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Abstract
AIM: To characterize the influence of diet-induced 
changes in body fat on colitis severity in SMAD3-/- 
mice. 

METHODS: SMAD3-/- mice (6-8 wk of age) were ran-
domly assigned to receive a calorie restricted (30% 
of control; CR), control (CON), or high fat (HF) diet 
for 20 wk and were gavaged with sterile broth or with 
Helicobacter hepaticus (H. hepaticus ) to induce colitis. 
Four weeks after infection, mice were sacrificed and 
the cecum and colons were processed for histological 
evaluation. 

RESULTS: Dietary treatment significantly influenced 
body composition prior to infection (P  < 0.05), with CR 
mice having less (14% ± 2%) and HF-fed mice more 
body fat (32% ± 7%) compared to controls (22% ± 

4%). Differences in body composition were associated 
with alterations in plasma levels of leptin (HF > CON 
> CR) and adiponectin (CON > HF ≥ CR) (P  < 0.05). 
There were no significant differences in colitis scores 
between CON and HF-fed mice 4 wk post-infection. 
Consistent with this, differences in proliferation and in-
flammation markers (COX-2, iNOS), and infiltrating cell 
types (CD3+ T lymphocytes, macrophages) were not 
observed. Unexpectedly, only 40% of CR mice survived 
infection with H. hepaticus , with mortality observed as 
early as 1 wk following induction of colitis. 

CONCLUSION: Increased adiposity does not influence 
colitis severity in SMAD3-/- mice. Importantly, caloric 
restriction negatively impacts survival following patho-
gen challenge, potentially due to an impaired immune 
response.
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INTRODUCTION
Adipose tissue (AT) is increasingly recognized as an active 
endocrine organ modulating a number of  physiological 
processes. AT is a key regulator of  insulin resistance[1,2] 
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and contributes to systemic inflammation through pro-
duction of  a variety of  proteins, hormones and cytokines 
collectively referred to as adipokines[3,4]. Many of  these 
secretory products play important roles in energy homeo-
stasis and the immune response[5]. Several pro-inflam-
matory cytokines, including interleukin (IL)-6, C-reactive 
protein (CRP) and leptin, are released from AT even in 
the absence of  acute injury or inflammation, and their 
production is increased in proportion to AT mass[6-10]. 
Such altered production of  these cytokines contributes 
to a number of  pathophysiological processes including 
peripheral insulin resistance, inflammation, vascular dis-
ease, and immune dysfunction commonly observed in 
obesity[2,11].

Inflammatory bowel diseases (IBD), including Crohn’s 
disease (CD) and ulcerative colitis (UC), are chronic con-
ditions characterized by remittent inflammation resulting 
in extensive damage to the gastrointestinal tract[12-14]. CD 
can affect any part of  the intestine[12], whereas UC is con-
fined to the colon[14]. Although certain clinical features 
differ between these two conditions[13], both are thought 
to result from a dysregulated immune response in suscep-
tible individuals[15]. 

Altered local and systemic levels of  cytokines includ-
ing tumor necrosis factor (TNF)-α, leptin, and adiponec-
tin have been observed in individuals with IBD and are 
suggested to contribute to the disease pathogenesis[16]. 
Leptin is a 16-kDa product of  the ob gene and is pro-
duced primarily by adipocytes[17]. Circulating levels of  
leptin are increased in obesity and show a positive corre-
lation to body mass index[18,19]. Although leptin regulates 
energy metabolism by inhibiting food intake and increas-
ing energy expenditure[20], it also has important immu-
nomodulatory roles[21-23]. Increases in leptin levels in the 
serum[24], mesenteric AT[25], and in the colonic lumen[26] 
have been reported during the active stage of  IBD. 
Leptin is also associated with susceptibility to experimen-
tal colitis in mice[27]. Colonocytes express the leptin recep-
tor, and luminal administration of  leptin induces epithe-
lial wall damage and neutrophil infiltration, suggesting a 
local pro-inflammatory role for this protein[26]. 

Adiponectin is a high molecular weight protein secret-
ed by AT that contributes to glucose homeostasis by in-
creasing peripheral insulin sensitivity and reducing hepatic 
gluconeogenesis[28]. Pro-inflammatory mediators, including 
TNF-α and IL-6, suppress adiponectin secretion and se-
rum levels are markedly reduced in obese individuals[29-31]. 
Adiponectin is generally considered anti-inflammatory due 
to antagonistic effects on cytokine signaling[32-34]. However, 
increased levels have been detected in serum and hyper-
trophied mesenteric AT in patients with active IBD[35,36]. 
A direct role for adiponectin during experimental colitis in 
animals has produced inconsistent results[37-39]. 

There is currently insufficient evidence to support a 
causal relationship between obesity and IBD; however, 
the conditions share similar inflammatory characteristics. 
Recent studies indicate that the constant low-grade in-
flammation associated with excess AT, including elevated 
serum levels of  CRP, IL-6 and TNF-α, may contribute 

to the severity of  IBD[40]. Additionally, overweight and/
or obese individuals with CD were found to have more 
complications and more frequent disease relapses than 
normal weight individuals[41], providing a potential link 
between excessive AT and pathogenesis of  IBD. 

In the current study we evaluated the influence of  ad-
iposity on colitis severity in SMAD3-/- mice. SMAD3-/- 
mice have defective transforming growth factor (TGF)-β 
signaling and develop mild colitis within 4 wk following 
infection with Helicobacter spp. Dysfunctions in TGF-β 
signaling are commonly observed in human IBD and 
during colon cancer development. Maggio-Price et al[42] 
demonstrated that SMAD3-/-, but not SMAD3+/- mice 
develop chronic colitis and colon cancer in response to 
a bacterial infection. In the SMAD3-/- mouse model 
of  colon cancer, initiation and progression is induced 
by a bacterial infection Helicobacter hepaticus (H. hepaticus). 
The bacterium colonizes the cecum and proximal colon 
persistently, low grade inflammation and immune cell 
infiltration observed eventually lead to mucinous ad-
enocarcinoma formation at 15-30 wk post infection[42]. 
Importantly, these lesions are flatter, more aggressive and 
harder to diagnose in humans. It is widely hypothesized 
that chronic low levels of  inflammation, whether induced 
by a pathogen or not, leads to cancer promotion and 
progression. Therefore, this model is highly relevant to 
the process of  human colon carcinogenesis. Specifically, 
the SMAD model is very similar to the development of  
specific human cancers where a pathogen is necessary (but 
not sufficient) to cause dysplasia and tumor formation. 
Examples include hepatitis and liver cancer, Helicobacter 
pylori and stomach cancer, and human papillomavirus and 
cervical cancer. The contribution of  this research was to 
understand how energy balance differentially modulates 
promotion/progression of  inflammation and pathogen-
induced cancers.

Mice were submitted to one of  three dietary treat-
ments (control, 30% caloric restriction, or high fat diet) 
to induce differing levels of  adiposity after 20 wk, and 
were then infected with H. hepaticus to induce colitis. Plas-
ma leptin and adiponectin were measured pre-infection 
and histological scoring was performed on cecum and 
colon tissue 4 wk post-infection. 

MATERIALS AND METHODS
Animal husbandry
Mice (129-Smad3tm1Par/J, referred to hereafter as SMAD3-/-) 
were generously donated by Lillian Maggio-Price at the 
University of  Washington. The mouse colony was de-
veloped by pairing SMAD3-/- males with SMAD3+/- 
females. Weaning and genotyping of  subsequent litters 
was performed as described below at approximately 21 d 
after birth; only SMAD3-/- mice were used in this study. 
All mice were housed in 60 square inch plastic cages with 
micro-isolator lids and maintained in temperature and 
humidity controlled rooms with a 12-h light-dark cycle. 
Harlan Teklad 22/5 Rodent Diet 8640 (22% crude pro-
tein, 5% crude fat) was given ad libitum prior to the start 
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of  the study. All mouse procedures were approved by the 
Michigan State University Institutional Animal Care and 
Use Committee. 

Genotyping
Ear tissue samples were obtained and DNA extracted with 
REDExtract-N-Amp™ Tissue PCR Kit (Sigma-Aldrich, 
St. Louis, MO) according to manufacturer’s recommen-
dations. Four primers were used for polymerase chain 
reaction: 1271 (GGATGGTCGGCTGCAGGTGTCC) 
and 1272 (TGTTGAAGGCAAACTCACAGAGC) to 
recognize SMAD sequences and give a 130 bp product, 
and 506 (CGGCGAGGATCTCGTCGTGACCCA) and 
507 (GCGATACCGTAAAGCACGAGGAAG) to recog-
nize vector sequences. Thermal cycling of  the samples was 
conducted with an initial denaturation at 94  ℃ for 3 min, 
40 cycles of  denaturation-annealing-extension (respectively 
20 s at 94  ℃, 30 s at 58  ℃, and 1 min at 72  ℃), and a final 
extension of  72  ℃ for 3 min. Polymerase chain reaction 
products were then evaluated on a 2% agarose gel and vi-
sualized under UV transillumination.

Helicobacter hepaticus culture
Isolates of  H. hepaticus (strain 3B1, ATCC 51449) were 
kindly donated by Vince Young at University of  Michi-
gan. Bacteria were streaked onto sheep blood agar plates 
and incubated at 36  ℃ for 24-48 h under anaerobic con-
ditions using GasPak™ pouch systems (BD, Franklin 
Lakes, NJ). After incubation, cultures were collected by 
the addition of  Bacto™ Tryptic Soy Broth (BD, Franklin 
Lakes, NJ) and the optical density was assessed using a 
Bio-Tek Synergy HT multi-mode microplate reader (Bio-
Tek, Winooski, VT) to ensure a constant bacterial popu-
lation (≥ 1.8 at 600 nm wavelength). 

Dietary treatments and experimental procedures
SMAD3-/- mice (6-8 wk of  age) were randomly assigned 
to one of  three Open Source diets (Research Diets Inc, 
New Brunswick, NJ): control (CON; formula D12450B: 
20% protein, 70% carbohydrate, 10% fat), 30% calorie-
restricted (CR; formula D03020702B: 27% protein, 54% 
carbohydrate, 6% fat) or high fat (HF; formula D12492: 
20% protein, 20% carbohydrate, 60% fat) to induce dif-
fering levels of  adiposity as previously described[43]. Mice 
were weighed weekly to assess body weight changes. 
Body composition was also assessed after 20 wk using an 
EchoMRI-100™ quantitative nuclear magnetic resonance 
machine (Echo Medical Systems, Houston, TX).

In a pilot study (data not shown; n = 73 mice), weight 
differences between dietary treatments were found to be 
maximal around 20 wk, therefore this time frame was 
chosen for induction of  colitis. Mice were thus fed diets 
(n = 37 CON, 19 CR, and 36 HF) for 20 wk and then 
gavaged with 0.3 mL dosages of  either bacteria-free con-
trol Tryptic Soy Broth or H. hepaticus, one dosage per day 
on two consecutive days. Continued weight monitoring 
was conducted on the gavaged mice and any animal that 
exhibited a weight loss of  > 20% from one week to the 

next was euthanized. Four weeks after infection, mice 
were euthanized via carbon dioxide asphyxiation. Ter-
minal bleeds were performed via cardiac puncture and 
blood was collected in a heparin-coated syringe. Blood 
samples were centrifuged at 12  000 × g for 15 min at 
4  ℃, and plasma was collected and frozen at -80  ℃ until 
further use. 

Histopathology
The entire lower gastrointestinal tract was isolated and 
removed. Ceca were incised and cleared of  fecal material 
with ice-cold phosphate buffered saline (PBS). Colons 
were similarly cleared, rinsed with PBS and sectioned. 
Cecum and colon samples were fixed for 24 h in a 10% 
formalin solution and then processed, stained, and scored 
by a board certified pathologist (Dr. Ingeborg Langohr) 
blinded to treatment for degree of  colitis and dysplasia[44]. 
Grades were on a 1 to 4 scale both for inflammation 
(1, no inflammation; 2, mild inflammation; 3, moderate 
inflammation; 4, marked inflammation) and dysplasia 
(1, no dysplasia; 2, low grade dysplasia; 3, high grade 
dysplasia; 4, high grade dysplasia with invasion/adeno-
carcinoma). Briefly, low-grade dysplasia was characterized 
by thickened mucosa with elongated crypts with reduced 
numbers of  goblet cells, but maintenance of  cell polar-
ity and nuclear morphology. High-grade dysplasia was 
characterized by thickened mucosa with elongated, ir-
regularly branching glands, cytological and nuclear atypia 
including loss of  differentiation and polarity, closely ag-
gregated nuclei, and numerous mitotic figures. The two 
scores for colon and two scores for cecum tissue in each 
animal were combined such that a score of  4 indicated 
no inflammation or dysplasia and a score of  16 reflected 
maximal inflammation and neoplasia.

Quantification of serum adipokines by enzyme linked 
immunoabsorbance assay 
Adiponectin and leptin were quantified by enzyme linked 
immunoabsorbance assay in plasma samples from mice 
prior to infection according to the manufacturer’s instruc-
tions (R and D Systems; Minneapolis, MN). Plasma (n = 5 
per group) was diluted 1:10 for leptin and 1:10 000 for adi-
ponectin in reagent diluent. Upon completion of  the assay, 
the plate was read at 450 nm wavelength using a Synergy® 
HT plate reader (Bio-Tek; Winooski, VT).

Immunohistochemistry
Antibodies specific for cyclooxygenase (COX)-2, induc-
ible nitric oxide synthase (iNOS), and F4/80 were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA), 
CD3 from AbCam (Cambridge, MA) and Ki67 from 
Novus Biologicals (Littleton, CO). A rat ABC detection 
kit (sc-2019) was purchased from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA) and remaining secondary antibod-
ies from DAKO (DAKO Co., Carpinteria, CA). All other 
reagents were obtained from Sigma Chemical Co. (St. 
Louis, MO) unless otherwise indicated. 

Five-micron thick sections of  formalin-fixed paraffin-
embedded colon tissue were mounted on coated slides, 
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and dietary differences in macrophage (F4/80) and T 
lymphocyte cell infiltration (CD3), proliferation (Ki67), 
and expression of  COX-2 and iNOS were evaluated us-
ing peroxidase biotin-streptavidin immunohistochemistry. 
Epitope retrieval was carried out either by heating sec-
tions (92-95  ℃) in 10 mmol/L citrate buffer (pH 6.0) 
for COX-2, iNOS, CD3, and Ki67 or with proteinase K 
digestion (Roche biochemicals) for F4/80. Slides were 
subsequently washed, treated with 3% H2O2 and incubat-
ed in 2.5% bovine serum albumin to reduce non-specific 
binding of  antibody. Sections were incubated overnight 
at 4  ℃ with the primary antibody diluted in blocking buf-
fer. After washing, sections were treated with appropriate 
biotinylated immunoglobulins followed by peroxidase-
conjugated streptavidin at room temperature for 45 min 
each. Antigen-linked peroxidase was detected with the 
chromagen 3-3’-diaminobenzidine (DAB; 0.5 mg/mL) 
diluted in 10 mmol/L PBS (pH 7.2) containing 0.015% 
H2O2. 

For quantification of  Ki67+ cells, a researcher blinded 
to treatments evaluated 10-20 full-length crypts/animal. 
The total number of  nuclei (Ki67+ and Ki67‑) lining 
one side of  the crypt and extending from the base of  
the crypt to the lumen was recorded. Proliferative index 
(number of  Ki67+ cells/total cells) was then calculated 
and analyzed. Colonic staining of  COX-2, iNOS, CD3, 
and F4/80 were quantified using Nikon software and 
an inverted light microscope (Nikon; Kanagawa, Japan) 
equipped with a color camera (DS-U2, Nikon; Kana-
gawa, Japan). Using a 20 × objective, areas surrounding 
full length crypts in the proximal colon were traced and 
the positive stained area (total number of  pixels) was 
quantified. Data are expressed as a percentage of  positive 
stained area in relation to the total surface area. For each 
stain, at least 10 measurements/animal were taken.

Statistical analysis
Data for body weight and composition, colitis scores, and 
plasma adiponectin and leptin levels were analyzed with 
analysis of  variance using Prism software (Graph Pad; 
San Diego, CA). Prior to analysis, normal distribution 
of  the data was tested and when appropriate, data were 
transformed prior to statistical analysis. When statistical 
differences were detected, individual comparisons were 
made using Bonferroni’s multiple comparison test. 

RESULTS
Effect of dietary treatment on body fat composition and 
plasma adipokines
Dietary treatments significantly influenced AT stores in 
mice prior to initiation of  H. hepaticus infection. HF-fed 
mice weighed significantly more and had a higher percent 
body fat than CON or CR mice (Table 1). Conversely, 
CR mice weighed less than both HF and CON mice pri-
marily due to lower amount of  AT. 

Dietary treatment also affected plasma levels of  meta-
bolic hormones (Figure 1). Adiponectin was significantly 

lower in CR and HF mice compared to CON mice (Figure 
1B, P < 0.05) whereas plasma concentrations of  leptin 
were lowest in CR and highest in HF mice (Figure 1A, P 
< 0.05). 

Effect of diet treatment on colitis and dysplasia scores 4 
wk post-infection
After 20 wk on dietary treatment, mice were infected 
with H. hepaticus to determine if  pre-infection adiposity 
would influence colitis scores 4 wk following infection. 
Unexpectedly, we found that CR mice had higher mor-
tality rates beginning at 1 wk post-infection (Figure 2). 
Because only 40% of  CR mice (n = 2) survived the infec-
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Table 1  Pre-infection body weights and body composition of 
SMAD3-/- mice after 20 wk on dietary treatment

Diet Weight change (%) Lean tissue (%) Adipose (%)

CON 35 ± 17.8 68 ± 5.0 22 ± 4.0
CR 32 ± 11.8   73 ± 3.0a  14 ± 2.0a

HF 45 ± 18.4   59 ± 4.0d  32 ± 7.0d

aP < 0.05 vs control animals; dP < 0.01 vs control and calorie restricted 
animals. CON: Control; CR: Calorie restricted; HF: High fat.
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Figure 1  Plasma adipokines in SMAD3-/- mice after 20 wk on dietary treat-
ment. A: Average plasma concentrations of leptin between diet groups prior to 
infection. Calorie restricted (CR) mice had significantly lower concentrations, 
whereas high fat (HF) mice had significantly higher concentrations of leptin 
compared to control (CON) mice (P < 0.01); B: Average plasma concentrations 
of adiponectin between diets prior to infection. Both CR and HF diet mice had 
significantly lower concentrations of adiponectin than mice on CON diet (P < 
0.05). aP < 0.05 vs control; cP < 0.05 vs all other groups.
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tion period, we were unable to obtain enough tissue to 
appropriately evaluate colitis in this group. 

HF and CON mice were sacrificed 4 wk following 
infection and dietary differences in colitis and dysplasia 
were scored in the cecum and colon. Compared to the 
uninfected SMAD3-/- mice, CON and HF-fed mice ex-
hibited significant infiltration of  immune cell populations 
into the lamina propria following infection (Figure 3A). 
We found no significant differences in combined scores 
between CON (7.9 ± 1.9) and HF (7.8 ± 2.1) mice fol-
lowing infection (Figure 3B). In order to examine the 
potential effect of  time, we allowed some mice to remain 
infected for up to 6 wk, and compared scores at 4, 5 and 
6 wk post-infection. However, there were no further 
significant changes between or within dietary treatments 
across time (Figure 3C). 

Differences in pre-infection body weight on colonic 
proliferation and inflammatory markers
Immunohistochemistry analysis on proliferation and 
inflammatory markers in colon sections from CON-fed 
uninfected mice and CON and HF-fed mice 4 wk post-
infection are presented in Figure 4. There was no signifi-
cant difference in percentages of  colon epithelia posi-
tively stained for Ki67, a marker of  cellular proliferation, 
or F4/80 macrophages between CON or HF diet mice 
at 4 wk post-infection as compared to uninfected mice. 
A higher percentage of  iNOS and COX-2 immunoreac-
tivity (P > 0.05) and significantly higher levels of  CD3+ 
lymphocytes (P < 0.05) was observed after infection in 
CON and HF fed mice compared to broth-treated mice, 
consistent with the increased colitis scores; however, 
there was no difference between infected animals on ei-
ther diet (Figure 4). 

DISCUSSION
Local and systemic alterations in adipokines are impli-
cated in the pathogenesis of  IBD[16]. In the current study, 
we investigated whether diet-induced changes in adipos-

ity prior to induction of  colitis would influence inflam-
matory changes in the colon of  SMAD3-/- mice. After 
20 wk on dietary treatment, significant changes in body 
composition were observed, with CR mice having the 
least and high fat-fed mice the most body fat compared 
to controls. Consistent with differences in adiposity, 
plasma concentrations of  adipokines were significantly 
altered. Leptin is secreted in proportion to white AT 
mass whereas plasma adiponectin concentrations are 
markedly reduced in obese individuals[45]. In the current 
study, leptin levels were 1.5-fold higher in HF mice and 
4.5 lower in CR mice, whereas low plasma adiponectin 
concentrations were observed in both HF and CR mice. 
Significantly lower levels of  adiponectin were reported in 
individuals with anorexia and bulimia prior to treatment, 
which was restored following refeeding[46], suggesting a 
critical fat mass may be necessary for secretion[46]. 

We next evaluated whether differences in adiposity 
and adipokine levels would influence severity of  colitis. 
We found that restricting caloric intake to 70% that of  
control animals significantly impacted survival of  mice 
following H. hepaticus infection, with only 40% of  mice 
surviving the full infection period. These results were 
somewhat unexpected as moderate calorie restriction 
delays or reduces severity of  autoimmune disorders[47,48], 
prolongs life span[49], as well as inhibiting tumorigenesis 
at several different sites[50,51]. Additionally, Shibolet et al[52] 
found that calorie restricted mice were protected from 
chemically-induced colitis, which was associated with a 
decrease in pro-inflammatory cytokine release and an 
increase in NK1.1 + T lymphocytes. However, in experi-
mental models of  infection, CR increases susceptibility 
to bacterial[53] and parasitic[54] infections, as well as viral 
infections[55-57], consistent with our findings. 

Leptin is recognized to play a pivotal role in both in-
nate and adaptive immune responses by stimulating T 
cell proliferation[58], chemotaxis of  neutrophils[59], NK 
cell maturity and activation[60], differentiation of  den-
dritic cells[61], eicosanoid synthesis and cytokine release 
by monocytes and macrophages[62-64], as well as in pre-
venting thymocyte apoptosis[65]. The increased mortality 
observed in this study was not investigated and is the 
aim for future projects. However, in a parallel study, we 
found baseline NK cell populations are reduced in the 
SMAD3-/- compared to SMAD3+/- mice (Fenton, JI, 
unpublished observations). Therefore, it is possible that 
reduced immune cell populations combined with lower 
circulating leptin in CR mice contributed to immune sup-
pression and reduced capability to mount a response to 
H. hepaticus. In support of  this, Clinthorne et al[56] recently 
reported that short term refeeding restored leptin in CR 
mice, improved survival, and attenuated the decline in 
NK cell function following influenza infection. Low cir-
culating leptin in tuberculosis patients was also associated 
with increased disease severity[66], suggesting a causal rela-
tionship between adiposity, leptin, and immune response. 

The development of  IBD results from a complex 
interaction between genetic, immune and environmental 
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Figure 2  Survival curve of high fat, control and calorie restricted mice 
after infection with Helicobacter hepaticus. Calorie restricted (CR) mice ex-
perienced increased mortality after infection, with only 40% of CR mice surviving 
4 wk post-infection. aP < 0.05 vs baseline. HF: High fat.
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factors. Diet is an important environmental factor in IBD 
pathogenesis; diets high in dairy products, refined sugar 
and fast food are associated with an increased risk of  de-
veloping IBD[67,68]. However, there is little conclusive epi-
demiological evidence for a causal relationship between 
dietary intake and onset of  IBD[68]. Importantly, after the 
onset of  IBD, malnutrition (resulting from decreased 
food intake, malabsorption and increases in both nutri-
ent loss and energy requirements) is common[69]. These 
changes in intake and energy expenditure may result 
from circulating inflammatory mediators associated with 
the pathophysiology of  IBD, such as TNF-α, IL-1 and 
IL-6. These cytokines can increase catabolism and lead to 
anorexia[68,70]. Malnutrition is also associated with adverse 
outcomes in IBD progression, exacerbating immunode-
ficiency, perpetuating malabsorption and increasing risk 
of  infections, particularly via bacterial translocation. This 
differs somewhat from what is modeled in this study. The 
caloric restriction diet met 100% of  all nutrient needs 
and was only deficient by 30% of  energy. The model 
caloric restriction of  experimental-colitis is consistent 
with increased mortality in IBD related to energy deficit 
but not malnutrition[70-73]. Given the importance of  leptin 
and immune function, our data do imply that reduced AT 

and leptin production (directly related to fat cell size and 
number) may further impair innate immune response to 
a pathogen. Similar mortality effects were observed in ca-
loric restriction and influenza infection in mice discussed 
above.

Although low body fat stores and reduced circulat-
ing levels of  leptin may impair immune responses to 
infectious stimuli, elevated leptin and peripheral leptin 
resistance is commonly observed in obese individuals. 
Previous studies suggest that obesity exacerbates colonic 
inflammation[40,74-77]. Increased mesenteric fat and fat 
creeping were also observed in inflamed intestinal regions 
in patients with CD[78]. Additionally, overweight and/or 
obese individuals with CD have more complications from 
and more frequent disease relapses than normal weight 
individuals[41]. In the current study, we did not observe any 
overall changes in colitis severity between control and HF 
mice, despite differences in body fat and serum adipo-
kines. To determine whether general inflammatory mark-
ers were altered, we stained for COX-2 and iNOS, which 
are induced by pro-inflammatory cytokines in a variety 
of  pathological conditions including UC in humans[79,80]. 
Further, we examined colons for T lymphocyte and mac-
rophage infiltration to determine whether higher body fat 
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Figure 3  Effect of dietary treatment on colitis severity in SMAD3-/- mice. A: HE stained sections from the colon and cecum of SMAD3-/- control (CON)-fed mice 
treated with broth and SMAD3-/- CON- or high fat (HF)-fed mice 4 wk post-infection. Four weeks following infection, the number of inflammatory cells in the lamina 
propria is increased in the colon and cecum of both CON and HF diet animals, consistent with mild inflammation (arrows denote). Scale bars represent 100 μm; B: 
Average combined colitis and dysplasia scores between diet groups at 4 wk post-infection. There was no significant difference in theses scores between the CON and 
HF diet treatment groups; C: Average combined colitis and dysplasia scores between CON and HF mice at 4 wk, 5 wk and 6 wk post-infection. There was no differ-
ence between CON and HF diet groups at any point, and there was no effect of time on the scores between diets. H. hepaticus: Helicobacter hepaticus; HE: Hema-
toxylin and eosin.
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Figure 4  Effect of diet on proliferation and inflammatory markers following infection with Helicobacter hepaticus in SMAD3-/- mice. Immunohistochemical 
staining for Ki-67 (A-C), F4/80 (D-F), CD3 (G-K), COX-2 (L-P) and iNOS (Q-U) in proximal colon sections of SMAD3-/- mice fed control (CON) diet and treated with 
broth (A, D, G, L, Q), CON-fed mice treated with Helicobacter hepaticus (H. hepaticus) (B, E, H, J, M, O, R, T), or fed a high fat (HF) diet and treated with H. hepaticus (C, 
F, I, K, N, P, S, U) 4 wk post-infection. Normal appearing proximal colon segments (A-I, L-N, Q-S) and inflamed colon segments with lymphoid infiltrate (J, K, O, P, T, U). 
Scale bars represent 100 μm. There were no significant differences in proliferation indices or in macrophage infiltration. CON and HF diet mice had slightly increased 
staining for CD3+ T lymphocytes, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) post-infection compared to broth-treated controls, but averages 
were not statistically significant between diets (P > 0.05). aP < 0.05 vs CON animals.
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would influence specific subsets of  inflammatory cells. 
Both control and high fat mice treated with H. hepaticus 
had moderately elevated levels of  CD3+ T lymphocytes, 
as well as COX-2 and iNOS immunoreactivity in epi-
thelia-associated myofibroblasts and macrophages, com-
pared to broth-treated mice. However no further changes 
were observed between dietary treatments. We also did 
not observe any differences in the proliferative index in 
the proximal colon segments between treatments, dem-
onstrating that higher body fat does not influence disease 
severity in our model. 

Results from the current study suggest that moder-
ately increased adiposity induced by high fat feeding does 
not influence colitis severity in SMAD3-/- mice despite 
changes in plasma adipokines. Although we were able to 
induce a body fat percentage of  32% in the SMAD3-/- 
mice, this percentage body fat may be insufficient to 
induce chronic inflammation associated with obesity 
observed in other mouse strains that approach 50%-60% 
AT. More importantly, we found that calorie restricted 
mice had a higher mortality in response to infection with 
H. hepaticus. Future studies examining the association be-
tween percent body fat, leptin, and immune responses to 
infectious stimuli leading to IBD are warranted.
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