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Abstract
Butterflies in the family Lycaenidae are often the focus of conservation efforts. However, our 

understanding of lycaenid population dynamics has been limited to relatively few examples of 

long-term monitoring data that have been reported. Here, factors associated with population 

regulation are investigated using a complete record of a single population of the silvery blue, 

Glaucopsyche lygdamus Doubleday (Lepidoptera: Lycaenidae). Adults of G. lygdamus were first 

observed in an annual grassland near Davis, California, in 1982 and were last seen in 2003. 

Relationships between inter-annual variation in abundance and climatic variables were examined,

accounting for density dependent effects. Significant effects of both negative density dependence

and climatic variation were detected, particularly precipitation and temperature during winter 

months. Variation in precipitation, the strongest predictor of abundance, was associated directly 

and positively with butterfly abundance in the same year. Winter temperatures had a negative 

effect in the same year, but had a lagged, positive effect on abundance in the subsequent year. 

Mechanistic hypotheses are posed that include climatic effects mediated through both larval and 

adult plant resources.
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Introduction

There is a long tradition in ecology of 

debating the importance of intrinsic factors

(e.g., negative density dependence) versus 

extrinsic factors (e.g., mortality associated 

with weather) in determining variation in the 

abundance of organisms (Andrewartha and 

Birch 1973; Benton et al. 2006). Many 

researchers now favor a perspective that asks 

under what conditions one or the other type of 

process might be more prevalent, and when 

they might interact (e.g. Ziebarth et al. 2010).

Hundreds of relevant datasets exist, though 

relatively few of these involve butterflies, and 

even fewer involve butterflies in the family 

Lycaenidae (Ehrlich et al. 1972; Hochberg et 

al. 1992; Guiney et al. 2010). Given their 

specialized life histories (e.g., mutualistic

interactions with ants), short life spans, and 

patchy population structure, lycaenid 

population dynamics might differ in important 

ways from other butterflies. Since lycaenids 

comprise a large fraction of Lepidoptera that 

are legally protected (New 1993), there is an 

inherent interest, from a conservation 

perspective, in developing a better 

understanding of the population dynamics of 

lycaenids.

Here we investigate the history of a single 

population of the silvery blue, Glaucopsyche

lygdamus Doubleday (Lepidoptera: 

Lycaenidae). G. lygdamus is obligately 

univoltine, flying in early spring at low 

elevation in Northern California (Shapiro and 

Manolis 2007). Larvae complete feeding and 

pupate by late spring. Pupae remain in 

diapause overwinter, with adults eclosing 

typically in March. This species colonized an 

area near Davis, California in 1981 (adults 

first observed in the spring of 1982) and was 

last seen in 2003. Prior to 1981, the species 

was known briefly from an area north of 

Davis in the early 1970s, but otherwise 

unknown from the immediate region until it 

colonized the focal location of this study. 

Other populations are known within 

approximately 50 km of this site. The dataset 

examined here is considered complete, in that 

it encompasses the colonization and extinction 

of a population. Thus the data is useful for 

addressing the relative importance of climatic 

factors and density dependence in determining 

population fluctuation, persistence, and 

extinction.

Materials and Methods

The focal location for this study was the 

intersection of I-80 and Old Davis Road 

(38.53 N˚ 121.76˚ W), south of Davis, 

California; an annual grassland that includes 

an exotic larval host of G. lygdamus, hairy 

vetch, Vicia villosa Roth (Fabales: Fabaceae)

(Graves and Shapiro 2003). The use of exotic 

hosts by G. lygdamus has increased 

dramatically during the past 60 years, as 

native hosts from the genera Lathyrus and 

Lupinus have become rare throughout much 

of the Central Valley (Shapiro and Manolis 

2007).

One of the authors, AM Shapiro, had been 

monitoring the focal site phenologically since 

1974. After G. lygdamus adults were observed 

in 1982, the site was monitored approximately 

every 3-4 days during the flight season for an 

average of 8.5 visits per year; monitoring has 

continued following extinction in 2003. At 

each visit, a fixed transect was walked and the 

number of adult individuals seen was 

recorded. For our purposes here, “abundance” 

is the total number of individuals observed in 

one year, which corresponds to one flight 

season. One possible bias in such a census 
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technique could result from adult butterflies 

occurring in different parts of the landscape in 

different years, perhaps spatially tracking 

nectar resources. However, the fixed transect 

was designed to be extensive relative to the 

distribution of potential resources that could 

attract the butterflies.

Climatic data was collected from a Davis 

weather station: #2294 in the National 

Weather Service Cooperative Observer 

Program. Weather data for maximum and 

minimum daily temperatures as well as for 

precipitation totals was summarized on both 

an annual (fall-summer) and a seasonal basis 

(December-February, March-May, June-

August, September-November).

Analyses were conducted in two phases to 

investigate associations between climatic 

variables and abundance while accounting for 

density dependence. First, all seasonal 

weather variables (average daily maximum 

temperature, average daily minimum 

temperature, precipitation) from the current 

and previous year as well as abundance in the 

previous year were included in multiple 

regression models, with change in abundance 

relative to the previous year as the dependent 

variable. “Year” does not refer to a calendar 

year, but to a biological year from September-

August. More specifically, these models 

investigated the following predictor variables: 

average daily minimum and maximum 

temperatures and precipitation from fall, 

winter, spring, and summer of year t 1;

average daily minimum and maximum 

temperatures and precipitation from fall, 

winter, and spring of year t (summer of the 

current year was not included as adults are not 

observed past spring); and abundance in year 

t 1. The inclusion of weather variables from 

the previous biological year in analyses is 

justified by the biology of G. lygdamus as 

described above. Davis has a Mediterranean 

climate in which precipitation typically falls 

only from October to April. Rainfall in one 

rainy season thus might affect host plant 

growth in the subsequent spring, which might 

then affect the abundance of adults whose 

larvae fed on those plants the spring after that. 

One-year time lags could easily occur, e.g.,

with the demographic impact of abiotic 

conditions skipping a year. The dependent 

variable for these models was not raw 

abundance. Rather, N was examined, which 

is the change in abundance from the previous 

year, t 1, to the current year, t. Thus, the first 

year for analyses was 1983, the year after 

adults were first observed; the last year for 

analyses was the year after the last adult had 

been recorded. Using this metric of change in 

abundance ( N = Nt – Nt 1) is one of many 

approaches that have been employed in 

studies of density dependence, which should 

be apparent as a negative association between 

Nt 1 and Nt (Ziebarth et al. 2010). In addition 

to the inclusion of N in multiple regression 

models, we have also employed the 

randomization test of Pollard et al. (1987) for 

detecting density dependence (Turchin 1995).

All possible models involving the three 

weather variables from seven seasons—all

four seasons in the previous year and three in 

the current—as well as abundance in the 

previous year were fit to the data. Up to eight 

independent variables were allowed in 

individual models. Models were subsequently 

ranked based on Akaike information criterion

scores corrected for small sample sizes (AICc)

(Sugiura 1978). Assumptions of multiple 

regression were checked, including normality 

of residual error and collinearity of predictors, 

which was evaluated using variance inflations 

factors. These were not checked for all 

possible models, but were investigated for the 
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Figure 1. Annual variation in abundance (solid line) of adult silvery 
blue (Glaucopsyche lygdamus) butterflies at Old Davis Road and annual 
total rainfall (gray shading). Open diamonds are predicted points 
from the best-fitting multiple regression model (see Table 1); at 
points where the model predicts extinction, the points are shown 
offset below zero (i.e., 1991). High quality figures are available online.

Figure 2. (a) Illustration of Glaucopsyche lygdamus life cycle (relative 
timing of adult, larval, and pupal stages) and path model relating 
change in adult abundance at time t (relative to the previous year) to 
the following weather variables: winter average daily maximum 
temperature in year t 1; winter precipitation as well as winter 
average daily minimum temperature in year t. Adult abundance at t 1 
is the count of individuals in each spring, while variation in abundance 
in year t is expressed as N, or the change in abundance from t 1 to 
t (see text for more details). Path coefficients are shown with dashed 
lines for the negative coefficients (*p < 0.05; **p < 0.01). R2 for Nt 1

and N in this model are 0.25 and 0.81, respectively. Also, see Table 
1 for results from a multiple regression model including the same 
variables. High quality figures are available online.

subset of best-fitting models as judged by 

Akaike information criterion scores.

Following multiple regression analyses, 

specific weather variables were identified as 

having the strongest associations with 

abundance, and used in subsequent path 

analyses, or structural equation models. 

Structural equation modeling is useful in 

comparing models with different 

combinations of connections among variables, 

and differs from multiple regression in 

accounting for relationships among predictor 

variables and including multiple dependent 

variables (Shipley 2000; Grace 2006). These 

models included the subset of weather 

variables identified from multiple regression 

models, as well as abundance in the previous 

year (Nt 1) and the change in abundance from 

one year to the next ( N). By exploring 

connections among these variables with 

structural equation modeling, we were able to 

verify and visualize complex relationships 

between variables across years. Structural

equations were modeled using AMOS version

5 (IBM, http://www-

01.ibm.com/software/analytics/spss/products/s

tatistics/amos/), and multiple regression 

analyses were performed in JMP version 8

(JMP, www.jmp.com).

Results

The best-fitting multiple regression models 

examining weather and abundance are shown 

in Table 1. Judging by the standardized beta 

coefficients associated with each variable, as 

well as the consistency of variable inclusion in 

the best models, the most powerful predictors 

were abundance in the previous year (Nt 1),

average daily maximum temperature for the 

previous winter, precipitation in the current 

winter, and average daily minimum 

temperature in the current winter. These same 

weather variables retain their importance in 

lower-ranked models, which are not shown. 

Among those predictors, annual variation in 

winter precipitation tended to have the 

strongest association with abundance; 

variation in precipitation is illustrated in 

Figure 1 along with variation in adult 

abundance and fitted values from the best-

fitting multiple regression model. The
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Table 1. Results from multiple regression models investigating the association between variation in abundance and weather 
variables.

Predictor variables were average daily precipitation, maximum and minimum temperatures both in the current year (time t) and 
across years (including weather from the previous year, time t-1).  Also included as a predictor was abundance in the previous 
year (Nt-1) to account for density dependence.  The response variable was N, or the change in abundance from one time step 
to the next, see text for details.  The best ten models (ranked by AICc score, with lower scores indicating a better model) are 
shown here with AICc and R2 values, as well as standardized beta coefficients for the terms included in each model (* = P <
0.05, ** = P < 0.01, *** = P < 0.001).  Columns are only shown for weather variables included in these best ten models (e.g., fall 
from the previous year is not represented here).

Table 2. Pearson product-moment correlation coefficients between all weather variables shown in Table 1.

Significance of individual coefficients is indicated with asterisks (* = P < 0.05, ** = P < 0.01, *** = P < 0.001).  Three correlations 
are not shown within time t, as they are redundant with the same correlations shown within time t-1; these involve spring
maximum temperatures, spring precipitation, and winter minimum temperatures.

importance of density dependence was 

supported by results from a randomization

test: the observed correlation between Nt 1

and N was 0.56 (p < 0.01; 10,000 

permutations) (Pollard 1987).

Multiple regression models are, of course, 

sensitive to highly correlated predictor 

variables. However, variance inflation factors 

were low—rarely greater than five—

suggesting that these results are not biased by 

multicollinearity. Furthermore, Table 2 

presents simple correlations among the subset 

of weather variables from the best models; 

correlations among predictors are generally 

but not always low. 

Following the results from initial analyses, 

subsequent analyses using structural equation 

modeling focused on abundance in the 

previous year, change in abundance in the 

current year relative to the previous year 

( N), and the three weather variables 

mentioned above as most predictive in 

multiple regression models (the abundance 

variables are endogenous, the weather 

variables are exogenous). Figure 2 is an 

illustration of one possible path model 

involving these variables. Although 

containing all of the same variables as the best 

multiple regression model (Table 1), the 

model shown in Figure 2 allows us to 

additionally consider both the direct and 

indirect connections between temperatures in 

the previous winter and change in abundance 
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in the current year. On the one hand, there is a 

negative association between previous winter 

temperature and abundance in that year (path 

coefficient 0.49, Figure 2). However,

combined with negative density dependence

( 0.44), this results in an indirect positive 

effect of average daily maximum temperatures 

from the previous year. After accounting for 

that indirect effect, the model suggests an 

additional, direct positive effect of previous 

temperatures (path coefficient 0.40). 

The model shown in Figure 2 was compared 

to two other models. The first had all of the 

same paths as in Figure 2 minus the 

connection between previous winter 

temperature and abundance in the previous 

year. The second model had the paths shown 

in Figure 2 minus the direct connection 

between previous winter temperature and N.

Judging by Akaike information criterion 

scores, the model shown in Figure 2 had the 

best fit to the data: 27.03 for the model in 

Figure 2, 30.69 for the model lacking the 

direct connection between previous 

temperature and N, and 34.42 for the model 

without the path between previous winter 

temperature and abundance in the previous 

year. Although not illustrated in Figure 2, all 

models included correlations between weather 

variables.

Discussion

The relationships that are reported here 

between abundance and weather variables 

involve potentially complex direct and 

indirect effects, likely mediated through 

different life history stages (Kingsolver 1989). 

One of the more pronounced positive 

associations is between winter precipitation 

and a change in abundance ( N) in the current 

year relative to the previous year (Table 1, 

Figure 2). G. lygdamus caterpillars have

completed development by late spring, and are 

pupae throughout the winter (see life cycle 

illustration in Figure 2). Thus the positive 

effect of precipitation is not an effect of 

enhanced growth of larval hosts. Instead, the 

positive relationship between precipitation

and the numbers of butterflies observed in the 

spring could be driven by a number of factors, 

including densities of natural enemies such as 

parasitoids, which might be depressed by 

winter rains resulting in higher larval and 

pupal survival. Another possibility is that 

winter precipitation has a positive effect on 

the availability of nectar resources in the 

spring, which could be associated with longer 

adult life spans and reduced emigration from 

the site. Both increased life span and reduced 

emigration could result in greater numbers of 

butterflies observed. The availability of nectar 

could also influence population dynamics 

more generally by enhancing the fecundity of 

females (Murphy et al. 1983; O’Brien et al.

2004), leading to a density dependent effect 

on the following year.

The effects of winter temperatures appear to 

be manifest through both direct and indirect 

effects. There is a direct negative association 

between winter temperatures and abundance 

in the same year (see path coefficients 0.49

and 0.59, Figure 2). Many mechanisms are 

possible, including desiccation of pupae, 

leading to mortality and lower adult numbers. 

In contrast, there is a direct positive 

association between winter temperature in the 

previous year and abundance in the 

subsequent year. This direct effect could be 

mediated through the larval stage, with 

warmer conditions in one year being 

associated with greater plant growth and 

increased larval survival through the 

subsequent spring, translating into increased 

adult numbers in the next year. Roy et al. 

(2001) similarly found positive associations 
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for a number of butterfly species between 

temperatures in the previous year and 

abundance in the subsequent year.

The observed associations with weather 

coexist with an effect of density dependence

(Figure 2) that is generally weaker than the 

weather effects, but still significant and 

potentially important for the observed 

dynamics of the G. lygdamus population

(Figure 1). It is particularly interesting to note 

the indirect positive effect that previous 

winter temperature has on the dynamics of the 

current year’s population (summarized as N)

when mediated through the density dependent

effect of last year’s population; the path from 

previous winter temperature to previous 

density is negative, which becomes a positive 

effect on the current year, N, when 

combined with the negative connection 

between the previous year and the current

year. A role for density dependence is not 

always considered in studies of insect 

population dynamics and weather, perhaps 

due to a perception that insects might be more 

often regulated by external factors (Nowicki 

et al. 2009). The results reported here are a 

reminder that density dependence should not 

be neglected even in highly fluctuating 

invertebrate populations.

We have suggested hypotheses to explain 

phenological patterns that could be tested with 

observational or experimental data from other 

G. lygdamus populations. Lacking other 

ecological data, such as abundance of nectar 

or predators, and data from other G. lygdamus 

populations, definitive conclusions cannot be 

drawn about the causes behind the 

colonization and extinction of our focal 

population. Fluctuations in precipitation and 

temperature certainly played an important 

role, however, in the population fluctuations 

and extinction of the population. The open 

diamonds in Figure 1 correspond to the 

predicted values from our top multiple 

regression model (Table 1), which illustrates 

the good fit of our model in general and 

indicates years in which our model would 

have predicted extinction for the population. 

Of course the model is not perfect, and it is 

interesting to note that the year after the last 

butterfly was observed was predicted to be a 

rebound year (Figure 1). Sensitivity to 

precipitation has been implicated in other

extinctions of butterfly populations (Ehrlich et 

al. 1980), including the extinction of a 

montane G. lygdamus population that was 

anecdotally attributed to a single snowstorm 

(Ehrlich et al. 1972). The results reported here 

are also consistent with other recent studies of 

butterflies that have found the importance of 

density dependence to be comparable to the 

importance of abiotic conditions in explaining 

variation in abundance (e.g. Nowicki et al. 

2009).

In summary, we found a complex relationship 

between butterfly abundance and weather that 

poses a serious challenge both for 

conservation and predictions associated with 

global climate change. As California, for 

example, gets warmer and drier (Ackerly et al. 

2010), it is unclear what impact these changes

will have on G. lygdamus populations. The 

positive association with precipitation might 

lead to population declines in a drier region, 

or more complex associations (possibly

mediated through density dependence) with 

temperature might somehow compensate.

While there is much to learn, these results and 

other fine-scale studies of butterfly 

populations reveal a level of complexity that 

complements broader and more regional 

analyses of threats and declines (Thomas and 

Abery 2004; Thomas et al. 2004; Parmesan

2006; Forister et al. 2010).
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