48 .382 .548 .845 567 981 .863 874 982 .982 .757 993 934 .980 1.000
C56 176 635 887 578 993 922 793 911 925 584 955 830 .996 .972  1.000
P56 .186 605 867 544 993 902 790  .921 942 613 958 840 997 978 998  1.000
Ccé63 219 590 863 542 996 .895 .803 936 954 641 967 859 999 985 996 999  1.000
P63 184 469 777 413 976 823 735 921 959 655 936  .833 983 971 978 987 988  1.000
“C" was on behalf of the controls amended with water, and “P” was on behalf of the treatments amended with P. fluorescens 2P24. The number (7, 14, 21, 28, 35, 42, 49,
56, 63) following the abbreviation letters “C” and “P” represented the sampling day after inoculation.
doi:10.1371/journal.pone.0031806.t002

better choice to discriminate close species. The combination of
these two methods would give a better understanding of soil fungal
communities. However, Enwall and Hallin [46] showed that
DGGE had a higher resolution than T-RFLP and binary data was
better for discriminating between samples. But Smalla et al [47]
showed that DGGE, T-RFLP, and SSCP analysis led to similar
findings, although the fragments amplified comprised different
variable regions and lengths. Our findings also showed that
DGGE and T-RFLP had similar results, in spite of differences
between Hinf 1 and Tag I in T-RFLP analysis.

As PCR-based methods, T-RFLP and DGGE also have some
pitfalls. For example, only dominant species can be amplified from
soil DNA. Besides, a lot of factors may affect the final results, such
as DNA extraction methods, primers, annealing temperature, Taq
polymerase, and restriction enzymes etc [48]. For T-RFLP
method, although there are specific RDP database, but identifi-
cation of a TRF profile is usually impossible especially for fungi.
Burke et al. [49] approved that T-RFLP could be applied to
analyze soil fungi, but it could not reflect the real quantity of soil
fungi [50]. Furthermore, two or more species may share the same
profile, or one species may distribute in different profiles, and it
even outputs pseudo-TRFs [51]. For DGGE method, its fragments
were less than 500 bp, which was difficult for the following
identification and phylogenetic analysis. Furthermore, sometimes
a band did not stand for one species, or one species had different
bands just as in T-RFLP method.

Conclusions

P. fluorescens 2P24 is a promising biocontrol strain against many
fungal pathogens. However, its impact on soil fungal community is
still unknown. This is the first study about monitoring the effect of
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Figure 6. The differences between profiles were indicated by dice similarity. The Dendrogram was based on the RF Values and cluster
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P. fluorescens 2P24 on soil fungal communities in cucumber
rhizosphere. After its inoculation, the survival of P. fluorescens
9P24 decreased from 10° CFU/g dry soil to 10°> CFU/g dry soil
during the whole growth time of cucumber. Thus, the soil fungal
community was greatly influenced by its inoculation at the
beginning. At the same time, the impact of P. fluorescens 2P24 on
soil fungal community alleviated slowly weekly. Four weeks later,
there was little difference between the control and the treatment.

Generally speaking, there was no significant effect of P. fluorescens
2P24 on soil fungal community in cucumber rhizosphere in spite
of four-week influence. On the contrary, it suggested that the
period of validity of biocontrol agent P. fluorescens 2P24 may be less
than one month. Besides, our study just focused on the whole
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