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Abstract

Because of the industrial and medical importance of members of the fungal genus Aspergillus, there is considerable interest
in the functions of cytoskeletal components in growth and secretion in these organisms. We have analyzed the genome of
Aspergillus nidulans and found that there are two previously unstudied myosin genes, a myosin II homolog, myoB
(product = MyoB) and a myosin V homolog, myoE (product = MyoE). Deletions of either cause significant growth defects.
MyoB localizes in strings that coalesce into contractile rings at forming septa. It is critical for septation and normal
deposition of chitin but not for hyphal extension. MyoE localizes to the Spitzenkörper and to moving puncta in the
cytoplasm. Time-lapse imaging of SynA, a v-SNARE, reveals that in myoE deletion strains vesicles no longer localize to the
Spitzenkörper. Tip morphology is slightly abnormal and branching occurs more frequently than in controls. Tip extension is
slower than in controls, but because hyphal diameter is greater, growth (increase in volume/time) is only slightly reduced.
Concentration of vesicles into the Spitzenkörper before incorporation into the plasma membrane is, thus, not required for
hyphal growth but facilitates faster tip extension and a more normal hyphal shape.
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Introduction

Filamentous fungi in general, and members of the genus

Aspergillus in particular, are important industrially and medically.

They are important for the production of products as diverse as

soy sauce, glucoamylase, a key enzyme in producing high fructose

corn syrup, and anti-cholesterol drugs such as lovastatin. They also

produce toxins such as aflatoxins, and some species are responsible

for huge numbers of deaths of immune-compromised patients.

There is, thus, considerable interest in understanding their biology

in general, and their mechanisms of growth and secretion in

particular.

The actin cytoskeleton is essential for several critical functions in

filamentous fungi including tip growth, septation, endocytosis and

exocytosis [1–10]. Many of the functions of the actin cytoskeleton

are carried out through the interaction of actin microfilaments

with motor molecules called myosins. Although many families of

myosins exist (35 by one analysis [11]), the myosin families in fungi

are generally limited. For example, the budding yeast Saccharomyces

cerevisiae and the fission yeast Schizosaccharomyces pombe each have

five myosin genes that fall into three myosin families [12]. Three

genes encoding myosin heavy chain related proteins have been

studied in Aspergillus nidulans. The myoA gene encodes a type I

myosin that is essential for viability, polarized growth and

secretion and also plays an important, perhaps essential, role in

endocytosis [2,4,5]. In addition, there are two genes in which

chitin synthase sequences are fused to myosin motor domains,

csmA and csmB [13,14]. The products of these genes belong to an

unusual class of myosins, sometimes designated class 17 myosins

[11] that is apparently restricted to fungi, Neither csmA nor csmB is

essential, but null mutations of either gene cause morphological

defects consistent with improper cell wall formation. In addition,

deletion of csmB and simultaneous downregulation of csmA is lethal

[14].

Many questions remain to be answered about myosin function

and, in particular, about the roles that myosins play in tip growth

and septation. In order for hyphae to grow, vesicles carrying wall

precursors must move to the hyphal tip and undergo exocytosis,

releasing their contents [6,8]. Likewise endocytosis is probably also

required for growth (discussed in [10]). Vesicles traffic through an

organelle called the Spitzenkörper that is thought to act as a vesicle

supply center [6,8]. While MyoA appears to be the key myosin in

endocytosis and exocytosis at the hyphal tip, the roles of myosins in

vesicular trafficking along hyphae and in moving vesicles to the

Spitzenkörper remain to be determined as do the identities of

myosins involved in septation and their roles.

The sequencing of the A. nidulans genome presented the

possibility of identifying and characterizing the functions of all

remaining myosin heavy chains in A. nidulans. A. nidulans has two

previously uncharacterized myosin heavy chain genes, one (here

designated myoB) encoding a member of the myosin II family and

the other (here designated myoE) encoding a myosin V family

member. We have analyzed the functions of these genes and their

products by deleting them and observing the phenotypes of the
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deletions and by tagging them with fluorescent protein sequences

and observing them in living cells by time-lapse microscopy. We

have found that neither is essential for viability, but each carries

out important functions related to growth. In addition to

completing the characterization of myosin heavy chains in A.

nidulans, our results have important implications with respect to the

mechanisms of tip growth and cytokinesis.

Results

Identification of A. nidulans myosin II and myosin V
homologs

The existence of myosin II and myosin V genes in A. nidulans has

been noted previously [11,15], (note: in the Odronitz and Kollmar

study [11] an alternative genus name, Emericella, was used and the

genes were called mhc and myo5) but no analysis of the genes nor

their functions was reported and the genome database numbers for

the genes were not given. To identify these genes and determine if

there were additional unidentified myosin heavy chain genes, we

carried out BLAST (basic local alignment search tool) (http://

www.ncbi.nlm.nih.gov/blast/Blast.cgi) searches of the A. nidulans

genome databases (http://www.aspgd.org/, http://www.cadre-

genomes.org.uk/, http://www.broadinstitute.org/annotation/genome/

aspergillus_group/MultiHome.html) with multiple myosin se-

quences. We found the previously characterized myosin heavy

chains and two previously uncharacterized myosin heavy chain

genes, AN4706 and AN8862. AN4706 is predicted to encode a

protein of 2404 amino acids. A BLAST search of the NCBI

database with the predicted product of AN4706 revealed that

almost all of the 100 proteins with the greatest similarity to the

predicted product of AN4706 were type II myosin heavy chains

or predicted type II myosin heavy chains and all had an E value

of 0. Interestingly, the vertebrate myosins with the greatest

identity to the predicted product of AN4706 were smooth muscle

type II myosins. The predicted product of AN4706 aligned well

with type II myosins over most or all of its length. An

InterProScan (http://www.ebi.ac.uk/interpro/index.html) analy-

sis indicates that it contains an N-terminal motor domain (myosin

head), SH3-like domain, an IQ calmodulin-binding motif, a

chromosome segregation ATPase region (SMC, structural

maintenance of chromosomes) and a C-terminal myosin tail

domain (Figure S1). These data and our results (below) leave no

doubt that the product of AN4706 is a type II myosin heavy

chain. Following the standard A. nidulans gene naming system, we

hereby designate AN4706 as myoB and its product as MyoB.

AN8862 encodes a predicted product of 1569 amino acids. An

InterProScan analysis reveals that it contains an N-terminal

myosin head (motor domain), and a C-terminal tail region

including a Dilute domain (Figure S1). A BLAST search of the

NCBI database revealed that all top matches were type V myosin

heavy chains. (Note that the nomenclature for type V myosins can

be confusing. The S. cerevisiae MYO2 gene, for example, encodes a

type V myosin.) The top 100 matches had E values of 0 and

showed strong identity with the predicted product of AN8862 over

all or nearly all of its length. Based on these data and our results

(below), we designate AN8862 myoE and its product MyoE. Figure

S1 shows the predicted domain structure of all five A. nidulans

myosin heavy chains.

Deletions of myoB and myoE confer strong growth
phenotypes

We deleted the myoB and myoE genes by replacing each of them

with the Aspergillus fumigatus pyrG gene. (Genotypes of all strains are

listed in Table S1.) Strains carrying deletions of each gene were

viable, but both had strong growth phenotypes (Figure 1). The

myoB deletion formed very thin, wispy, irregularly shaped colonies

with a nearly complete absence of conidia. Because of the poor

growth and conidiation we were not able to maintain permanent

stocks of the myoB deletion. The myoE deletion (LO1833) produced

compact colonies, the radial growth rate of which was less than

half of that of the parental strain.

MyoB forms nodes or strings that localize to the septum
To localize MyoB in vivo, we fused a GFP coding sequence [16]

in frame to the 39 end of the myoB coding sequence. We inserted

the fragment into the genome at the myoB locus creating strain

LO1973. The GFP-tagged myoB was the only copy of the myoB

gene in the genome; it was under control of its endogenous

promoter and it supported normal growth and conidiation over a

wide range of temperatures (Figure S2).

To visualize nuclei and MyoB-GFP in the same strain, we fused

an mCherry sequence to the 39end of the histone H1 gene in

LO1973, creating strain LO2390. MyoB-GFP localized to forming

septa in an interesting way (Figure 2). Septation in A. nidulans has

been studied extensively, [17–20], and it is worthwhile to

summarize it briefly. When conidia germinate, septation normally

does not occur until after the third mitotic division (eight nuclei

stage). Septation then occurs after each subsequent mitotic

division. In mature, rapidly growing hyphae several septa often

form after a round of mitosis and septation is asymmetrical,

leaving a large multinucleate tip cell. The nuclei in the tip cell

continue to go through the cell cycle, but nuclei in subapical cells

are removed from the cell cycle until a side branch emerges.

After mitosis and immediately before septation, MyoB nodes or

strings appeared between a subset of nuclei (Figure 2A, Video S1).

They then coalesced to form a ring at the site of septation

(Figure 2B, Video S2). The ring then constricted and MyoB

moved away, again in strings (Figure 2A,B, Video S1, S2).

Occasionally the strings would begin to coalesce between two

nuclei and then move to a different position between two other

nuclei before forming a ring (Figure 2A, Video S1). As will be

discussed, this localization pattern has implications for the

Figure 1. Growth phenotype of myosin deletants. Incubation was
for three days at 37uC on YAG medium supplemented with riboflavin.
While both myoB and myoE deletants are viable, the myoB deletant
colony is thin and wispy. Microscopic examination revealed that
individual hyphae extend beyond the apparent edge of the colony. The
myoE deletant is compact, exhibiting slower radial growth than the
control strain.
doi:10.1371/journal.pone.0031218.g001
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mechanism of septation. We noted that the process of septation

generally occurred roughly equidistant from the nearest two nuclei

and we saw no specific localization of MyoB at the hyphal tip. The

MyoB localization at the forming septum occurred prior to the

septum becoming visible by transmitted light.

MyoB is critical for septum formation and correct chitin
deposition

The myoB deletion produced almost no conidia and was

sufficiently sick that it was difficult to work with. Fortunately in

A. nidulans the heterokaryon rescue technique [21,22–25] allows

one to maintain nuclei carrying recessive sick or lethal mutations

and to produce conidia carrying the mutations for microscopic

analysis. Using this technique, we were able to analyze the

phenotype of myoBD in detail. Since MyoB localizes specifically

to septa, we examined the effects of myoBD on septation by

germinating myoBD and control spores and staining them with

calcofluor, which stains chitin-containing cell walls and septa [1].

We found that septation was almost completely abolished in

myoBD strains (Figure 3). The rare septa that were seen were

malformed. MyoB, thus, is critically important for septation. Our

calcofluor staining also revealed that in the myoBD strain there

were abnormal accumulations of chitin in hyphae (Figure 3). We

also noted that virtually all myoBD hyphae had long stretches at the

hyphal tip in which side branches were absent (Figure 3C), but

since branching normally occurs in sub-apical cells, separated from

the hyphal apex by one or more septa, we interpret the reduced

branching to be a consequence of reduced septation.

MyoB is not required for tip extension
The term ‘‘tip growth rate’’ is often used to denote the change in

hyphal length per unit of time. We have found, however, that

myosin deletions can affect both the rate of hyphal lengthening

and the diameter of hyphae. We will consequently use the more

precise terms ‘‘hyphal tip extension rate’’ for the change in hyphal

length per unit of time and ‘‘hyphal growth rate’’ for the change in

volume of the hyphal tip per unit of time. myoB deletants and

parental control cells were grown in the same liquid medium at

25uC for 24–28 h. Z-series stacks were then captured at three-min

intervals and tip extension rates were determined as described

Figure 2. MyoB-GFP localization during septum formation. Images are projections from a time-lapse data set taken with strain LO2390. Times
are in min and sec after the start of imaging. In A, the panel at the left is a low magnification image from the 19:00 min time point showing MyoB-GFP
localization at three forming septa (arrows). Higher magnification time-lapse images of the region in the rectangle are shown to the right. The time
after the beginning of time-lapse acquisition (in min) is shown at the upper left of each panel. In this set of images, strings of MyoB-GFP begin to
coalesce at the 11 min time point (arrow) but then disperse and coalesce at a different place (arrow at 14:30). A septum then forms and begins to
contract. Strings of MyoB-GFP can be seen leaving the septum (arrow at 29:30). Panel B is from the same time-lapse data set as A, but a single septum
is shown and it is rotated 90u (using Volocity software) such that we have an end-on view of septum formation. MyoB-GFP assembles into a ring, with
no evidence of it being spun out from a single spot. The ring then fills and contracts before disappearing. The time (in min) after the beginning of
acquisition is shown at the bottom of each panel.
doi:10.1371/journal.pone.0031218.g002
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previously [26]. The tip extension rate in the myoBD strain

(0.9860.30 mm/min, n = 10), however, was significantly faster

than in the control (0.6560.18 mm/min, n = 10) (p = 0.0084,

paired t-test). We also determined the mean hyphal diameter and

found that the diameter for the myoBD strain was 2.5660.19 mm

(mean 6 standard deviation, n = 10) vs 2.5260.21 mm (n = 11) for

the myoB+ control. The diameters of myoBD and myoB+ strains are,

thus, essentially identical. MyoB, thus, is not required for tip

extension, and, indeed, tip extension rates and hyphal growth rates

are greater in its absence. As will be discussed, this may relate to

the number of nuclei in the tip cell and the size of the cell.

MyoE localizes to moving puncta in the cytoplasm and to
the Spitzenkörper

To determine the localization patterns of MyoE in vivo, we fused

the GFP coding sequence in frame to the 39 end of myoE gene,

creating strain LO1975. The myoE-GFP fusion was the only copy

of the myoE gene in the genome, it was under control of the normal

myoE promoter and it supported normal growth over a wide range

of temperatures (Figure S3). MyoE was most concentrated at the

hyphal apex at a position corresponding to the Spitzenkörper

(Figure 4A). The Spitzenkörper (literal translation is ‘‘tip body’’) is

an incompletely characterized organelle at hyphal apices that plays

a key role in tip growth [6,8,27]. Vesicles containing materials for

tip growth traffic through it and it is thought to be a vesicle supply

center for tip growth [28]. The Spitzenkörper can be visualized

in A. nidulans by using fluorescently tagged SynA. SynA is a

synaptobrevin homolog and is a marker for exocytic vesicles [10]

and endosomes [29]. It concentrates in the hyphal tip area and

is most concentrated at the Spitzenkörper [10]. It also localizes to

the plasma membrane between the extreme hyphal apex and a

ring of endocytic sites [10]. MyoE co-localized with SynA

specifically at the Spitzenkörper but not at the plasma membrane

(Figure 4 A–C).

MyoE-GFP also localized to many dots in the cytoplasm, some

of which were at the limit of resolution and some of which were

slightly larger (Figure 4D). Most of the dots were mobile (Video

S3). Their density and rapidity of movement made it difficult to

track individual MyoE dots but it was apparent that they moved

bi-directionally, toward and away from the hyphal tip, they moved

at different rates and they often paused. MyoE also localized very

weakly and transiently to forming septa (Figure 4G).

MyoE is expected to be involved in the movement of vesicles to

the hyphal tip [8] and the punctate distribution of MyoE-GFP

suggested that it might localize to vesicles. In an attempt to

determine if this was the case, we performed rapid dual

wavelength imaging of strain LO2054 carrying MyoE-GFP and

mCherry-SynA, but the density and rapid movement of MyoE-

GFP and mCherry-SynA dots made it impossible to determine co-

localization unambiguously.

MyoE localization at the Spitzenkörper is actin
dependent but not microtubule dependent

To determine if MyoE localization at the Spitzenkörper is actin

dependent, we treated a strain that carries MyoE-GFP with 1 mg/

ml cytochalasin A. At this concentration, filamentous actin is

depolymerized completely [10]. Cytochalasin A treatment caused

rapid disaggregation of the Spitzenkörper MyoE-GFP, indicating

that the Spitzenkörper disassembled or that MyoE-GFP dissoci-

ated from the Spitzenkörper (Figure 5, Video S4, S5). In fact

bidirectional movement was easier to visualize in cytochalasin-

treated material than in controls, perhaps because actin-based

movement was eliminated. These data indicate that MyoE

localization at the Spitzenkörper is actin dependent (or that the

structural integrity of the Spitzenkörper is actin dependent), but

some of the movement of the MyoE cytoplasmic dots is actin

independent and microtubule-based.

Treatment with 2.4 mg/ml benomyl to depolymerize microtu-

bules did not cause MyoE-GFP to dissociate from the Spitzen-

körper (Figure S4). As previously noted [10], however, loss of

microtubules caused the tip growth apparatus, including the

Spitzenkörper, to be less stably associated with the tip. It often

moved to initiate a side branch. The continued presence of MyoE-

GFP at the Spitzenkörper could be due to continued transport of

MyoE to the Spitzenkörper, or to the MyoE simply remaining at

the Sptizenkörper after disassembly of microtubules. To distin-

guish between these possibilities we examined recovery of MyoE-

GFP at the Spitzenkörper after photobleaching. When we kept the

size of the bleached region to a minimum, recovery of MyoE-GFP

localization to the Spitzenkörper was rapid and the MyoE-GFP

signal at the Spitzenkörper was strong (Figure 6). As we increased

the size of the bleached region MyoE-GFP signal still recovered

at the Spitzenkörper, but the intensity of the signal was weaker,

probably because the MyoE-GFP in the vicinity of the

Spitzenkörper was also bleached (Figure 6). In the absence of

microtubules, we could clearly see movement of MyoE-GFP

particles toward the tip (anterograde movement). We did not

Figure 3. Deletion of myoB inhibits septum formation. All panels
are images of living cells. In A and B, nuclei are shown with histone H1-
mRFP and chitin is stained with calcofluor (10 mg/ml). A. a myoB+ strain
(LO1516). Multiple septa are visible (arrows). B. a myoBD hypha. The
myoB gene was deleted in LO1516 and nuclei carrying the deletion
were maintained in a heterokaryon. No septa are present but there are
thickened regions containing chitin (e.g. arrow) and chitin is highly
concentrated near the hyphal tip. C. Shows a hyhal tip region in a
myoBD strain stained with calcofluor but nuclei are not imaged. Note
the absence of septa and side branches. The circular objects are
ungerminated conidia resulting from the heterokaryon rescue tech-
nique.
doi:10.1371/journal.pone.0031218.g003
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observe retrograde movement, but because of the density and

rapidity of movement of MyoE-GFP particles, we could not rule

out the possibility that some retrograde movement occurs. These

data in combination reveal that MyoE can move to the

Spitzenkörper in the absence of microtubules, and they are

consistent with the possibility that microtubules play an important

role in moving MyoE to the tip area where it can move on actin

filaments to the Spitzenkörper.

Deletion of myoE reduces the hyphal tip extension rate
To determine the functions of MyoE in vivo, we examined the

effects of the myoE deletion by multidimensional microscopy. We

first determined tip extension rates by time-lapse imaging of

hyphae. A myoED strain (LO1935) and parental control (LO1535)

were imaged at 2560.5uC after growth for 24–26 h at 25uC. Z-

series stacks were captured at three min intervals. The tip

extension rate for the myoED strain was 0.1960.06 mm/min

(n = 35), and the rate for the control strain was 0.6960.13 mm/

min (n = 35). The difference in tip extension rates between the two

strains was highly significant (P value,0.0001, paired t-test).

Although the deletion of myoE reduced the tip extension rate, it

increased hyphal diameter (Figure 7). We measured the diameters

of control (LO1535) and myoED (LO1935) hyphae growing in

liquid culture. To eliminate errors due to variation in diameter

along the hypha, for each hypha we measured the diameter 10, 15

and 20 mm behind the hyphal tip and calculated the mean of the

Figure 4. MyoE localization. A–F are images of the same field and are maximum intensity projections of a Z-series stack. A–C show the co-
localization of MyoE-GFP and mCherry-SynA at the Spitzenkörper (arrows). SynA localizes to the Spitzenkörper and to the plasma membrane near the
apex (B). In D–F, the thresholds are chosen to reveal the punctate staining in the hypha while overexposing the MyoE-GFP and mCherry-SynA at the
hyphal tip. MyoE-GFP localizes to numerous small puncta and some larger structures that may be endosomes (e.g. arrow). G. Faint localization of
MyoE-GFP at forming septa (arrows). H. A three-dimensional projection of a hyphal tip showing MyoE-GFP and mCherry-SynA. Although MyoE and
SynA co-localize at the Spitzenkörper, many puncta behind the tip show GFP fluorescence or mCherry fluorescence, but it was not clear that there
was any obligate co-localization.
doi:10.1371/journal.pone.0031218.g004

Figure 5. Cytochalasin A causes MyoE-GFP to disperse from the Spitzenkörper. Images are maximum intensity projections of Z-series
stacks. Time (in sec) after the addition of DMSO (top row) or an equivalent volume of cytochalasin A dissolved in DMSO to give a final concentration
of 1 mg/ml (bottom row). MyoE-GFP continuously localizes to the Spitzenkörper in the solvent control (top row) but disperses in less than 328 sec
after the addition of cytochalasin A.
doi:10.1371/journal.pone.0031218.g005

Myosin II and V Function in Aspergillus

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e31218



three measurements. The diameter of the myoE+ strains was

2.6060.32 mm (n = 50) and the diameter of the myoED strain was

4.1760.44 mm (n = 50). The difference was highly significant

(P,0.0001, paired t-test).

The actual hyphal growth rate (increase in hyphal volume per

unit of time) is a function of both hyphal diameter and hyphal

extension rate. To determine if myoED inhibited growth we

measured both tip extension rates and hyphal diameters for

individual myoE+ and myoED hyphae and calculated the increase in

volume per unit time for the hyphae. The growth rate for the

myoE+ hyphae was 3.4961.17 mm3/min whereas the growth rate

in the myoED strain was 2.5961.01 mm3/min. Although the

standard deviations were overlapping, the difference in growth

rate was significant (P = 0.0028, paired t-test). Deletion of myoE,

thus, does slightly reduce the hyphal growth rate but, more

strikingly, causes hyphae to be thicker and extend more slowly.

MyoE, thus, is important for maintaining a thin hypha that

extends rapidly, but it is less important for growth itself.

Hyphal morphology is altered by deletion of myoE
As mentioned, the hyphal diameter was greater in myoED than

in controls. In addition, the hyphal diameter was less consistent

along individual hyphae in myoE deletants than in myoE+ strains

(Figure 7). We also noted a significant departure from the wild-

type in branching pattern. In the wild-type, branching almost

never occurs in the tip cell. A septum must form creating a

subapical cell and branches can subsequently extend from

subapical cell. We noticed that branching occurred in apical cells

in myoED strains (Figure 7G) and quantified this by collecting Z-

series stacks of many random fields and scoring tip cells for

branching before the first septum. In the wild type no branching in

the tip cell was seen in 43 tip cells scored. In a myoED strain, 22/59

(37%) of hyphal tip cells exhibited branching before the first

septum. In many cases the branches seemed to be a simple

bifurcation and in a few cases multiple branches extended from the

tip cell. In addition, septa appeared to be more numerous and

closer together in myoED strains than in controls. Finally, although

it is difficult to quantify, hyphal tips also appeared to be rounder in

myoED strains than in controls (Figure 7).

MyoE is required for SynA localization to the
Spitzenkörper but not for SynA movement nor for
localization of endocytic patches

The morphological alterations caused by myoED suggested that

tip growth was being altered. As mentioned, SynA is highly

concentrated at the Spitzenkörper ([10] and Figure 4A–C, 7C).

Since the Spitzenkörper is important for tip growth, we examined

GFP-SynA localization in myoED strains. We found that although

SynA was concentrated near the hyphal apex, it did not localize

specifically to the Spitzenkörper in myoED strains. It still localized,

however, to the apical membrane and to numerous puncta in the

cytoplasm (Figure 7D,E, Figure 8, 30 sec time point, Video S6,

S7).

The hyphal tip area is very crowded and it is difficult to follow

the movement of individual vesicles. To partially circumvent this

problem we photo-bleached GFP-SynA vesicles in the hyphal tip

region and followed the movement of GFP-SynA from the non-

bleached region distal to the tip in myoE+ and myoED strains. It was

still difficult to image individual vesicles, but in the myoE+ control,

GFP-SynA was visible at the Spitzenkörper 30 sec after the tip was

bleached and was visible at the position of the plasma membrane

by 60 sec after bleaching (Figure 8). GFP-SynA, and, by inference,

exocytic vesicles, thus traveled rapidly from the unbleached

subapical area and accumulated specifically at the Spitzenkörper

before incorporation into the membrane at the hyphal apex

(consistent with the Spitzenkörper functioning as a vesicle supply

center). In myoED cells, the SynA vesicles also moved rapidly from

the unbleached subapical area to the apex (reaching the apex

30 sec after bleaching), but they did not localize to the

Spitzenkörper. Rather, they moved directly to the plasma

membrane at the tip (Figure 8).

We also examined movement of GFP-SynA in myoED and

control strains. We observed vigorous and extremely rapid

movement of GFP-SynA particles in both strains (Videos S6 and

S7). These data allow us to conclude that deletion of myoE does not

cause a gross reduction of movement of particles containing SynA.

Because of the density of particles near the tip and the speed of

movement, however, it is difficult to observe SynA particle

movement well enough to rule out the possibility that there is

partial inhibition of movement or inhibition of movement of a

subset of SynA particles.

In A. nidulans, an important part of the tip growth apparatus is a

ring of endocytic patches just behind the growing tip. This ring

apparently is key to recycling components important for tip growth

such as SynA and the maintenance of their correct position is

actin-dependent [10]. These patches contain, among a number of

proteins, AbpA, the A. nidulans homolog of Abp1 [10,30]. To

determine if myoE is important for the correct positioning of the

endocytic patches, we deleted myoE in a strain expressing AbpA-

mRFP and GFP-SynA. We found that endocytic patches formed a

collar behind the growing tip (Figure 7E) as in myoE+ cells

Figure 6. Movement of MyoE-GFP to the Spitzenkörper in the absence of microtubules. Microtubules have been depolymerized with
2.4 mg/ml benomyl time at the upper right in each panel is in seconds. At t = 0, MyoE-GPF is visible at the Spitzenkörper (arrow). Three seconds later
after FRAP the MyoE-GFP in the Spitzenkörper is bleached. In spite of the absence of microtubules, MyoE-GFP has moved to the Spitzenkörper 30 sec
after FRAP (arrow, t = 33) and it increases in intensity at the Spitzenkörper over the next minute (arrows).
doi:10.1371/journal.pone.0031218.g006
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(Figure 7F). In some cases it appeared that the collar was less well

organized than in controls and the AbpA patches were closer to

the tip, but this might simply be a consequence of the slower tip

extension rates of myoED strains.

There is evidence that exocytic vesicles and other SynA

containing particles move along both microtubules and microfil-

aments ([10] and references cited therein) and there is evidence

that there is some functional redundancy of the two cytoskeletal

systems in Ustilago maydis [31]. If microtubule-based movement can

compensate for MyoE-powered microfilament-based movement,

de-polymerization of microtubules in a myoED strain should stop

all active particle movement. We consequently determined tip

extension rates of myoED and myoE+ strains after de-polymerization

of microtubules by benomyl. The tip extension rate of the myoED
strain (0.0660.01 mm/min, n = 16) was significantly slower than

that of the myoE+ strain (0.2260.09 mm/min, n = 16) treated

identically (p,0.0001, paired t-test). Tip extension was, thus,

much slower in the absence of both microtubules and MyoE than

it was in the absence of either [see [26] for detailed analysis of

benomyl effects on tip growth]. This indicates that the two

cytoskeletal systems do, indeed, have some functional redundancy.

Interestingly, tip growth was not inhibited completely even in the

absence of microtubules and myoE. It is possible that the residual,

extremely slow, growth is simply due to passive diffusion of

exocytic vesicles to the plasma membrane and not due to active

movement of vesicles by motor molecules along cytoskeletal

elements.

Discussion

There are five genes in A. nidulans that encode myosin heavy

chains. Three have been studied previously and we now report

functional analyses of the remaining two. While our findings are

generally consistent with the limited data available from other

filamentous fungi [8,31–33], they break new ground with respect

to understanding the mechanisms of tip growth and hyphal shape

determination in particular, as well as septation.

MyoE and tip growth
The mechanisms of tip growth and shape determination, and

the role of the Spitzenkörper therein, have been the subject of a

great deal of research and debate (e.g. [6,8,10,27,28,34–39]). One

important model, the vesicular supply center model, which has

been slightly modified over time, contends that the shape of the

growing hypha is controlled by the movement of the Spitzenkör-

per and the fact that vesicles radiate outward from the

Spitzenkörper and fuse with the plasma membrane. The

frequency of fusion of vesicles, and thus the rate of growth, of

any particular portion of the hyphal tip cell would be a function of

the distance from the Spitzenkörper. If these premises are correct,

the shape of growing hyphae can be predicted by a relatively

simple mathematical formula [28,35–37,39]. While some data

Figure 7. Deletion of myoE alters hyphal morphology and
SynA distribution but not the localization of endocytic
patches. Panel A shows a myoE+ strain and panel B shows a myoED
strain. Both are stained with 10 mg/ml calcofluor. Hyphae in the myoED
strain are thicker, vary more in thickness and exhibit more branching
near the tip. The amount of chitin staining at the hyphal tip varied from
hypha to hypha in wild-type strains as well as myoB and myoE deletion
strains. The difference in staining between A and B is not specific
to myoED. Panel C shows GFP-SynA in a myoE+ strain. SynA is
concentrated into the Spitzenkörper at the hyphal tip (arrow) and is
also present at the membrane near the tip. Panel D shows GFP-SynA in
a myoED strain. SynA is present at the membrane and in puncta in the
cytoplasm but is not obviously organized into a Spitzenkörper. Panel E
shows the localization of AbpA-mRFP and GFP-SynA in a myoED strain.
The image is a single focal plane from a deconvolved Z-series stack.
AbpA-containing endocytic patches (arrow) localize to the cortex

behind the growing tip and in three dimensions form a collar behind
the growing tip. Panel F shows a control myoE+ strain (LO1548) also
expressing GFP-SynA and AbpA-mRFP. The image is a single focal
plane from a deconvolved Z-series stack. The ApbA-containing patches
(arrow) appear to be organized into a tighter array and the
Spitzenkörper is visible (arrowhead). Note that myoE+ hyphae are more
consistent in diameter along their length than myoED hyphae (compare
A and B) and that the apices in myoED hyphae appear rounder than in
myoE+ hyphae. A and B are the same magnification as are C and D.
Panel G shows branching ahead of the first septum (septum designated
with an arrow).
doi:10.1371/journal.pone.0031218.g007
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support this model, other data (e.g. [10,40]) seem inconsistent with

the model in its most straightforward form.

An illustration of MyoE function at the hyphal tip is shown in

Figure 9. Our GFP-SynA photobleaching experiments show that

in myoE+ strains, exocytic vesicles, as revealed by SynA, traffic from

the hypha through the Spitzenkörper into the plasma membrane

as predicted by the vesicle supply center model. In the absence of

MyoE, however, GFP-SynA, does not accumulate in the

Spitzenkörper and the Spitzenkörper, thus, does not act as a

vesicle supply center. Tip growth still occurs, however, and the tips

have a roughly normal shape. Making the reasonable assumption

that SynA is reliable reporter for all classes of exocytic vesicles, it

follows that there are mechanisms of growth and shape

determination that are independent of vesicles passing through

the Spitzenkörper. We have found previously that a tip growth

apparatus exists in A. nidulans in which several key tip growth

components are maintained in a precise spatial relationship [10].

We have now found that key components of the tip growth

apparatus, the sites of endocytosis as visualized with AbpA-mRFP

and the GFP-SynA at the plasma membrane, maintain approx-

imately normal locations in the absence of MyoE. The tip growth

apparatus thus, appears to remain at least partially intact in the

absence of MyoE consistent with continued polarized growth.

Tip growth is not normal in myoED strains, however. Tip

diameter is greater than in controls, the tip diameter is less

consistent than in controls, the rate of tip extension is reduced and,

the tip appears to be rounder than in controls. These data suggest

that while trafficking of vesicles through the Spitzenkörper is not

essential for tip growth, the Spitzenkörper does, indeed, act as a

vesicle supply center and, as such, plays a major role in

determining tip extension rate, hyphal diameter and hyphal

shape. Concentrating exocytic vesicles into the Spitzenkörper near

the hyphal apex likely results in their fusing into the plasma

membrane into a smaller, more defined area, resulting in thinner

hyphae of more consistent diameter. It follows that the number of

vesicles fusing per unit of time per unit of area at the apex is

greater than in the absence of a Spitzenkörper and this results in

more rapid tip extension. This, in turn, allows the fungus to

explore its environment more rapidly – a considerable selective

advantage.

The absence of MyoE causes tip extension to be slower than in

controls, but tip diameter is increased and the total growth rate

(change in volume per unit time) at the hyphal tip is reduced only

about 25% relative to a myoE+ control. In addition, since there

appear to be more side branches near the tip, the total amount of

tip growth may actually be greater in myoED strains than in myoE+
strains. Since both exocytosis and endocytosis are important for tip

growth [6,7,10,28,35,36,41–43], and tip growth continues in the

absence of MyoE, we can deduce that MyoE is not essential for

exocytosis or endocytosis.

Our data also increase our understanding of the mechanisms of

movement of vesicles in the tip area. Vesicles can, in principle,

move on either of the two cytoskeletal systems, microtubules or

actin microfilaments. In understanding movement in the tip area,

it is important to remember that in A. nidulans, microfilaments

extend back from the hyphal apex at least 25 mm (see Fig. 1D in

[10]), while microtubules extend from back in the hyphal tip cell to

very close to the hyphal apex (reported in many studies e.g.

[26,44]). There is, thus, a considerable zone of overlap of

microtubules and microfilaments behind the apex where vesicles

can, in principle, move on either of these cytoskeletal elements.

When microtubules are depolymerized with benomyl, MyoE

continues to move to the Spitzenkörper. The movement of MyoE

to the Spitzenkörper, is, thus, not dependent on microtubules and

we can deduce that it occurs on microfilaments. Treatment with

cytochalasin eliminates localization of MyoE at the Spitzenkörper

as predicted if MyoE moves to the Spitzenkörper on microfila-

ments, but these data are ambiguous because cytochalasin

treatment may disrupt the integrity of the Spitzenkörper [10].

The deletion of myoE does not eliminate movement of SynA to the

hyphal apex but does eliminate its coalescence into the

Spitzenkörper. The simplest explanation of these data is that

MyoE can power movement of SynA (and, by inference, exocytic

vesicles) along actin microfilaments to the Spitzenkörper. MyoE is

not limited to moving along microfilaments, however. Although

MyoE-GFP puncta do not coalesce to the Spitzenkörper when

Figure 8. Fluorescence recovery after photobleaching (FRAP) of GFP-SynA in myoE+ and myoED strains. The tips of the two strains
were photobleached at T = 0 (sec). In the myoE+ strain recovery is rapid. GFP-SynA appears at the tip within 30 sec of photobleaching and quickly
localizes to the Spitzenkörper (arrows). This indicates that vesicles with SynA move rapidly to the tip and move through the Spitzenkörper before
fusing with the plasma membrane. In the myoED strain, the GFP-SynA is also visible at the tip at 30 sec after bleaching. MYOE, thus is not required for
movement of GFP-SynA-containing vesicles to the tip. The GFP-SynA does not go through the Spitzenkörper, moreover, but fuses with the plasma
membrane in a broad region of the tip.
doi:10.1371/journal.pone.0031218.g008
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actin microfilaments are depolymerized with cytochalasin A, they

do continue to move to the hyphal apex. This indicates that they

can move on microtubules although ample precedence from other

systems indicates that MyoE is more much likely to be a passenger

on vesicles in this instance than the motor for movement. Since the

movement is bi-directional and microtubule motors are unidirec-

tional we can deduce that MyoE is moved by at least two motor

molecules. There is very little growth in the absence of both

microtubules and MyoE. This indicates that no other myosins or

other molecules can substitute for MyoE in actin-based movement

of vesicles to the tip and we presume that the extremely slow

growth we have observed is due to passive diffusion of vesicles.

In aggregate, our data support and extend the model of Taheri-

Talesh et al. [10] and the earlier, similar model of Steinberg [8] as

follows. Exocytic vesicles containing SynA and associated with

MyoE are transported to the cell tip area on microtubules by

kinesins. In the fairly long microtubule/microfilament overlap

zone, if exocytic vesicles fall off microtubules, MyoE can move

them along actin filaments into the Spitzenkörper before they fuse

with the plasma membrane. If microtubules are absent, the supply

of vesicles to the tip is reduced, but MyoE can still move vesicles to

the Spitzenkörper along actin cables that extend some distance

back in the hypha from the apex [10,30,45]. As the supply of

exocytic vesicles diminishes and is not replenished by movement

Figure 9. A simplified model for MyoE function at the hyphal tip. A. A myoE+ cell. Exocytic vesicles move along microtubules powered by
kinesin molecules. (It is likely that several kinesins can carry out this function.) There is a large zone of overlap between microtubules and actin
microfilaments. When exocytic vesicles become detached from microtubules, as will generally be the case because of the limited processivity of
kinesins, MyoE, on the vesicles will move the vesicles along actin microfilaments, collecting them at the Spitzenkörper. The vesicles then fuse in a
fairly small area to the plasma membrane releasing their contents and resulting in hyphal growth. MyoE, vesicle components and, probably, many
more proteins are moved in retrograde direction by dynein where they will be reused. B. A myoED cell. In the absence of MyoE, exocytic vesicles are
not focused into the Spitzenkörper but they are still moved into the hyphal apex area where they fuse with the plasma membrane over a wider area,
resulting in hyphae with a greater diameter and lower extension rate. For simplicity, much of the endocytic machinery including endosomes and
actin patches has been left out of this model. For a more detailed model of the endocytic machinery please see reference 10.
doi:10.1371/journal.pone.0031218.g009
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along microtubules, tip extension slows, as has been demonstrated

[10,26]. In the absence of MyoE, vesicles are still moved along

microtubules toward the hyphal apex, but if they fall off of

microtubules in the overlap zone, they are not moved into the

Spitzenkörper. They can reassociate with microtubules and move

to the hyphal apex where they fuse with the plasma membrane

over a larger area resulting in a larger tip and consequent hyphal

diameter. In the absence of both MyoE and microtubules, there is

no active transport of vesicles to the tip and growth is extremely

slow. In the absence of microfilaments (i.e. after cytochalsin A

treatment) the tip growth apparatus falls apart and growth

becomes non-polarized [10,46]. Related to the cooperation of

actin and microtubule cytoskeletons in tip growth, there is

evidence in the fungus U. maydis that myosin V, and the kin-1

and kin-3 kinesins cooperate in polarized hyphal growth [31] and

that the chitin synthase Mcs1 travels along microtubules and actin

filaments powered by the kin-1 kinesin and myosin V toward the

hyphal tip and moves along microtubules in the opposite direction

powered by dynein [47]. In addition, in vitro, vertebrate myosin Va

(a form of myosin V) can bind to and diffuse along microtubules

and that myosin V and kinesin can enhance the processivity of

each other [48,49]. Since we have observed bi-directional

movement of MyoE-GFP, we can conclude that a minus-end-

directed microtubule motor, such as cytoplasmic dynein, can move

MyoE in a retrograde direction and we assume that this allows

MyoE to be recycled, to be attached to exocytic vesicles as they are

produced well back from the hyphal tip. The transient localization

of MyoE to septa suggests it may have a non-essential role in

transporting vesicles to the forming septum. Finally, myoED causes

hyphal branching in tip cells ahead of the first septum and

branching often appears to occur by bifurcation. This implies that

MyoE plays a role in repressing side branching, although our data

give no insights as to mechanism.

In the dimorphic fungus Candida albicans, myosin V (which,

somewhat confusingly, is designated CaMyo2) is not required for

viability but it is required for dimorphic switches and polarized

growth [50]. The function of myosin V in C. albicans is, thus, not

identical to its function in the more typical ascomycete A. nidulans

although its role in tip growth is probably related to the functions

we note for MyoE.

MyoB and septation
MyoB localizes to forming septa and in its absence, septation is

nearly abolished. MyoB, thus, plays a critical role in septation.

Since hyphal branching in A. nidulans normally occurs through the

emergence of new growing tips in subapical cells, we deduce that

the lack of branching we noted in myoBD strains is a consequence

of the lack of septation such that subapical cells are extremely rare.

Note, however, that some branching occurs even in the absence of

septa (Figure 3B). Similarly, the abnormal aggregations of chitin

we noted in myoBD strains may be a consequence of failure of

normal deposition of chitin at septa. The reduced branching

certainly accounts substantially for the wispy appearance of myoBD
colonies. Note, however, that myoBD strains (Figure 1) appear to

exhibit poor colonial growth beyond what one might expect from

simple inhibition of branching. Perhaps there are other deleterious

consequences of the lack of septation. Finally, conidiation requires

cytokinesis and our data suggest that MyoB is required for

cytokinesis during conidiation as well as septation in hyphae.

MyoB is not essential for tip growth. Indeed tip extension is

more rapid in myoBD strains than in controls. This is likely due to

the fact that tip extension rates are related to the size and number

of nuclei in tip cells (discussion and earlier references in [10]). The

absence of septation means that tip cells are extremely large and

contain many nuclei, and that there is a large volume of cytoplasm

in which components required for tip growth can be synthesized

and subsequently transported to the tip. As discussed for MyoE,

the fact that tip growth continues robustly in the absence of MyoB,

reveals that MyoB is not required for exocytosis or endocytosis.

Although members of the myosin II family have been studied

extensively in many organisms, studies in filamentous fungi are

extremely limited. The function of myosin II has recently been

investigated in the dimorphic fungus Penicillium marneffei [33]. The

deletion of the myosin II gene in this organism (also designated

myoB) causes a much less severe growth restriction than the myoB

deletion in A. nidulans. As we have seen in A. nidulans, the P. marneffei

myoB deletion causes abnormal deposition of chitin and causes

septation defects, albeit less severe than we have seen in A. nidulans.

There were some significant differences, however. In P. marneffei,

the myoB deletion causes abnormal branching near the hyphal tip,

whereas myoBD in A. nidulans almost completely abolishes

branching. In addition, the myoB deletion in P. marneffei causes

abnormal hyphal tip morphology whereas tips in A. nidulans myoBD
strains are morphologically normal. Finally, the deletion of myoB

causes nuclei to be closer together in P. marneffei while this does not

appear to be the case in A. nidulans. The picture that emerges is

that myosin II’s in A. nidulans and P. marneffei have related but not

identical functions. The differences may relate, in part, to the

dimorphism of P. marneffei.

Our data reveal that during septum formation MyoB appears in

strings in the area in which septa will form and these strings

coalesce to form septal rings. These observations are important for

understanding the mechanism of cytokinesis in A. nidulans and, by

inference, filamentous fungi. Two principal models for contractile

ring assembly have been proposed for S. pombe, the organism in

which, arguably, contractile ring assembly has been studied most

completely (reviewed in [51–53]). The two models are 1) the aster

or spot/leading cable model in which actin filaments are nucleated

from a single point at the site of septation and 2) the node, or

search, capture, pull and release (SCPR), model in which in

components of the contractile ring are pulled together through the

action of myosin II moving along actin filaments. The fact that we

see strings of MyoB coalescing to form the contractile ring

(Figure 2A, Video S1) appears inconsistent with the aster model

and provides visible evidence that indicates that the node model,

or a variant thereof, operates in A. nidulans. In this model, MyoB

would interact with actin filaments at the septum and, through its

motor activity, pull nodes together to form the contractile ring at

the septum and then supply power to constrict the contractile ring.

(See Figure 3 in [53] for a drawing of the node model.)

The functions of myosins in A. nidulans
With our data, all myosin heavy chains, or myosin heavy chain-

like proteins, have now been functionally analyzed in A. nidulans.

While new details will undoubtedly emerge, the accumulated data

allow a good overview of myosin function. The only essential

myosin heavy chain in A. nidulans is a type I myosin heavy chain

encoded by the myoA gene [2]. It is required for secretion, and

polarized growth and is important (probably essential) for

endocytosis [4,5]. It appears to be the myosin responsible for

exocytosis at the hyphal tip which allows tip extension and for

endocytosis behind the hyphal tip that allows recycling of vesicular

components. There are two proteins, CsmA and CsmB that have

both myosin motor domains and chitin synthase domains [13,14].

Neither is essential but deletion of either causes reduced growth,

osmotic sensitivity and formation of ‘‘balloons’’ (swollen regions) in

the hyphae [13,14]. Deletion or down-regulation of both genes

results in complete blockage of growth, but this blockage is
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partially rescued by 0.6 M KCl [14]. The motor domains are

required for function [13,14,54]. The available data suggest that

the myosin motor domains are involved in targeting the molecules

to the hyphal tip and to septa where chitin synthesis is important

for strengthening cell walls [13,14]. MyoB is required for septation

and branching and chitin deposition defects may result from the

septation defects. MyoE is responsible for moving vesicles into the

Spitzenkörper, which allows a more consistent hyphal shape and

rapid tip extension.

Materials and Methods

Strains and media
All strains used in this work are listed in supplementary material

Table S1. The myoB deletion was generated by transforming a

myoB::AfpyrG fusion PCR fragment (as described below) into strain

LO1516, and it was analyzed using the heterokayon rescue

technique [25]. Solid media were YAG (5 g/l yeast extract, 20 g/l

d-glucose, 15 g/l agar, supplemented with 400 ml/l of a trace

metal solution [55]) or minimal medium (6 g/l NaNO3, 0.52 g/l

KCl, 0.52 g/l MgSO4?7H2O, 1.52 g/l KH2PO4, 10 g/l d-

glucose, 400 ml/l trace element solution [55], 15 g/l agar

pH 6.0–6.5 and appropriate nutrients to supplement nutritional

markers carried by the strains, e.g. 2.5 mg/ml riboflavin, 0.5 mg/

ml pyridoxine, and 2.0 mg/ml nicotinic acid). For microscopic

observations, conidia were germinated in liquid minimal medium

(6 g/l NaNO3, 0.52 g/l KCl, 0.52 g/l MgSO4?7H2O, 1.52 g/l

KH2PO4, 10 g/l d-glucose, 400 ml/l trace element solution [55]

containing appropriate supplements.

Gene targeting and deletion
C-terminal tagging was conducted by transforming with linear

DNA fragments, which consisted of a selectable marker flanked

by two fragments amplified from genomic DNA. The DNA

fragments were created by fusion PCR as previously described

[56,57]. To tag myoB or myoE at the C-terminus with a fluorescent

protein sequence such as GFP, a flanking DNA molecule was

amplified from the coding sequence of the gene of interest

extending about 1000 bp upstream of the stop codon and a similar

sized fragment was amplified from the 39-untranslated region.

These fragments were fused to a cassette containing the fluorescent

protein sequence and a selectable marker such that the target

protein sequence was fused in frame to a linker consisting of five

glycine-alanine repeats [58] which was fused, in turn, to the

fluorescent protein sequence. The N-terminal tagging of synA with

GFP or mCherry was carried out as previously reported [10]. To

delete the myoB or myoE gene, flanking DNAs of about 1000 bp

were amplified from the 59- and 39-untranslated regions of the

target genes. The deletion cassettes were generated by fusing the

flanks to a selectable marker gene, the A. fumigatus pyrG (AfpyrG)

[59]. Transformation was carried out as described previously

[56,57]. All deletions and fluorescent protein fusions were verified

by both diagnostic PCR and Southern hybridizations with the

exception of myoB deletants which were verified by diagnostic

PCR alone as they grew too poorly to obtain adequate amounts of

DNA for Southern hybridizations.

Diagnostic PCR and Southern hybridizations
Genomic DNA was prepared as described previously [60].

Positive transformants were first verified by diagnostic PCR using

outside primers. Subsequently, correct integration of the trans-

forming fragment into the right locus was confirmed by Southern

hybridizations using the method of Oakley et al. [61] with

appropriate radioactively labeled fusion PCR fragments as probes.

Microscopy and imaging
For live cell imaging, conidiospores were germinated in liquid

minimal media in eight-chambered Lab-Tek chambered cover-

glasses (Nalge Nunc International, Rochester, N.Y.) at 25 or 30uC
for 15–20 h. Four systems were used for imaging. Two systems

used Olympus IX71 inverted microscopes equipped with mercury

illumination sources, Prior shutters, Prior Z-axis drives, and filter

wheels. One microscope was equipped with a Hamamatsu ORCA

ER camera, and the other with a Hamamatsu ORCA ERAG

camera. We used a Semrock GFP/DsRed-2X2M-B dual band

‘‘Sedat’’ filter set [459–481 nm bandpass excitation filter for GFP

and a 546–566 nm excitation filter for mCherry, dual reflection

band dichroic mirror (457–480 nm and 542–565 nm reflection

bands, 500–529 and 584–679 transmission bands) and two

separate emission filters (499–529 nm for GFP and 580–654 nm

for mCherry imaging)]. Images were acquired with an Olympus

60X 1.42 NA Plan Apochromatic objective using Slidebook

Software (Intelligent Imaging Innovations, Denver, CO) or

Volocity software (Perkin Elmer) installed on PowerMac comput-

ers. For time-lapse two-channel imaging of live cells, Z-series

stacks were collected at each time point, and maximum intensity

projections from all time points were combined to generate videos

using Slidebook or Volocity software. A third imaging system was

an Ultraview spinning disk confocal system on a Nikon TE300

inverted microscope with a Hamamatsu ORCA ER camera

controlled by Ultraview software (Perkin Elmer-Cetus). The fourth

system was a PerkinElmer UltraVIEW VoX spinning disk

confocal microscope which was mounted on an Olympus IX71

inverted microscope. It was equipped with a constant-temperature

chamber and a piezoelectric stage for rapid Z-axis movement.

Two solid-state lasers with wavelengths of 488 and 561 nm were

used for excitation. A 60X 1.42 NA objective was used and images

were taken with an ORCA ERAG camera. The system was

controlled by Volocity software. All systems used for measure-

ments were calibrated with a stage micrometer to ensure accuracy.

Determination of tip extension rates
With respect to MyoB, a myoBD deletion strain (it could not be

stored permanently and was not assigned a strain number) and a

parental control strain (LO1516) were grown in selective liquid

minimal media with appropriate supplements at 25uC for 24–

28 h. Z-series stacks were captured at three min intervals over

30 min and tip growth extension rates were determined as

previously described [26]. Tip extension rates were determined

in the same way for a myoED strain (LO1935) and myoE+ (LO1535)

strain except that they were grown for 24–26 h at 25uC before

growth rates were determined.

Inhibitor treatments
Cytochalasin A (Sigma-Aldrich, St. Louis, MO) storage and

treatment of hyphae were as previously described [10]. DMSO

was used as solvent-only control at the same concentration that

was used for cytochalasin A treatments.

To depolymerize microtubules, benomyl was used at a final

concentration of 2.4 mg/ml and the treatment was conducted as

previously described [26]. Ethanol at the same final concentration

that was used for benomyl treatments was used as solvent-only

control. In these experiments conidia of strains LO1535 and

LO1935 were grown at 30uC for 14–19 h before transferral to

2561uC. They were allowed to grow at 25uC for at least 10 min

before imaging was begun. Data sets were analyzed using the

Volocity Quantitation module (PerkinElmer) and Microsoft Excel.

The XY coordinates (in pixels) of tip positions of the hyphae were

plotted using Volocity software. Fluorescent beads were used as
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stationary reference points. The XY coordinates of the tip at each

time point were exported into Microsoft Excel and the tip growth

rates were determined as described previously [26].

Fluorescence Recovery after Photobleaching (FRAP)
A myoE+ strain (LO1535) [10] and a myoED deletion strain

(LO1935) expressing GFP-SynA were grown in selective media at

30uC for 15–19 h. They were transferred to 25uC for at least

10 min before the beginning of imaging and photobleaching.

Imaging and photobleaching were carried out at 25uC on an

Olympus IX71 microscope equipped with a spinning disk confocal

system (UltraVIEW VoX; PerkinElmer). The photobleaching was

carried out using a UltraVIEW PhotoKinesis Device and a solid-

state laser at a wavelength of 488 nm with 70–80% laser power

and 8 photobleaching cycles. Images were acquired in 30 sec

intervals pre- and post-photobleaching with 10% laser power at a

wavelength of 488 nm for 200–300 ms.

Supporting Information

Table S1 Aspergillus nidulans strains used in this
study.
(TIF)

Figure S1 Domain structure of Aspergillus nidulans
myosin heavy chains.
(TIF)

Figure S2 Growth of MyoB-GFP fusions at various
temperatures. Three strains are inoculated by center stabs on

each plate. At the left is a strain (LO5156) that is wild-type for

myoB. At the center is a strain (LO1973) that carries GFP fused to

MyoB and at the right is a strain (LO2390) that carries the MyoB-

GFP fusion as well as mCherry fused to the C-terminus of histone

H1. The temperatures and time of growth after inoculation are

shown at the right. The growth of the strains carrying MyoB-GFP

is indistinguishable from the control at all temperatures and the

MyoB-GFP fusion, thus, appears fully functional.

(TIF)

Figure S3 Growth of strains expressing fusion proteins
at various temperatures. 1: LO5156 (control, parental strain

transformed with the A. nidulans pyrG gene). 2: LO1975 (MyoE-

GFP). 3: LO1540 (mCherry-SynA). 4: LO2054 (MyoE-GFP,

mCherry-SynA).

(TIF)

Figure S4 MyoE localization at the Spitzenkörper
remains intact after treatment with 2.4 mg/ml benomyl.
a. MyoE-GFP 5 min before benomyl addition. MyoE-GFP

localizes to the Spitzenkörper (arrow). b. 55 min after benomyl

addition. MyoE localization to the Spitzenkörper (arrow) remains

intact.

(TIF)

Video S1 Localization of MyoB-GFP during septation.
Nuclei are shown with histone H1-mCherry. As the hypha

proceeds toward septation, MyoB begins to accumulate between

some nuclei. It is visible as string-like structures. In some cases,

MyoB begins to accumulate between two nuclei and then

disappears and accumulates between two different nuclei.

Eventually the MyoB accumulates into a compact structure

extending across the hypha. The structure becomes smaller with

time and string-like myoB aggregates can be seen leaving the mass

until the structure disappears. Z-series stacks were collected at

30 sec intervals over 40 min. The playback rate is 30 X real time.

(MOV)

Video S2 A transverse view of MyoB-GFP localization at
septum formation. Z-series stacks were collected over time and

rotated using Volocity software to provide a transverse view of

septum formation. Particles (presumably cross sections of strings)

appear and eventually form a ring. The center of the ring is

gradually filled forming a disk. The disk eventually contracts and

disappears. Similar images were obtained in instances in which,

fortuitously, hyphae grew toward the microscope lens allowing a

transverse view of septum formation. Z-series stacks were collected

at 30 sec intervals over 26 min. The playback rate is 30 X real time.

(MOV)

Video S3 Slow motion movement of MyoE-GFP contain-
ing structures. Single focal plane images were captured with a

spinning disk confocal microscope at 0.2 sec intervals. Movement

of MyoE-GFP structures toward and away from the tip is visible.

The playback rate is 0.2 X real time so the movements are slowed

5 X relative to real time.

(MOV)

Video S4 MyoE-GFP retains its localization at the
Spitzenkörper when treated with DMSO (the solvent
used for cytochalasin A, see Video S5). Each image is a

projection of a Z-series stack. The stacks were collected at two min

intervals except for an interval of 3 min 29 sec when DMSO was

added. The video covers a total period of 39 min 29 sec. The

playback rate is 120 X real time except for the interval when

DMSO was added. The hypha moved rapidly to the right when

the DMSO was added and the specimen continued to drift slightly

to the left after the addition, but the Spitzenkörper localization of

MyoE-GFP was not altered.

(MOV)

Video S5 MyoE-GFP disperses from the Spitzenkörper
after cytochalasin A treatment. Each image is a projection of a

Z-series stack. The stacks were collected at two minutes intervals

except for an interval of 3 min 28 sec when cytochalasin was added

and 1 min 23 sec between frames 8 and 9. The video covers a total

period of a period of 20 min 51 sec. Cytochalasin was added after time

point 6 and the MyoE-GFP dispersed rapidly from the Spitzenkörper.

(MOV)

Video S6 GFP-SynA localizes to the Spitzenkörper in a
myoE+ strain. Note also movement of particles along the
hypha. Single focal plane images were collected at 0.112 sec

intervals. Playback is 0.112 X real time so movement is slowed by

almost 9 X relative to real time.

(MOV)

Video S7 GFP-SynA does not localize to the Spitzenkör-
per in a myoED strain. GFP-SynA localizes to the membrane at

the tip and to particles in the cytoplasm that still move vigorously

but it does not localize to the Spitzenkörper. Single focal plane

images were collected at 0.112 sec intervals. Playback is 0.112 X

real time so movement is slowed by almost 9 X relative to real time.

(MOV)
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