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Abstract
Epithelial-to-mesenchymal and mesenchymal-to-epi-
thelial transitions are well established biological events 
which have an important role in not just normal tissue 
and organ development, but in the pathogenesis of dis-
eases. Increasing evidence has established their pres-
ence in the human colon during colorectal carcinogen-
esis and cancer invasion, chronic inflammation-related 
fibrosis and in the course of mucosal healing. A large 
body of evidence supports the role for transforming 
growth factor-β and its downstream Smad signaling, 
the phosphatidylinositol 3’-kinase/Akt/mTOR axis, the 
Ras-mitogen-activated protein kinase/Snail/Slug and 
FOXC2 pathway, and Hedgehog signaling and microR-
NAs in the development of colorectal cancers via  epi-
thelial-to-mesenchymal transition. C-met and Frizzled-7, 
among others, seem to be the principle effectors of 
mesenchymal-to-epithelial transition, hence have a role 
not just in mucosal regeneration but in the progres-
sion of colonic wall fibrosis. Here we discuss a role for 
these pathways in the initiation and development of 
the transition events. A better understanding of their 
induction and regulation may lead to the identification 
of pathways and factors that could be potent therapeu-
tic targets. The inhibition of epithelial-to-mesenchymal 
transition using mTOR kinase inhibitors targeting the 

ATP binding pocket and which inhibit both mTORC1 
and mTORC2, RNA aptamers or peptide mimetics, such 
as a Wnt5A-mimetic, may all be useful in both cancer 
treatment and delaying fibrosis, while the induction of 
mesenchymal-to-epithelial transition in induced plu-
ripotent stem cells may enhance epithelial healing in 
the case of severe mucosal damage. The preliminary 
results of the current studies are promising, but more 
clinical investigations are needed to develop new and 
safe therapeutic strategies for diseases of the colon. 
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INTRODUCTION
Human colonic diseases are some of  the most common 
diseases worldwide, and their incidence is increasing[1,2]. 
Although the diversity of  the etiologic and pathophysi-
ologic factors of  colonic diseases is very wide, there exist 
two biological processes whose presence is indispensable 
in the progression or healing phase of  these conditions. 

One of  these processes is the epithelial-to-mesenchy-
mal transition (EMT), which has a significant role in the 
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development of  the human body. EMT is also involved 
in the initial step, acquisition of  migratory and invasive 
capability of  colorectal cancer (CRC), and even has an 
important role in tissue fibrosis[3].

The other process is a reverse phenomenon, namely 
the mesenchymal-to-epithelial transition (MET). MET is 
also essential for normal tissue and organ development, 
but it is also involved in colorectal carcinogenesis, and it 
seems to have an important role in colonic mucosal re-
generation[4,5]. 

The induction and regulation of  these complex, re-
versible biological programs are not fully understood. 
Therapeutically, the influence of  EMT and MET is 
recognized, but, unfortunately, the exact description of  
these biological phenomena is still missing. As the under-
standing of  the steps of  EMT and MET is of  great clini-
cal importance, and, at the same time, data about their 
complex induction and regulation, as well as their role 
in the pathogenesis of  colonic diseases are scarce in the 
scientific literature, we aimed to summarize the current 
knowledge in this review.

EPITHELIAL-TO-MESENCHYMAL 
TRANSITION
EMT is a physiological mechanism which is present dur-
ing development, including mesoderm formation and 
neural tube formation, and is also encountered in several 
pathological situations, such as renal interstitial fibrosis, 
endometrial adhesion, and cancer metastasis[3].

Cells that undergo EMT exhibit dramatic shape 
changes during which they can lose many of  their epithe-
lial characteristics, such as the loss of  apico-basal polarity 
and cell adhesion, the repression of  E-cadherin, occludin, 
tight junction protein 1, or cytokeratin expression, and in-
creased cell mobility[6]. At the same time, elevated expres-
sion of  tyrosine kinases or their activation, upregulation 
of  N-cadherin, vimentin, fibronectin, zinc-finger domain 
proteins (SNAI1/SAIL, SNAI2/SLUG, ZEB2/SIP1), 
and matrix metalloproteinases, as well as basic helix-loop-
helix domain protein Twist1 expression are often linked 
to a mesenchymal-like phenotype[7,8]. 

EMT INDUCTION AND REGULATION
Several oncogenic pathways (i.e., peptide growth factors, 
Src, Ras, integrin, Wnt/β-catenin, Notch) may induce 
EMT (Figure 1). 

Transforming growth factor-β (TGF-β) is a potent 
inducer of  EMT. TGF-β directly activates the expres-
sion of  transcription factors such as SNAI1/2, Twist 
and ZEB1/2. These factors are the key regulators of  the 
EMT program[9]. 

The Src SH3 and SH2 domains cooperate with ex-
tracellular signal-regulated kinase (ERK), MEK (ERK 
kinase), myosin light chain kinase (MLCK), and Rho-de-
pendent protein kinase (ROCK) signaling to accumulate 
phosphomyosin at the colon cancer cell periphery and 

promote a mesenchymal-like phenotype[6]. It was recently 
shown that actomyosin contractility is a key determinant 
of  EMT[6]. 

Ras-mitogen-activated protein kinase has been shown 
to activate two related transcription factors, namely Snail 
and Slug, both of  which are transcriptional repressors of  
E-cadherin, and their expression induces EMT[10]. 

Recently, activation of  the phosphatidylinositol 3’-ki-
nase (PI3K)/Akt axis has emerged as a central feature of  
EMT[11]. Activation of  PI3K/Akt signaling is associated 
with growth and progression of  CRC. It was reported 
that the mTOR kinase, a downstream effector of  PI3K/
Akt signaling, regulates tumorigenesis in CRC[12,13]. In-
creased expression of  mTOR, Raptor, and Rictor mRNA 
was noted with advanced stages of  CRC, suggesting that 
mTOR signaling may be associated with CRC progres-
sion and metastasis[14]. Gulhati et al[14] showed that the 
inhibition of  mTORC1 and mTORC2 attenuated migra-
tion and invasion of  colon cancer cells concomitant with 
altered cytoskeletal rearrangement and decreased activa-
tion of  RhoA and Rac1. The inhibition of  mTORC1 and 
mTORC2 induces changes reminiscent of  mesenchymal-
to-epithelial transition, and it was also shown that the es-
tablishment of  metastasis in vivo was completely abolished 
upon targeted inhibition of  mTORC1 and mTORC2. 
Based on these results, one may propose that mTORC1 
and mTORC2 regulate motility of  colon cancer cells via 
RhoA and Rac1 signaling[11]. Twist, another transcription 
factor, has been shown to possibly induce EMT too, and 
is also implicated in the regulation of  metastasis[7,8]. 

Expression of  FOXC2, an important element of  
embryonic development is supposed to induce EMT 
and regulate metastasis. In addition, the expression of  
FOXC2 is induced when epithelial cells undergo EMT by 
Snail, Twist, Goosecoid, and TGF-β1[15-17]. 

The majority of  human colon cancers carry muta-
tions that lead to the activation of  Wnt signaling, a 
pathway that also has a pivotal role in intestinal stem cell 
biology[18]. Despite the underlying genetic background, 
cells within individual tumors display differential Wnt 
signaling, suggesting further regulation by the microenvi-
ronment. A local loss of  basement membrane at the in-
vasive edge has been suggested to expose cancer cells to 
a different microenvironment, which promotes Wnt sig-
naling (nuclear β-catenin expression), EMT-like changes 
and loss of  differentiation[19]. Type 1 collagen is a known 
component of  the microenvironment at the host–tumor 
interface in CRC[20], and is more highly expressed in tu-
mors displaying infiltrative growth compared with those 
with expansive growth[21]. Type 1 collagen also reduces 
CDX2 expression, an early marker of  epithelial commit-
ment, in human CRC cell lines in vitro[20], and enhances 
tumorigenicity in human CRC cells in xenografts[22]. In-
tegrin α1β2 has a central role in type 1 collagen-induced 
EMT[23]. 

Hedgehog signaling cascade cross-talks with Wnt, 
epithelial growth factor/fibroblast growth factor, and 
TGFβ/Activin/Nodal/bone morphogenic protein sig-
naling cascades, which are implicated in EMT through 
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E-cadherin repression[8,24,25]. Although the Hedgehog 
signaling cascade induces the SNAI1 upregulation, there 
is no evidence for its direct SNAI1 transcriptional activa-
tion. On the other hand, Hedgehog signals induce JAG2 
upregulation, and TGF-β1 secretion to promote motil-
ity and invasiveness of  cancer cells[26]. JAG2 signaling 
induces transition of  the Notch receptor to the Notch 
intracellular domain (NICD). NICD is then associated 
with the CSL transcription factor in the nucleus to induce 
SNAI1 upregulation[27]. TGF-β1 activates the TGF-β 
receptor for nuclear factor-κB-mediated transcriptional 
upregulation of  ZEB1 and ZEB2 (zinc-finger transcrip-
tion factors)[28], and also for the SMAD-Sp1-mediated 
transcriptional upregulation of  mesenchymal markers, 
such as vimentin. Together these facts indicate that the 
Hedgehog signals indirectly induce EMT through the 
upregulation of  multiple EMT regulators via Notch and 
TGF-β signaling cascades[29].

The 20-22 bp nucleotide noncoding RNAs, the mi-
croRNAs (miRNAs), regulate gene expression at post-
transcriptional levels. Earlier profiling experiments have 
identified cohorts of  miRNAs whose levels undergo sig-
nificant changes upon TGF-β induced EMT, suggesting 

possible involvements of  miRNAs in this process[30]. The 
miR 200 family has been linked to inhibition of  EMT 
(promotion of  the epithelial phenotype) through inhibi-
tion of  ZEB1/2, known transcriptional repressors of  the 
human E-cadherin gene[31].

In LIM 1863 colon carcinoma cells, the upregula-
tion of  miR-21 and miR-31 had been reported during 
EMT[32]. Overexpression as well as inhibition experiments 
support the contributions of  both miR-21 and miR-31 
not only in the TGF-β-induced morphological changes, 
but also in cell motility and invasion. It was also shown 
that T lymphoma and metastasis gene 1 (TIAM1) is a di-
rect target of  both miR-21 and miR-31, and that the sup-
pression of  TIAM1 is important for the pro-migration 
and invasion activities of  miR-21 and miR-31. Based on 
these results, miR-21 and miR-31 were indentified as pos-
itive regulators of  the EMT in colon carcinoma cells[32].

Interestingly, it was recently shown[33] that nicotine 
enhanced the expression level of  fibronectin, an impor-
tant EMT-related maker, in a dose-dependent manner. 
Furthermore, an α7-nicotinic acetylcholine receptor 
antagonist and siRNA reversed the nicotine-enhanced fi-
bronectin expression in both SW480 and DLD-1 cells[33]. 
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Figure 1  Schematic view of the effector pathways associated with epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. EMT: 
Epithelial-to-mesenchymal transition; MET: Mesenchymal-to-epithelial transition; TGF-β: Transforming growth factor-β; MAPK: Mitogen-activated protein kinase; ERK: 
Extracellular signal-regulated kinase; MEK: MAPK/ERK kinase; MLCK: Myosin light chain kinase; ROCK: Rho-dependent protein kinase.
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the basis of  chronic inflammation. Despite the incontro-
vertible rationale for treating diseases belonging to PI3K/
Akt/mTOR signaling with rapamycin, clinical results 
have been disappointing. One proposed mechanism of  
resistance to rapamycin arises from its inability to inhibit 
mTORC2[14,42]. The findings of  Gulhati et al[11] support 
a role for elevated mTORC1 and mTORC2 activity in 
regulating EMT and metastasis of  CRC. Taken together 
with previous results, showing that both mTORC1 and 
mTORC2 contribute to CRC tumorigenesis[14], it may be 
hypothesized that the inherent redundancy in functions 
of  both complexes may allow mTORC2 to compensate 
for loss of  mTORC1 activity upon rapamycin treatment, 
thereby leading to rapamycin resistance. Based on these 
data, Gulhati et al[11] provides the rationale for includ-
ing mTOR kinase inhibitors targeting the ATP binding 
pocket, which inhibit both mTORC1 and mTORC2 
more completely, as part of  the therapeutic regimen for 
treating CRC patients.

miRNAs targeted to mRNAs, encoding stem cell sig-
naling components or EMT regulators, are also potent 
drug targets. miRNAs inducing proliferative, anti-apop-
totic, pro-angiogenic, or pro-metastatic effects on tumor 
cells could be downregulated for cancer therapy, while 
those with proapoptotic, anti-angiogenic, or anti-meta-
static effects could be applied for synthetic miRNA[43,44]. 
An RNA aptamer is a short RNA oligonucleotide with a 
stable 3D structure[44]. RNA aptamers binding to the ex-
tracellular region of  Patched1 could be utilized for drug 
delivery to cancer cells with Hedgehog signaling activa-
tion. RNA aptamers binding to the cytoplasmic region of  
Smoothened, and those binding to Fused or GLI1 could 
be utilized as Hedgehog signaling inhibitors. Peptide 
mimetics, resembling Wnt and fibroblast growth fac-
tor family members, have been developed[45,46]. Because 
Wnt5A is involved in the non-canonical signaling cascade 
for the induction of  EMT partly through SNAI1 upregu-
lation[47-50], a Wnt5A mimetic is able to suppress invasion 
and metastasis of  cancer cells. On the other hand, great 
care should be taken before clinical application of  these 
technologies, as the miRNA and siRNA off-target effects 
are serious problems.

MESENCHYMAL-TO-EPITHELIAL 
TRANSITION
Mesenchymal-to-epithelial transition is a reversible bio-
logical process that involves the transition from motile, 
multipolar or spindle-shaped mesenchymal cells to polar-
ized epithelial cells. MET, just like EMT, also takes place 
during normal development in processes such as somito-
genesis, kidney development, cardiogenesis, hepatogen-
esis and celomic cavity formation[4,51,52], moreover MET 
occurs in cancer metastasis, induced pluripotent stem cell 
reprogramming and mucosal healing[5]. 

While the mechanism in which MET occurs during 
each organ morphogenesis is similar, in that epithelium-
associated genes are upregulated and mesenchymal ones 

ROLE OF EMT IN PATHOLOGICAL 
CIRCUMSTANCES
The switch between epithelial and mesenchymal phe-
notypes occurs during the advanced stages of  cancer 
development. As a general rule, epithelial cancer cells 
that have undergone EMT are thought of  as being more 
migratory, which may contribute to the invasive or meta-
static phenotype. 

In adult organisms, it has been proposed that restric-
tive mechanisms repress EMT and MET[34]. During tumor 
development, these mechanisms appear to fail, allowing 
EMT as described in metastasis generation[35]. Colonic 
stroma tissue, including subepithelial lymphoid aggregates 
surrounding the cancer cells, plays an important role in 
both EMT regulation and tumor behavior. Mesker et al[36] 
analyzed the expression of  markers involved in pathways 
related to stroma production and EMT (β-catenin, TGF-
β-R2, Smad4) in high-risk CRC patients, and found that 
patients with high stroma and Smad4 loss are at high risk. 
The anti-EMT effect of  Smad4 was also proven in colon 
carcinoma cells[37].

Besides colon cancer cell migration and invasion, 
EMT is also involved in organ fibrosis. The epithelium 
has been proposed to be a significant source of  matrix-
producing fibroblasts and of  myofibroblasts[38]. Tissue 
accumulation of  myofibroblasts shows strong correlation 
with the severity and progression of  colonic fibrosis[39]. 
TGF-β1 has been long known as the chief  inducer not 
just of  EMT, but fibrosis, and myofibroblast generation. 
Accordingly, receptor Smads (Smad2 and particularly 
Smad3), the direct targets of  the activated TGF-β recep-
tor have been implicated as critical mediators in fibrogen-
esis and EMT[40,41] (Figure 2).

THERAPEUTIC ASPECTS OF EMT
Inhibition of  EMT would be an ideal choice for the treat-
ment of  CRC, as well as colonic fibrosis developed on 

Figure 2  Chronic, fibrotizing phase of inflammatory bowel disease. The ar-
rowed cytokeratin (CK) positive epithelial cells in a colonic crypt show α-smooth 
muscle actin (α-SMA) positivity. The initiation of the epithelial-to-mesenchymal 
transition is possible. (α-SMA: Red; CK: Green; nuclear counter-staining: 
Blue; fluorescence immunohistochemistry, taken by virtual microscope). DAPI: 
4′,6′-diamidino-2-phenylindole hydrochloride.

α-SMA DAPI CK
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are downregulated, each process has a unique signaling 
pathway to induce MET and related changes in gene ex-
pression.

Though our knowledge about the mechanism and 
regulation of  EMT in the colon is increasing nowadays, 
the reverse phenomenon, MET, is still not a well under-
stood mechanism (Figure 1). 

MET INDUCTION AND REGULATION
MET during carcinogenesis has been shown to be in-
duced by the c-met proto-oncogene[53-55]. C-met, also 
known as hepatocyte growth factor receptor, is a receptor 
tyrosine kinase for hepatocyte growth factor and its in-
creased expression leads to epithelial differentiation[56,57]. 
In addition to epithelial specification by C-met, 5-azacyti-
dine, a DNA methyltransferase inhibitor with broad spec-
trum epigenetic effects, has been used to induce MET in 
vitro[58]. Recent research on the transcription factor Snail 
has been linked to aberrant DNA methylation of  the epi-
thelial specific E-cadherin promoter in association with 
EMT, and stable RNA interference of  Snail expression in 
carcinoma cell lines induced a complete MET[59-61]. 

Frizzled-7 (FZD7) is necessary for MET in the LIM1863-
Mph CRC model. The loss of  FZD7 in cancer cells results 
in the persistence of  a mesenchymal state (increased 
SNAI2/decreased E-cadherin)[62]. Moreover, FZD7 is also 
required for migration of  the LIM1863-Mph monolayer 
cells. This suggests that FZD7 induced either migratory or 
epithelialization events depending on the context.

The role of  DNA methylation in MET induction and 
induced pluripotent stem (iPS) cell reprogramming had 
been also highlighted[63].

In the inflamed colon, signs of  MET can be detected 
in the subepithelial lymphoid follicles[64-66]. These data 
suggest that migrating stem cells undergoing MET may 
be sensitive to the chemokine/cytokine milieu of  the in-
flammatory environment. 

ROLE OF MET IN PATHOLOGICAL 
CIRCUMSTANCES
Regarding the colon, the need for MET is high when se-
vere mucosal damage is present. In inflammation, MET 
can also be altered because mesenchymal stem cells are 
mobilized to the site of  injury and consequently subjected 
to the inflammatory response[67]. Bone marrow-derived 
stem cells could differentiate into mature-appearing epi-
thelial cells in response to tissue damage[68]. It was recently 
published that versican, a large chondroitin sulfate proteo-
glycan, mediates MET[69]. The results of  Hirose et al[70] in-
dicate that versican can bind specific chemokines through 
its chondroitin sulfate chains and by doing so, it tends 
to downregulate the chemokine function. This raises the 
possibility that versican is a potent regenerative factor in 
the colonic mucosa. 

In the inflamed colon, the presence of  CDX2- and 
cytokeratin-positive subepithelial cells in the marginal 
zone of  subepithelial lymphoid follicles also suggests that 
MET may have a role in colonic mucosal regeneration[64]. 
Presumably the mesenchymal cells committed to an epi-
thelial fate are sensitive for the regeneration-associated 
paracrine cytokine and chemokine environment in the 
inflammatory stroma (Figure 3). 

THERAPEUTIC ASPECTS OF MET
Induced pluripotent stem cells can be derived from so-
matic cells by the induction of  a small number of  genes, 
like POU5F1, MYC, KLF4 and SOX2[71-74]. Originating 
from an individual’s own tissue, iPS cells offer consider-
able therapeutic promise, avoiding both immunologic 
and ethical barriers to their use. Upon induction, mouse 
fibroblasts must undergo MET to successfully begin the 
initiation phase of  reprogramming. Epithelial-associated 
genes (i.e., E-cadherin, Claudin-3, -4, -7, -11, occludin, epi-
thelial cell adhesion molecule, Crumbs homolog 3) were all 
upregulated before the turning on of  Nanog, a key tran-
scription factor in maintaining pluripotency. Additionally, 
mesenchymal-associated genes like Snail, Slug, Zeb-1/2, 
and N-cadherin were downregulated[75]. 

Epigenetic changes, DNA methylation, seems to be 
also involved in MET regulation, which may also have 
therapeutic significance[63].

CONCLUSION
According to our current knowledge, both EMT and 
MET are highly significant biological events, not just in 
physiological, but in pathological circumstances. A better 
understanding of  their induction and regulation may lead 
to the identification of  pathways and factors that can be 
potent therapeutic targets. 

The inhibition of  EMT seems to be a useful tech-
nique to avoid CRC cell invasion and metastasis genera-

α-SMA DAPI CK

Figure 3  Regenerative phase of ulcerative colitis. The arrowed α-SMA 
positive pericryptic cell shows cytokeratin (CK) expression. The presence of 
the mesenchymal-to-epithelial transition is possible. (α-SMA: Red; CK: Green; 
nuclear counter-staining: Blue; fluorescence immunohistochemistry, taken by 
virtual microscope). DAPI: 4′,6′-diamidino-2-phenylindole hydrochloride.
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tion, and chronic inflammation-related colonic wall fibro-
sis may be also delayed, or even reversed. 

The induction of  MET is also of  major clinical im-
portance. In the case of  severe mucosal damage, the time 
for complete epithelial regeneration may be reduced by 
enhancing the phenotype change of  mesenchymal stem 
cells to epithelial cells. 

The preliminary results of  ongoing studies are prom-
ising, but more investigations are needed to develop new 
therapeutic strategies that can be safely used in the near 
future. 
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