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Abstract

To obtain proof of concept for HIV vaccines, we generated recombinant multimeric particles displaying the HIV-1 Envelope
(Env) third hypervariable region (V3) as an N-terminal fusion protein on the E2 subunit of the pyruvate dehydrogenase
complex of Geobacillus stearothermophilus. The E2 scaffold self-assembles into a 60-mer core that is 24 nm in diameter, with
a molecular weight of 1.5 MDa, similar to a virus like particle with up to 60 copies of a heterologous protein accessible on
the surface. Env(V3)-E2 multimers were tested alone and in combination with Env(gp160) DNA in mice and rabbits.
Following two or more co-immunizations with Env(V3)-E2 and Env gp160 DNA, all 18 rabbits developed potent autologous
neutralizing antibodies specific for V3 in six weeks. These neutralizing antibodies were sustained for 16 weeks without
boosting, and comparable responses were obtained when lipopolysaccharide, a contaminant from expression in E. coli, was
removed. Co-immunizations of Env(V3)-E2 and DNA expressing gp160 elicited moderate CD8-specific responses and Env-
specific antibodies in mice. Co-immunization with DNA and E2 was superior to individual or sequential vaccination with
these components in eliciting both neutralizing antibodies in rabbits and CD8+ T cell responses in mice. Co-immunization
with DNA and multimeric E2 scaffolds appears to offer a highly effective means of eliciting rapid, specific, and sustained
immune responses that may be a useful approach for other vaccine targets.
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Introduction

Despite the fact that HIV-1 utilizes highly effective mechanisms

of immune evasion [1–3], most subjects develop both neutralizing

antibodies (NAbs) and CD8+ T cell responses, albeit too late to

clear the established infection. CD8-specific cellular immune

responses contribute to early resolution of primary viremia and the

maintenance of viral load [4–6]. NAbs can block infection in

nonhuman primate models [7–11], and in humans can contribute

to control of plasma viremia [12]. A major challenge in vaccine

design has been to identify antigen presentation and delivery

systems capable of eliciting strong, sustained immunity that can

either prevent HIV-1 infection or provide a very high degree of

control of viremia post-challenge. Vaccine approaches for HIV-1

have included recombinant viral vectors, DNA, and protein

subunits, tested alone and in prime-boost combinations. These

vaccines focused on eliciting cellular responses [13–19] following

the failure of the VaxGen gp120 trial [20,21], but T cell responses

induced by adenovirus in the STEP trial were also insufficient for

protection [22]. The vaccine utilized in the RV144 trial, designed

to elicit both humoral and cellular responses, showed modest,

transient efficacy [23]. HIV-1 virus-like particles (VLPs) or

inactivated virions have elicited low-level NAbs [24–26] and

modest protection in vaccine challenge studies [27]. Other self-

assembling viral proteins such as hepatitis B surface antigen [28]

or rhinovirus [29] that present key neutralization determinants

from HIV have shown some promise in eliciting low-level NAbs.

Cholera toxin B displaying the HIV-1 Env third hypervariable

region (V3) elicited moderate cross-NAbs in rabbits [30] which

may be due to its conserved structural features [31].

We have been exploring the potential of the antigen display

system E2DISP based on the acyltransferase component (E2) of the

pyruvate dehydrogenase complex from Geobacillus stearothermophilus.

E2 oligomers form 1.5 MDa 60-mer particles and are capable of

displaying heterologous peptides and proteins [32–34]. E2 60-mer

cores can be refolded from denaturing conditions in vitro without the
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help of chaperonins [34] (Fig. 1A). Epitopes thus displayed on the

surface of the E2 core elicit both humoral and cellular immune

responses [33–35]. More recently we have demonstrated that E2

particles displaying Gag(p17) were immunogenic in transgenic mice

[36]. We evaluated the immunogenicity of Env(V3)-E2 60-mer

particles in mice and in rabbits to determine whether presentation of

HIV-1 V3 on E2 could focus the immune responses to the

neutralization and CTL epitopes. DNA administered sequentially

with viral vectors or recombinant proteins can enhance immunity,

with modest levels of NAbs in rabbits [37] and control of viremia in

SIV- and SHIV-challenged macaques [38,39]. Here, we show that

the co-immunization with Env(gp160) plasmid DNA and 60-mer

E2 particles displaying V3 rapidly generates both NAbs and CD8+

T cells. Surprisingly, this strategy requires only two immunizations

to derive sustained, potent responses.

Results

Soluble recombinant multimeric particles displaying Env
V3

A DNA fragment encoding the HIV-SF162 V3 region was fused

to the E2 gene in the E2DISP expression plasmid. One Cys

residue (position 332) was mutated to Gly in an effort to produce

homogeneous peptides with no disulfide-bonded loops (C332G)

(Fig. 1A). The Env(V3)-E2 fusion protein initially showed 25–30%

proteolysis of V3 at K305, and a K305R mutation significantly

reduced proteolysis (data not shown). Two V3-E2 fusion proteins

were designed; a full length V3 (291–337) and a shortened version

termed minV3 (300–337) (Fig. 1A). The shorter min V3 was

designed to enhance expression as a soluble protein, which was the

method of production that was pursued prior to successful

extraction from inclusion bodies. Both constructs contained the

epitope recognized by the V3 NMAb 447-52D [40], a CTL

epitope restricted by H2d in mice, and the C332G and K305R

mutations. Env(V3)-E2 and Env(minV3)-E2 monomers were

expressed in E. coli as inclusion bodies (IB), purified, and refolded

with equimolar amounts of E2 wild type (E2wt) monomers in

stepdown dialysis. The resulting 60-mer particles were purified by

size exclusion chromatography (Fig. 1C). Particles typically had

more than 50 EU/ml of E. coli-derived LPS as a result of

expression in this system, and preparations of Env(V3)-E2 with

and without (,0.05 EU/ml) LPS were prepared. Resulting E2

preps were .90% pure as determined by quantitative analysis of

purified protein gels (Fig. 1D, left panel). Identity was assessed

by quantitative western blot (Fig. 1D, right panel). We tested

the multimeric particles, separately and together, alone or in

combination with HIV-1 SF162 Env (gp160) DNA, in rabbits and

mice. Effects of LPS and adjuvant on the resulting immune

responses were determined. Vaccine compositions and regimens

tested are shown in Table 1.

Figure 1. Schematic representation, purification and antigenic characterization of HIV-1 Env-E2 constructs. (A) Amino acid sequences
of the Env (V3 and minV3)-E2 constructs are shown in relationship to gp120 (reference strain HIV-HXB2). The mAb 447-52D epitope is underlined in
green and the H2d-restricted CTL epitope is shown in blue. Amino acid mutations are shown in red. (B) Schematic of the Env component displayed
on the surface of the 60-mer E2 core. (C) S200 Sephacryl chromatograph of purified LPS-free Env(V3)-E2 particles (D) SDS-PAGE stained with
Coomassie blue (left) and Li-Core Odyssey infrared blot (right) of E2: Lanes: MW; (1) E2 wild type (E2wt); (2) Env(minV3)-E2:E2wt hybrid particles; (3)
Env(V3)-E2:E2wt 60-mers purified by gel filtration. Red in lanes 1–3 is rabbit anti-E2; green is V3 mAb 447-52D; bands that are yellow are co-stained.
doi:10.1371/journal.pone.0031464.g001
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Binding antibody response in rabbits co-immunized with
Env-E2 VLPs and gp160 DNA

Three groups of New Zealand female white rabbits (n = 3 per

group) were immunized with both Env(minV3 and V3)-E2 VLPs

in combination with Env(gp160) plasmid DNA (DNA) using three

different immunization regimens described in detail in Table 1: (i)

E2-prime/E2+DNA-boost (Group 1), (ii) DNA-prime/E2-boost

(Group 2) and (iii) simultaneous co-immunization with E2 and

DNA (Group 3). Rabbits received 200 mg of purified E2 particles

emulsified in Incomplete Freund’s Adjuvant (IFA) and delivered

intramuscularly (IM). DNA was delivered intradermally (ID) using

the Gene gun at a dose of 36 mg. We measured binding antibodies

to E2 (E2wt), V3 and gp140 (Fig. 2). E2 responses were seen after

one and two immunizations in Groups 3 and 1, respectively

(Fig. 2A). Rabbits in Group 2 developed E2 antibodies after the

first Env-E2 boost. High titers (104–106) of E2 antibodies were

elicited in all groups; and despite the strong E2 response, we

observed the priming and boosting of Env- and V3-specific

antibodies. Kinetics of V3 antibody development were similar to

those of the E2 antibodies (Fig. 2B). The strongest V3 response

was found in Group 3 and the lowest in Group 2, detected only

after the second Env-E2 protein boost. Env-gp140 antibodies were

seen in all three groups after the second immunization (Fig. 2C).

Co-immunized rabbits developed the highest responses and those

receiving Env-E2 alone had the lowest response. The addition of

DNA in the immunization regimen of this last group boosted the

level of antibodies to gp140. Immunization with DNA alone

(Group 2) was sufficient to elicit gp140-specific antibodies after two

and three immunizations; boosting with Env-E2 in these animals

did not increase titers. In all cases the strongest and most rapid

antibody responses were observed in Group 3 following co-

immunization with DNA and Env-E2 (Fig. 2).

Rapid induction of autologous NAbs in rabbits
We measured NAbs against the autologous HIV-1 SF162

pseudovirus using the TZM-bl assay [41]. Only one rabbit

immunized with Env-E2 alone developed weak NAbs and only

after the third immunization (#3045 NAbw12 = 32) (Fig. 3A, VLP
priming stage). To increase responses in the DNA primed

rabbits [42], we boosted them with a combination of Env-E2 and

Env(gp160) DNA at weeks 22, 26, and 32. Co-immunization with

E2 and DNA increased the level of NAbs in all rabbits after two

inoculations (Fig. 3A). After the third co-immunization, titers did

not increase. Using the same vaccine components in a DNA-

prime/protein-boost immunization regimen (Group 2), only one

rabbit developed significant NAbs during the DNA-priming stages

(Fig. 3B). The NAb level of a second rabbit was measurable only

transiently above the limit of detection at week 12. However,

boosting with Env-E2 alone increased NAb titers in all three

animals from this group (Fig. 3B). Two of the three animals with

negligible responses generated detectable NAbs after boosting.

Mean NAb titer at week 28 was 237, and the highest responder

had a titer of 634.

Rabbits co-immunized with both Env-E2 VLPs and Env(gp160)

DNA (Group 3) rapidly developed a potent autologous NAb

response (Fig. 3C). All animals consistently generated high levels

of NAbs after only two immunizations within a period of six weeks

(Mean NAbw6 = 466 and Max NAbw6 = 714). Moreover, the level

of NAbs in all animals from this group remained fairly constant

with boosts over a period of 28 weeks (Mean NAbw28 = 609 and

Max NAbw28 = 1058). To determine which Env-E2 VLP was more

effective in eliciting NAbs, each construct was tested separately

and co-administered with DNA (Groups 4 and 5, Table 1). NAbs

levels generated by Env(minV3)-E2 (Fig. 3D, Group 4) and

Env(V3)-E2 (Fig. 3E, Group 5) given separately (co-administered

with DNA) were not statistically different from those obtained

when both Env-E2 preparations were combined (Group 3). Since

equivalent results were obtained with the full length V3 construct,

this construct was used for additional experiments. To summarize,

no NAb responses were observed for any of the three regimens

after the first immunization (Fig. 3F). After the second and third

immunization weak and variable levels of NAbs were detected in

animals inoculated with VLP or DNA (Groups 1 and 2). In

contrast, co-immunization with multimeric 60-mers and DNA

elicited significantly higher levels of NAbs than E2 particles or

DNA alone (P,0.05), after two and three immunizations, better

than either of these components delivered alone or sequentially.

Area under the NAb titer curve (AUC) for the co-immunization

regimen (Groups 3–5, n = 9) was significantly higher compared to

that for either sequential regimen (P,0.01; Fig. 4).

Figure 2. Binding antibody responses in rabbits immunized with
Env-E2 particles and DNA following different immunization
regimes. Binding antibody responses against E2 (E2wt) (A), HIV-1 Env(V3)
peptide (B) and Env(gp140) (C) determined by ELISA. Data shown are
geometric mean values (+/2 S.D.) from rabbits in Groups 1 (blue), 2 (red)
and 3 (green). Colored arrows at the top of the figure indicate the time of
immunization for each group. Regimens are described in Table 1.
doi:10.1371/journal.pone.0031464.g002

HIV Vaccination by DNA and Protein Co-Immunization

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31464



Figure 3. Neutralizing antibody responses in rabbits immunized with Env-E2 particles and DNA following different immunization
regimes. (A–E) Lines indicate NAbs versus HIV-SF162 in each rabbit in Groups 1 (blue), 2 (red), 3 (green), 4 (golden) and 5 (purple). Arrows at the
bottom of each graph indicate time and type of immunization: grey arrows, DNA vaccination; black arrows, Env-E2 VLPs; combined grey and black
arrows, co-administration of DNA plus E2. (F) NAb titers during priming stages for three immunization regimens: (i) Env-E2 (Group 1, in blue), (ii) DNA
(Group 2, in red) and (iii) co-administration of Env-E2 plus DNA (Groups 3, 4 and 5; in green). Bars are mean titer values (+S.D.) in each group. Asterisks
denote statistical significance: ** P,0.01; * P,0.05. Dotted lines indicate the limit of detection of the assays.
doi:10.1371/journal.pone.0031464.g003

Figure 4. Neutralization of HIV-1 SF162 by sera from rabbits co-immunized with HIV-1 Env-E2 VLPs and Env(gp160) plasmid DNA
following different immunization regimens. (A) Neutralizing activity in the sera of rabbits from Groups 1 (blue), 2 (red) and 3–5 (green) against
HIV-1 SF162. Final titers were calculated as the reciprocal of the dilution of serum necessary to inhibit infection by 50% and informed as the mean
titers (+/2 S.D.) for each group. The dotted line represents the limit of detection of the assay (1:16). (B) Comparison of the NAb area under the curve
(AUC) among the above mentioned groups. Asterisks denote statistical significance: ** P,0.01.
doi:10.1371/journal.pone.0031464.g004
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V3 specificity of NAbs
Neutralization of HIV-SF162 in sera from rabbits from all of

the groups was specifically inhibited when samples were pre-

incubated with the SF162 V3 peptide, but not with a V3

scrambled peptide (Table 2). Sera from the highest responding

rabbits from Groups 1 and 2 were included to compare the

responses generated by the sequential regimens. Neutralization in

rabbit 3045 (Group 1) showed a 67% V3 peptide inhibition after

receiving three Env-E2-only immunizations and three Env-

E2+DNA immunizations. Neutralization in the serum from rabbit

6869 (Group 2) was inhibited .90% by the V3 peptide at both

weeks 14 and 28 (pre and post protein boost, respectively). NAbs

from all rabbits from Group 3 were specifically inhibited by the V3

peptide .95% after only two immunizations and was maintained

until week 28. There were no significant differences among

samples from the different groups. Low NAb levels in the other

samples from Groups 1 and 2 prevented us from obtaining reliable

peptide competition data.

Similar responses observed without adjuvant using LPS-
free Env-E2 particles

To examine the effect of LPS on the immune responses, we co-

immunized a group of rabbits with LPS-free Env(V3)-E2 particles

and Env(gp160) DNA with and without IFA (Groups 6 and 7).

Binding antibodies directed to E2wt, V3 peptide, and gp140 were

similar in both timing and magnitude using LPS-free E2 proteins

(Fig. 5) compared to LPS-containing preparations when co-

immunized with DNA (Fig. 3). Following the same inoculation

schedule as Group 5, after two immunizations the NAb titer was

400 (Group 6, Fig. 6A), and although the NAb titers increases

after the third co-immunization (Mean NAbw12 = 1679), they

were not significantly different than those observed in rabbits co-

inoculated with LPS-contaminated Env(V3)-E2 (Group 5;

Fig. 3E). Three rabbits (Group 7) were co-immunized with

LPS-free Env(V3)-E2 and Env(gp160) DNA, without the addition

of IFA to the protein. After two immunizations, the NAbs rapidly

increased in all rabbits to a mean NAbw6 = 110 (Fig. 6B). After

the third and fourth inoculations, NAbs increased (Mean

NAbw14 = 171), but did not reach levels observed in rabbits

receiving IFA. NAbs in Group 7 without addition of adjuvant

were significantly lower than in Groups 5 and 6 (P,0.05;

Fig. 6D). Thus IFA contributes to elevating the NAb response.

To examine the duration of the NAb response, rabbits were co-

immunized twice with Env(V3)-E2 particles and Env(gp160)

DNA (Group 8) at weeks 0 and 4, followed by a rest until week

20. Binding antibodies had similar kinetics as seen in other

groups and were sustained for at least 16 weeks following the last

boost at week 4 (Fig. 6C). After two immunizations the mean

NAb titer was 352, similar to titers in Group 5 (mean titer 565).

Levels of NAbs increased at eight weeks after the last

immunization but showed a decreasing trend at 12 weeks for

one rabbit, and at 16 weeks for all three rabbits (Mean

NAbw16 = 474). Boosting at week 20 restored the NAbs to the

prior level. These results confirmed the rapid development of

high titer NAbs in all rabbits co-immunized with Env-E2 and

Env(gp160) DNA, with a duration of at least three months from

the last immunization.

Table 2. HIV-SF162 neutralization competition assay for V3 specificity.

ID50 in TZM-bl Assay1 (HIV-SF162)

Group Rabbit ID Bleed week No peptide
Scrambled V3
peptide V3 peptide Percent inhibition

1 3045 34 118 118 40 67

2 6869 14 126 222 17 92

28 634 634 8 99

3 6864 6 714 1093 8 99

28 1058 963 29 97

6865 6 166 204 8 96

28 519 660 43 93

6866 6 519 820 8 99

28 251 206 60 71

4 6860 14 674 1143 143 87

28 568 669 66 90

6861 14 323 647 42 94

28 420 251 25 90

6862 14 164 215 52 76

28 442 327 67 80

5 6858 6 346 734 8 99

28 685 372 42 89

6859 6 180 314 8 97

28 709 362 66 82

6863 6 1170 2268 8 100

28 944 839 16 98

1Values are the serum dilution at which relative luminescence units (RLUs) were reduced 50% compared to virus control wells (no test sample).
doi:10.1371/journal.pone.0031464.t002
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Minimal breadth of NAbs elicited through vaccination
with Env(V3)-E2 plus DNA

A subgroup of samples was selected from weeks 6 and 28 in

Groups 3 and 5 to measure heterologous neutralization. The only

significant responder from Group 2 (rabbit 6869) was included. Sera

were assayed in the TZM-bl assay against a panel of 12 Clade B

pseudoviruses with differing degrees of sensitivity (Tier 1A: SF162

and MN.3; Tier 1B: BaL.26, SS1196.1, 6535.3, and BZ167.12; and

Tier 2: QH0692.42, PVO.4, RHPA4259.7, WITO4160.33, REJO

and CAAN5342.A2) [41]. Murine leukemia virus (MLV) and a pre-

immune sera pool were used as negative controls. A weak to

moderate level of neutralization of a subset of Tier 1A viruses was

observed (Table 3). Sera from all animals neutralized SF162.LS

and most neutralized the MN.3 with titers ranging from 23 to 3922.

The highest response was observed in week 6 sera for animal #6863

from Group 5, co-immunized with E2 and DNA. Sera from only

two rabbits neutralized BaL.26. Rabbit #6863 neutralized BaL.26

at weeks 6 and 28. Rabbit #6864 from Group 3 neutralized BaL.26

weakly and only with serum obtained at week 28. Interestingly,

serum from rabbit #6863 weakly neutralized three additional

Clade B isolates: Tier 1B virus SS1196.1, and Tier 2 viruses

QH0692.42 and REJO (titers,75). No neutralization was observed

against any of the other pseudoviruses tested.

CD8+ T cells induced in mice co-immunized with
Env(V3)-E2 particles and Env(gp160) DNA

As shown in Table 1, five groups of BALB/c mice (n = 3 per

group) were immunized twice IM with HIV-1 SF162 Env(gp160)

DNA alone (Group 9), Env(V3)-E2 alone (Group 10), or by co-

administration of the DNA plus Env(V3)-E2 (Group 11). DNA and

proteins were delivered IM at different sites. A fourth group received

the same co-immunization with Env-E2 and DNA using LPS-free

Env(V3)-E2 particles described above (Group 12). Group 13

(unimmunized mice) served as controls. Ten days after the second

immunization, mice were sacrificed and splenocytes were isolated

and re-stimulated with LPS-induced blast cells pulsed with V3

peptide. After 6 days of in vitro stimulation, effector cells were tested

for V3 peptide-specific responses by dextramer T cell staining

analysis and intracellular cytokine staining (ICS). A representative set

of dextramer T cell staining obtained by flow cytometry for

splenocytes isolated from each group of immunized mice is

illustrated in Fig. 7A. Results obtained from all animals are

summarized and statistically analyzed in Table 4 and Fig. 7B,

respectively. A significantly higher percentage of CD8+ splenocytes

from co-immunized mice (Group 11) stained positive for the V3

dextramer, compared to mice immunized with plasmid DNA or

VLP alone. Likewise, 7.43% of splenocytes (mean value) specifically

stained positive for the V3 dextramer in mice that were co-

immunized with LPS-free VLPs (Group 12). These results suggest

that co-administration of DNA and Env-E2 VLPs was required to

induce in vivo peptide-specific CD8+ T-cells able to recognize the

class I MHC IGPGRAFYA peptide. Splenocyte-derived CD8+ T

cells were assessed for IFN-c production by intracellular cytokine

staining, as shown in a representative example (Fig. 7C). As seen

with the dextramer staining, CD8+ T-cell activation in response to

the antigenic MHC class I peptide and CD8+ T-cell response to the

Env proteins V3 specific. As observed with dextramer staining, co-

immunized mice (group 11) displayed a significantly higher fraction

of CD8+ T cells producing IFN-c (Fig. 7D and Table 4) in

comparison to DNA (Group 9) or E2 (Group 10) alone. Comparable

results were obtained using the LPS-free Env-E2. T cell responses

elicited by each of the components (DNA or Env- E2) separately did

not differ from levels in non-immunized mice, underscoring the

effectiveness of the combination of the two components to elicit an

enhanced immune response. Binding antibodies directed to E2, V3,

and Env gp140 and low-level NAbs to SF162 were detected in sera

from mice immunized with Env(V3)-E2 alone or with DNA (Table 5,

Groups 10 and 11), with some mice responding better than others.

Discussion

In this study we produced HIV-1 Env-based E2 60-mer

particles and evaluated their immunogenicity alone and in

combination with an Env(gp160) expression plasmid. Previously,

E2 particles displaying HIV-1 Gag were shown to bear helper T

Figure 5. Binding antibody responses in rabbits co-immunized
with Env(V3)-E2 particles and DNA with and without LPS and
IFA. Specific antibody responses against E2 (E2wt) (A), HIV-1 Env(V3)
peptide (B) and Env(gp140) (C) determined by ELISA. Data shown are
geometric mean values (+/2 S.D.) from rabbits in Groups 6 (purple), 7
(black) and 8 (orange). Colored arrows at the top of the figure indicate
the time of immunization for each group.
doi:10.1371/journal.pone.0031464.g005
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cell epitopes and to elicit CTL and antibody responses directed to

HIV-1 Gag-p17 in HLA-A1 transgenic mice [36]. The responses

observed after co-immunization with Env(gp160) DNA were

characterized by peptide-specific Class I-restricted CD8+ T cells in

BALB/c mice, and the rapid elicitation of high, sustained levels of

NAbs in rabbits that was V3-specific. Simultaneous co-adminis-

tration of this multimeric protein and DNA resulted in rapid, high,

sustained immunity that was of greater magnitude than admin-

istering the individual components alone or in a sequential DNA-

prime/protein-boost regimen.

Antibody titers directed to the E2 core were rapidly induced, as

was the development of antibodies targeting to the HIV-1 Env

epitope presented on the scaffold. All nine rabbits receiving both

Env(V3)-E2 scaffolds together with Env(gp160) DNA following any

of the three different immunization regimens (Groups 1–3)

developed specific antibodies targeting Env. Our results show that

Env(gp160) DNA is more effective in eliciting specific antibodies

targeting the whole gp140 protein, whereas Env(V3)-E2 proteins are

more effective at focusing the response to the V3 peptide presented

on the E2 surface. The individual contributions of each of these

components can be complemented by the other following sequential

administration as shown for Groups 1 and 2. The effect is clearly

potentiated when both components are administered together as is

the case of Groups 3–8, since all 18 animals from those groups

developed the highest responses to both V3 and gp140, and these

responses were sustained during the entire immunization schedule.

Intramuscular immunization of rabbits with Env(minV3)-E2,

Env(V3)-E2, or both, co-administered with HIV-1 Env(gp160)

DNA delivered ID consistently elicited strong NAb responses after

only two immunizations (by week 6), levels typically not seen until

after 20+ weeks and many more immunizations [43,44]. These

high levels were sustained with three additional inoculations for a

period of seven months, when the experiment was terminated.

The NAbs were maintained for at least three months during a gap

in immunizations (Group 8). Co-immunization of the Env-E2 plus

DNA elicited 100-fold higher NAb responses compared to those

elicited by each component individually (P,0.05). Following as

few as three immunizations, this combination protein plus DNA

approach elicited a stronger NAb response than a more standard

DNA-prime/protein-boost regimen. The V3-E2 constructs, not

surprisingly, focused the immune responses to the V3 epitope

displayed on the surface. The V3 constructs tested were not

effective in generating broadly NAbs; however, we observed a

modest level of neutralization of some Tier 1 viruses. It is possible

Figure 6. Neutralizing antibody responses in rabbits co-immunized with Env(V3)-E2 particles and DNA with and without LPS and
IFA. (A–C) NAbs against HIV-SF162 in sera from rabbits immunized with Env(V3)-E2 co-administered with Env(gp160) DNA as described in Table 1,
Groups 6–8. Lines indicate NAb titers for individual rabbits in each group: (A) Group 6, LPS-negative Env(V3)-E2, plus IFA; (B) Group 7, LPS-negative,
no IFA; (C) Group 8, LPS-positive, plus IFA. Arrows at the bottom on the figure indicate time and type of immunization. The dotted line represents the
limit of detection of the assay (1:16). (D) Comparison of the NAb area under the curve (AUC) between groups immunized following similar regimens
and using same immunogens with (Groups 5 and 6) or without the addition of IFA (Group 7).
doi:10.1371/journal.pone.0031464.g006
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that constrained V3 peptides might be more effective in this

context in eliciting broader responses than we observed, as seen

with recombinant CTB displaying V3 [45].

Env-E2 particles delivered IM co-administered with Env(gp160)

DNA delivered IM at a different sites elicited V3-specific CD8+

cellular immune responses in mice. As was seen in rabbits with

antibodies, the CD8 response was significantly higher compared to

that elicited by E2 or DNA when they were administered

individually, where responses were only rarely distinguishable from

the non-immunized control group. These results suggest that both

the E2 and DNA components are important in inducing both

cellular and humoral immune responses. This observation is in

agreement with previous observations [33,35,36] demonstrating that

antigens displayed in the E2DISP system can be cross-presented in a

MHC Class I context by antigen presenting cells (APCs). The

efficacy of DNA immunization in eliciting cellular immunity in mice

is well established [46]. Antigen presenting cells (APC) can

phagocytyze these transfected somatic cells and the antigen of

interest can be either cross-presented on MHC Class I molecules or

presented by MHC Class II, inducing CD4+ T-cell responses [47].

One of the theoretical advantages of DNA vaccines is their ability

to express the native proteins and particles in vivo, preserving

conformation-sensitive epitopes in the context of cellular antigens as

would take place during virion production. Immunogens that are

capable of preserving native HIV-1 Env trimeric structure are

thought to elicit better NAb responses [48]. The robust antibody

responses elicited with this regimen suggest that DNA can effectively

prime antigen-specific B cells that are specifically boosted upon

administration of protein. This principle is consistent with the

concept of immune focusing [31,49], driving antibody responses

toward important structural domains without diverting the response

to immunodominant, but ultimately unimportant, regions of Env.

In this study, we used a V3 unconstrained peptide as a model to test

the ability of the E2DISP system to elicit NAbs and cellular

immunity. This model protein does not directly address the

importance of the priming with native Env-expressing DNA. We

are currently utilizing this system to focus immunity on other

conserved regions of Env such as the CD4 binding site and the

membrane proximal external region (MPER).

It has been proposed that CpG motifs present in DNA trigger

toll-like receptors (TLRs) and thereby stimulate immunity. In this

study we demonstrated the intrinsic immunogenicity of the E2

particles, evidenced in the rapid anti-E2 antibody responses after a

single immunization. Removing LPS from Env-E2 formulations did

not diminish immunity, indicating that immunogenicity was neither

enhanced nor diminished in the presence of LPS. Taken together

these properties of both DNA and E2-VLPs could, in part, explain

the potentiation of the immune response that we observed in the

present study. Further experiments are needed to understand the

mechanisms of the co-immunization methods that we have used.

Combining the properties of these two antigen delivery systems may

have the effect of maximizing the efficiency of antigen presentation

and more effectively engaging both arms of the adaptive immune

response. Repetitive presentation of an epitope, as with E2 particles,

can induce a stronger immune response by triggering oligomeriza-

tion of B cell receptors recognizing the epitope [50–52]. The

E2DISP delivery may be particularly efficient at utilizing this

mechanism, given its potential to display up to 60 copies of antigen

on the surface of each particle. More importantly, this system is

capable of displaying multiple heterologous peptides or proteins per

particle. The long term potential of this system is that low cost

vaccines for HIV and other disease applications could be designed

to generate both CD8+ T cell responses and antibodies.

Altogether, these results suggest that this antigen presentation

system, coupled with the simultaneous DNA and E2 particle

immunization regimen, may hold significant hope for effective

immunogenicity of HIV and other vaccines in the clinic.

Materials and Methods

Rabbits and mice
All rabbit studies were performed in accordance with the

standards outlined by the National Institutes of Health Guide for

the Care and Use of Laboratory animals. The ONPRC is an

AAALAC-accredited institution. Rabbit studies were performed

according to the rules approved by the Institutional Animal Care

and Use Committee (IACUC) at the Oregon Health & Science

University, protocol no. 0825. All mouse experiments were carried

out in accordance with European Union Laws and Guidelines for

the Care and Use of Laboratory Animals and were approved by

the Institutional Review Board and performed according to rules

approved by the Animal Ethics Committee (permission no. 137/

2006-A). Female New Zealand White rabbits (Western Oregon

Rabbit Company, Philomath, OR) were housed at the Oregon

National Primate Research Center (ONPRC) at Oregon Health &

Science University. Eight-week-old female BALB/c mice (H-2d

MHC) were obtained from the Charles River Laboratory (Lecco,

Italy). Animals were housed under specific pathogen free

conditions at the Animal Facility of the CNR, Naples, Italy.

Rabbit immunizations
New Zealand White female rabbits were immunized intramus-

cularly with 200 mg total protein per immunization with and

without Incomplete Freund’s adjuvant (IFA) (outlined in Table 1).

Codon-optimized SF162 gp160 DNA was delivered intradermally

via Gene Gun (Bio-Rad) at a pressure of 400 psi. A total of 36 mg

of DNA was delivered in 18 shots of 2 mg DNA each given in

clusters of three non-overlapping positions at six shaven sites

Table 3. Neutralization of HIV-1 Pseudoviruses.

ID50 in TZM-bl1

Group
Rabbit
ID

Bleed
Week MN.3 SF162.LS Bal.26

SVA-
MLV

2 6869 14 24 258 – –

28 – 444 – –

3 6864 6 287 801 – –

28 389 960 23 –

3 6865 6 – 136 – –

28 45 427 – –

3 6866 6 338 556 – –

28 140 339 – –

5 6858 6 – 532 – –

28 23 598 – –

5 6859 6 25 343 – –

28 117 684 – –

5 6863 6 1884 3922 41 –

28 763 1290 35 –

Pre-bleed Pool 0 – – – –

1Values are the serum dilution at which relative luminescence units (RLUs) were
reduced 50% compared to virus control wells (no test sample).

– indicates no neutralization seen at a dilution of 1:20 (,20).
doi:10.1371/journal.pone.0031464.t003
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Figure 7. Cellular immune responses in mice immunized with HIV-1 Env(gp160) plasmid DNA, Env(V3)-E2 VLPs, or the combination
of both. Cellular immune responses were measured using two different assays: (i) Dextramer analysis of antigen-specific CD8+ T cells and (ii) IFN-c
intracellular cytokine staining (ICS). (A) Representative dextramer analysis results from a single individual in each group (9–13). The number in the
upper right of each square represents the percentage of dextramer-positive cells after gating on CD8+ cells. (B) Mean H2Dd dextramer analysis values
(+S.D.) of antigen-specific CD8+ T cells from all mice in each group (n = 3). (C) INF-c production in CD8+ gated cells from a single representative
mouse from each group. The percentages of IFN-c positive cells are indicated in the upper right corner of each square. (D) Mean (+S.D.) of percentage
values of IFN-c secreting CD8+ T cells from all mice in each group (n = 3). Asterisks denote statistical significance: ** P,0.01; * P,0.05.
doi:10.1371/journal.pone.0031464.g007

HIV Vaccination by DNA and Protein Co-Immunization

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31464



(lower back, inside of back legs, and abdomen) as previously

described [39]. Blood was collected two weeks after each

immunization; the serum was separated and heat inactivated at

56uC for 1 h before being stored at 220uC.

Mouse immunizations
Four different groups of three BALB/c mice were intra-

muscularly immunized twice following four different immuniza-

tion regimens (Table 1): at day 0 they received (i) 500 mg/dose of

DNA (pEMC* encoding HIV-1 SF162 gp160) (group 9), or (ii)

130 mg/dose of Env(V3)-E2 (group 10), or (iii) the co-administra-

tion of both DNA and VLP, delivered into different mouse legs

(group 11), or (iv) the co-administration of DNA and LPS-free

VLPs (group 12). Twelve days after the first immunization, mice

were boosted IM by injecting 193 mg/dose of pDNA and the same

doses described above for the proteins. A final group was not

Table 4. H2d-Dextramer Staining and Intracellular Cytokine Staining of CD8+ T Cells from Immunized Mice.

Dextramer
Staining ICSa for IFN-c

Group Immunization
Mouse
number

Experiment
#1c

Experiment
#2c Mean SDb

Experiment
#1c

Experiment
#2c Mean SDb

9 DNA 1 0.2 – 0.77 0.67 1.3 – 1.53 0.40

2 0.6 – 2.0 –

3 1.5 – 1.3 –

10 E2 4 0.2 0.2 0.62 0.46 1.1 1.7 2.32 1.21

LPS-positive 5 0.7 1.3 4.6 1.9

6 0.3 1.0 2.5 2.1

11 DNA+E2 7 6.6 4.5 4.35 2.36 6.1 3.8 5.06 2.06

LPS-positive 8 4.0 2.2 5.6 3.8

9 7.4 1.4 8.4 2.7

12 DNA+E2 10 – 7.0 7.43 5.26 – 4.4 5.56 2.46

LPS-free 11 – 12.9 – 8.4

12 – 2.4 – 3.9

13 Unimmunized 13 0.2 0.2 0.23 0.16 0.7 1.8 1.13 0.37

14 0.3 0.0 0.9 1.2

15 0.2 0.5 1.1 1.1

aICS, intracellular cytokine staining;
bSD, standard deviation;
cValues are expressed as percentages (%) minus the average percentage of the cells with medium alone; LPS, lipopolysaccharide; –, not done.
doi:10.1371/journal.pone.0031464.t004

Table 5. Binding and neutralizing antibodies in immunized mice.

Anti-E2 Ab
titera

Anti-V3 Ab
titera

Anti-gp140
Ab titera

ID50 in
TZM-bla

Group Immunization
Mouse
number

Experiment
#1

Experiment
#2

Experiment
#1

Experiment
#2

Experiment
#1

Experiment
#2

Experiment
#1

Experiment
#2

9 DNA 1 – – – – – – – –

2 – – – – – – – 24

3 – – – – – – – –

10 Env(V3)-E2 4 435,915 211,306 4 6 – – – 40

LPS-positive 5 2,864,614 457,696 4,014 463 20 569 22 54

6 206,497 252,943 859 11 287 6 – 31

11 DNA+Env(v3)-E2 7 268,190 87,161 270 10 93 98 – 24

LPS-positive 8 105,977 199,816 11,582 175 64 314 32 59

9 319,674 131,605 440 721 27 464 – 93

13 Unimmunized 13 – – – – – – – –

14 – – – – – – – –

15 – – – – – – – –

aValues are endpoint serum titers with samples from two weeks post final immunization; –indicates not detected; LPS, lipopolysaccharide.
doi:10.1371/journal.pone.0031464.t005
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immunized and used as a control (group 13). Two separate

experiments were performed: groups 9, 10, 11, 13 were included

in the first set of experiments and groups 10, 11, 12, 13 in the

second set of experiments. Ten days post boosting, blood was

collected from the periorbita for immunological analysis and mice

were sacrificed. Single-cell suspensions of splenocytes isolated from

BALB/c mice were co-cultured at a density of 2.56106 cells/ml

with IGPGRAFYA311–318 peptide-pulsed c-irradiated (10,000 rad)

lipopolysaccaride-blasts (1.256106 cells/ml LPS-blasts) produced

from non-immunized BALB/c mouse. Ag-pulsed LPS blast cells

consisted of splenocytes that were cultured in RPMI 1640, in the

presence of 25 mg/ml LPS (Sigma), supplemented with 10% FCS,

561025 M 2-ME, 1 mM glutamine, 1 mM sodium pyruvate, and

7 mg/ml dextran sulfate (Sigma) for 3 days and pulsed for 3 h with

10 mg/ml of IGPGRAFYA311–318 peptide. After 6 days of co-

culture, effector cells were harvested and assayed for dextramer

staining and Intracellular cytokine IFNc staining (IFNc-ICS).

Construction of HIV-1 ENV-E2DISP plasmids
The Env(V3)-E2 and Env(minV3)-E2 expression vectors were

constructed from the previously described pETE2DISP plasmid

[34].The oligonucleotide sequence encoding the SF162 Env V3

loop peptide 291–336 was cloned into the pETE2DISP vector for

expression of the Env peptide as an N-terminal fusion to the E2 core

scaffold (Fig. 1A, B). The oligonucleotide sequence encoding V3 was

amplified using primers GGCGGCGGCCCATGGCCTCTGTA-

GAAATTAATTCTAC and GGCGGCGGCCCCGGGTTCTC-

CACTAATGTTACAATG containing the restriction sites NcoI and

XmaI (New England Biolabs). Cycling conditions for the PCR were

as follows: denature at 94uC for 2 min, 106 (94uC for 15 sec, 49uC
for 30 sec, and 72uC for 60 sec), 206 (94uC for 15 sec, 65uC for

30 sec, and 72uC for 60 sec), and a final elongation of 72uC for

7 min. The PCR product and the pETE2DISP vector were double

digested with NcoI and XmaI and ligated together with T4 DNA

ligase (New England Biolabs) before transformation into BL21

(DE3) CodonPlus-RIPL cells (Stratagene). To decrease proteolytic

degradation of Env(V3)-E2, a K305R mutation was introduced

using primer CTAACAATAATACAAGAAGAAGTATAACTA-

TAGGACCGG. Likewise, to decrease intramolecular bonding and

increase solubility of Env(V3)-E2, a C332G mutation was

introduced using the primer GAGATATAAGACAAGCACATG-

GCAACATTTAGTGGAGAACC. Both mutations were generat-

ed using the QuikChange Multi Site-Directed Mutagenesis kit

(Stratagene), per manufacturer’s instructions. The minimized V3

construct Env(minV3C332G/K305R)-E2 was generated from the

corresponding full-length Env(V3C332G/K305R)-E2 construct via

deletion of amino acids 291–299 using the QuikChange II Site-

Directed Mutagenesis (Stratagene) and primer CCATGGCCTC-

TGTAGAAATTAATTGTACCATGGCTAACAATAATACAA-

GAAGAAGTATAAC, which contains an NcoI site corresponding

to residue 299. In-frame ligation of all constructs was confirmed by

sequencing. For simplicity, these constructs Env(V3C332G/K305R)-E2

and Env(minV3C332G/K305R)-E2 are annotated in this document as

Env(V3)-E2 and Env(minV3)-E2, respectively.

Expression, purification and refolding of Env-E2
multimeric particles

Plasmids encoding the E2wt and HIV-1 Env-E2 fusion proteins

were maintained and expressed after induction with Isopropyl b-

D-1 thiogalactopyranoside (IPTG) in Escherichia coli strain BL21

(DE3) CodonPlus-RIPL cells (Stratagene). The soluble E2wt-

containing fraction was recovered from E. coli lysates after

centrifugation at 10,0006 g for 10 min at 4uC and was purified

using a Sephadex G-25 column for buffer exchange (GE

Healthcare), a Detoxi-Gel for LPS removal (Pierce), and a Q-

Sepharose anion exchange column (GE Healthcare). Peak

fractions containing E2wt were pooled and concentrated with a

10 kD molecular weight cut off (MWCO) using Amicon Ultra

Centrifugal Filter (Millipore). The retentate was loaded onto a

Superdex200 gel filtration column (GE Healthcare) using

Solubility Buffer 2.2 (16 PBS, 50 mM L-Glutamine (Sigma),

50 mM NaCl, 250 mM L-Arginine (Sigma)) and fractions

containing the 1.5 MDa E2 60mer particles were concentrated

to 1 mg/ml using the Ultra Centrifugal devices and then stored in

Solubility Buffer 2.2 at 280uC.

Env(V3)-E2 and Env(min)-V3 proteins formed inclusion bodies

in E.coli and were purified from the inclusion bodies, which were

washed three times with Inclusion Body Wash Buffer (1 M

guanidine hydrochloride (GuHCl), 50 mM NaCl, 1 mM DTT,

16 PBS, 10% glycerol, 0.5 M arginine, pH 7.4) before being

dissolved in Unfolding Buffer (6 M GuHCl, 1 mM DTT, 16PBS).

To produce the HIV-1 Env-E2 virus-like particles, E2wt was

combined with the Env-E2 inclusion bodies at a 1:1 molar ratio in

Unfolding Buffer (6 M GuHCl, 1 mM DTT, 16PBS) rocking at

4uC for a minimum of 3 h. The proteins were transferred to

SnakeSkinT Dialysis Tubing, 10 K MWCO (Thermo Fisher

Scientific) and subjected to step-down dialysis against 4 M, 2 M,

0 M GuHCl Refolding Buffers (4 M- 0 M GuHCl, 50 mM NaCl,

16 PBS, 10% glycerol, 0.5 M arginine, 0.5 mM reduced

glutathione, 0.1 mM oxidized glutathione, pH 8.0). A final dialysis

was performed in Solubility buffer 2.2 (16 PBS, 50 mM L-

Glutamine, 50 mM NaCl, 250 mM L-Arginine, pH 7.4). Refold-

ed soluble 60-mer virus-like particles were confirmed by gel

filtration using the Superdex200 gel filtration column (GE

Healthcare), and purity was assessed by SDS-PAGE and Western

blot analysis. The purified VLPs were either stored directly at

280uC or subjected to LPS removal before storing at 280uC. LPS

removal from protein samples utilized TritonX-114 (Sigma), as

previously described [53], and the final particles were tested for

endotoxin (LPS) using the Limulus Amebocyte Lysate (LAL) Assay

(Lonza).

SDS-PAGE and Western blot analysis
Expression, refolding, and identity of recombinant proteins

were assessed by SDS-PAGE, western blot analysis, and ELISA.

Samples were prepared as described above and resolved on

Invitrogen NuPAGE 4–12% Bis-Tris mini-gels (Carlsbad, CA)

under reducing conditions. For SDS-PAGE, gels were stained with

SimplyBlueTM SafeStain (Invitrogen). For western blot analysis,

proteins were transferred onto nitrocellulose paper (Invitrogen),

blocked with Odessey blocking buffer (LI-COR Biosciences)

overnight at 4uC. The following day, the blot was probed

simultaneously with a 1:8,000 dilution of rabbit sera specific for

E2 and a 1:20,000 dilution of the monoclonal human antibody

447-52D for 1 h at room temperature. After washing 5 times,

secondary antibodies IRDye680 Goat anti-Rabbit and IRDye800

Goat anti-human (LI-COR Biosciences) were used at 1:15,000.

Membranes were scanned using the LI-COR Odyssey Infrared

Imaging System (LI-COR Biosciences) to allow simultaneous two-

color detection of E2 and the HIV-1 Envelope V3 region.

Integrated intensities were used in conjunction with protein

concentrations determined by Nanodrop to calculate protein

purity and concentration. Purified particle preparations [wild type

E2 and Env(V3)-E2] were tested for binding to antibody 447-52D

after coating to ELISA plates at 200 ng/well using standard

methods described previously [36]. No binding was seen to E2

wild type and equivalent binding to the V3 and min V3 particles

was observed.
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Preparation of Helios Gene Gun DNA gold bullets
Plasmid DNA was precipitated onto 1 mm diameter gold beads,

and bullets were prepared according to the manufacturer’s

instructions (Bio-Rad) and loaded with a total of 2 mg of DNA.

To verify that the bullets were functional, COS-7 cells were

transfected via Gene gun with the DNA carried by the gold beads.

Cells were incubated at 37uC for 48 h and then fixed and stained for

immunofluorescence using 0.5 mg/mL polyclonal primary antibody

chimpanzee IgG derived from and HIV-infected animal (CHIVIG)

and 1:50 dilution of the secondary antibody FITC-conjugated goat

anti-human IgG (Zymed). The presence of envelope-transfected

cells was visualized by fluorescent microscopy.

Antibody assays
Binding antibody responses in immunized mice and rabbits to

E2-wt protein, V3 peptide and HIV-1 envelope antigen gp140

were measured by indirect ELISA as described previously [36].

Both endpoint and half-maximal methods were used to determine

relative titers of antibodies, and both methods provided the same

outcome of responses. Endpoint titers were most sensitive in our

hands and necessary to observe response in mice; thus we report

all endpoint titers to maintain consistency in evaluating antibody

responses in mice and rabbits.

Neutralization assays
Neutralization assays were performed using the single-cycle

TZM-bl neutralization assay as described previously [54]. Neutral-

ization activity of each sample was determined on the basis of the

reduction in the luc reporter gene expression compared to that

obtained in virus control wells containing virus and cells only

{[(virus+cell)2(tested serum+virus+cell)]/virus+cell}6100 = % neu-

tralization. Background control wells contained cells only. A pre-

immune sera pool and the murine leukemia virus (MLV) were used

as negative controls. A well-characterized immune serum was used

as a positive control. Neutralization dose-response curves were fitted

by non-linear regression and a final titer was informed as the

reciprocal of the dilution of serum necessary to achieve 50%

neutralization. Experiments were performed in parallel at ONPRC

and at Duke University on key samples to compare results.

Detection of NAbs specifically directed to V3 peptide was

performed as previously described [55]. Briefly, the TZM-bl

neutralization assay was conducted with the inclusion of HIV-1

SF162 V3 peptide (PNNNTRKSITIGPGRAFYATGD) (Invitro-

gen, Carlsbad, CA) or the V3 scrambled peptide (PNNNTRKSI-

FYRGAPGITATGD) (Genscript, Piscataway, NJ) for 1 h, at

a final concentration of 20 mg/mL with titrated rabbit sera

(week 6, 14, 28 and 34), prior to 1 h incubation with 200

TCID50 of SF162 pV. Percent reduction in neutralization was

calculated as: [12(titer with V3 peptide)/(titer with V3 scrambled

peptide)]6100.

MHC class I dextramer staining and flow cytometric
analysis

CD8+ T cells specific for IGPGRAFYA311–318 peptide were

determined by MHC H-2Dd class I dextramer staining. Briefly,

cells were transferred in 96-well round-bottom plates at density of

1.56106 cells/well and washed with PBS containing 5% FCS.

Aliquots (10 ml) of PE-conjugated IGPGRAFYA311–318 H-2Dd

dextramers or PE-conjugated H-2Dd control dextramers (Im-

mudex, Dako, Copenhagen, Denmark) were then added to the

cells. The plates were gently vortexed and incubated in the dark at

room temperature for 10 min. Control dextramer that does not

recognize mouse CD8+ T cells was used to assess non-specific

staining. Cells were then stained with FITC-conjugated anti

mouse-CD8 mAb for 20 min in the dark at 2–8uC. After two

washes with buffer, stained cells were resuspended in PBS and a

minimum of 50,000 live, CD8-positive, gated events were acquired

and analyzed by flow cytometry using a FACSCanto (BD

Biosciences). Results are expressed as the percentage of CD8+

cells that are positive for the MHC I/peptide dextramer.

Intracellular cytokine IFNg staining (IFNg-ICS)
To identify antigen-specific IFNg-secreting CD8+ T cells, we

performed intracellular cytokine IFNc staining with Cytofix/

Cytoperm LeucopermTM kit (AbD Serotec, Kidlington, UK), as

previously described by Caivano et al [36]. Briefly, 1.56106

splenocytes per well were stimulated with 10 mg/ml of synthetic

IGPGRAFYA311–318 peptide in U-bottom 96-well plates. The

cultures were incubated at 37uC in a 5% CO2 incubator for 5 h

with 10 mg/ml of the secretion inhibitor Brefeldin-A (Sigma-

Aldrich). The IFNc release induced by 30 ng/ml of Phorbol 12-

myristate 13-acetate (PMA, Sigma-Aldrich) plus 1 mg/ml of

ionomycin (Sigma) was used as a positive control. After the

stimulation period, cells were washed with PBS containing 1%

FCS, subsequently incubated for 15 min at 4uC with FITC-

conjugated anti-mouse CD8 mAb for surface staining, followed by

fixation with Cytofix/CytopermTM solution for 15 min at 4uC.

The surface-stained cells were then permeabilized with 1X Perm/

WashTM solution and stained intracellularly by incubation with

PE-conjugated anti-mouse IFNc mAb for 30 min at room

temperature. The cells were finally washed twice with PBS and

acquired on FACSCanto (BD Biosciences).

Antibodies and synthetic peptides
The following monoclonal antibodies (mAb) were used for

FACS analysis: fluorescein isothiocyanate (FITC)-conjugated anti-

mouse CD8 (clone 53-6.7, Biolegend, San Diego, Ca); phycoer-

ythrin (PE)-conjugated anti-mouse IFNc (clone XMG1.2,

eBioscience, Hatfield, UK). MAb 447-52D to HIV-1 V3 was

obtained through the NIH AIDS Research and Reference

Program, Division of AIDS, NIAID, NIH from Susan Zolla-

Pazner. Polyclonal antibody CHIVIG was described previously

[56]. For FACS analysis the synthetic IGPGRAFYA311–318

peptide, a 9-mer peptide corresponding to residues 311–318 of

the V3 loop of HIV-1 Envelope glycoprotein, was purchased from

PRIMM srl (Naples, Italy). For peptide competition assays, the

HIV-1 SF162 V3 peptide (PNNNTRKSITIGPGRAFYATGD)

and the V3 scrambled peptide (PNNNTRKSIFYRGAPGI-

TATGD) were purchased from Invitrogen (Carlsbad, CA) and

Genscript (Piscataway, NJ), respectively.

Statistics
Statistical analyses were performed using either the unpaired

Student t-test, the Mann-Whitney test (comparison between two

groups) and Analysis of Variance (ANOVA, for comparison

among three or more groups). To compare NAb levels along the

different immunization regimens, the area under the NAb titer

curve (AUC) minus baseline was calculated and divided by the

duration of each regimen, and significance was determined using

the Mann-Whitney test. In all cases differences were considered

statistically significant when P,0.05 (and represented as * when

P,0.05, and ** when P,0.01).
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