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Abstract
When employing model selection methods with oracle properties such as the smoothly clipped
absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing
parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression
function is sparse and the signals large, such cross-validation typically works well. However, in
regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the
true regression functions, while thought to be sparse, do not have large signals. We demonstrate
empirically that in such problems, the number of selected variables using SCAD and the Adaptive
Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising
variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly
questions the suitability of performing only a single run of m-fold cross-validation with any oracle
method, and not just the SCAD and Adaptive Lasso.
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1. INTRODUCTION
1.1 Model Selection via Penalization

Traditional model selection procedures such as forward, backward, and stepwise regression
is practical when the number of parameters is small; however, it can be cumbersome with
high dimensional parameter vectors. In contrast, penalization methods are more efficient in
high-dimensional contexts such as the genomics context in this article.
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In the typical regression problem, estimation of the parameters involves the minimization of
the objective function, which can be represented by the sum of the squared residuals, namely

(1)

where || · || is the Euclidian norm, Y is a vector of responses, X is a matrix with column rank
p, the number of predictors, and β is a parameter vector. In this problem the objective
function imposes no condition on the size of the parameter vector, β; however, one can
impose such a condition to reduce the size of certain coefficients and completely zero out
others, thereby performing model selection via constrained optimization. Tibshirani (1996)
proposed adding such constraints to (1) and called it the “least absolute shrinkage and
selection operator,” or Lasso. In his article, Tibshirani proposed the minimization of the

objective function (1) but subject to the condition that , where λ ≥ 0. This
constrained minimization problem is equivalent to solving the unconstrained Lagrangian
which is

(2)

In (2) the parameter λ is called the penalty because depending on its size we can reduce or
completely zero out the magnitude of some of the regression coefficients βj. If we replace λ|
βj| in (2) with a generic function pλ(| βj|), which we will refer to as the penalty function, then
expression (2) becomes the penalized form of the least squares problem. If we let the penalty
function pλ(| βj|) = λ|βj|, then we are back to the Lasso; however, other specifications of this
penalty function have improved the performance of the penalized least squares problem.
Indeed, one can select a penalty function so that, as the sample size increases and the
parameters remain fixed, estimates of the regression parameters eventually match the
estimates that would have been obtained had we known which variables were conditionally
independent of the outcome. This is called the oracle property. There are now many such
oracle procedures, but here we focus on two of them, the smoothly clipped absolute
deviation (SCAD) method of Fan and Li (2001) and the Adaptive Lasso of Zou (2006). Both
possess the oracle property and their respective penalty functions improve estimation by
reducing bias in the parameter estimation, increase sparsity by zeroing out coefficients of
small size, which in turn reduces complexity, and are continuous. The last requirement is
necessary for stability in model selection (Fan and Li 2001). SCAD uses a spline function
with knots at λ and aλ as its penalty function and its derivative is given by

(3)

Typically, the constant a = 3.7 is used in practice (Fan and Li 2001). The Adaptive Lasso
uses as its penalty function

(4)

where βj,OLS is the ordinary least squares estimate of βj.
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In common among these penalization methods is the necessity of determining the value of
the penalty, λ, that minimizes the appropriate objective function. It is customary to use
cross-validation to determine the value of such a parameter. Specifically, m-fold cross-
validation partitions the available observations into a prespecified, fixed, number of sets, m,
each with a roughly equal number of observations and determines the prediction error in
each set by using the observations in the m − 1 other sets to fit the model. If we are
interested in determining the value of λ that gives the smallest prediction error, we would
specify a set of values for λ to determine the prediction error using cross-validation for each
value and select the λ with the smallest prediction error.

However, we have found that one application of cross-validation to select λ, and therefore
the model parameters associated with that λ, can be quite variable, even when used with
oracle methods such as SCAD and Adaptive Lasso. We present empirical evidence of the
performance of cross-validation when used to select the penalty of the two oracle methods
introduced. In what follows we present our application of penalization in a genomics
context, and rather than linear regression such as in (1), we will focus on logistic regression.

1.2 Penalization in the Context of SNP Data
Consider a logistic regression model of the form

(5)

where H(·) is the logistic regression function and X is a vector, possibly of high dimension.
Interest often focuses of course on selecting those components of X whose corresponding
regression parameters are nonzero. For subject i, Xi = (xi1, …, xip)T and  = (β1, …, βp)T.

The Adaptive Lasso (Zou 2006) and SCAD are two methods that have the property of an
“oracle” method (Fan and Li 2001), that is, as the sample size n → ∞, it selects with
probability one the correct regression model and the nonzero estimates are asymptotically
normal with the same covariance matrix as if the nonzero coefficients were known a priori.
Both the SCAD and Adaptive Lasso maximize a penalized log-likelihood

(6)

where the appropriate penalty function for each method is given in (3) and (4).

These methods involve a smoothing parameter that has to be estimated from the data, such
as λ in (6), and this is often achieved by a variant of cross-validation. Often, m-fold cross-
validation is used, where m = 10 is a standard choice; see, for example, James et al. (2009)
for a recent example. In this case, given the data, the estimated value of λ, λ ̂, is a random
variable depending on the random partitioning of the data in the m-fold cross-validation
algorithm. It then follows that the number of nonzero coefficients selected by maximizing
(6) using λ ̂, N(λ ̂), is also a random variable.

In problems where the sample size is large, and the signals sparse but large, N(λ ̂) tends to
have small variability. However, in logistic regression association studies involving Single
Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse,
do not have large odds ratios. They are instead unlikely to be larger than 1.5, corresponding
to a regression parameter of log(1.5) = 0.4. When signals are sparse but small the question

Martinez et al. Page 3

Am Stat. Author manuscript; available in PMC 2012 February 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we address is as follows: should 10-fold cross-validation in implementing oracle methods
such as the SCAD and the Adaptive Lasso be recommended?

We investigate this issue empirically. In Section 2.1 we apply the SCAD and Adaptive
Lasso to a case-control study with 23 SNP. We find that the number of nonzero estimated
coefficients, N(λ ̂), is highly variable from one cross-validation to another, and implausibly
too large. In Section 2.2, we perform a simulation study linked to the case-control example,
with similar results. We also use the BIC method of selecting the penalty parameter outlined
by Wang et al. (2007) for the SCAD method.

Our conclusion, summarized in Section 3, is that performing only a single run of 10-fold
cross-validation with oracle methods such as SCAD and the Adaptive Lasso can be a
dangerous statistical practice. As we see in the analysis of the case-control data, when small
signals are expected it is far better to run cross-validation multiple times to get a better
picture of what really is going on in the data. This opens up the question of how to do model
selection and parameter estimation in sparse data with modest signals.

2. EMPIRICAL WORK
2.1 Analysis of Prostate Cancer Data

The data used here are from an ongoing population-based case-control study of prostate
cancer that will be analyzed scientifically in another forum. The study has 23 SNP in the
8q24 chromosomal region and a total sample size of n = 7667, with approximately half cases
and controls. In single variable logistic regressions, all of the SNP were statistically
significant and most had p-values much smaller than the nominal level. The aim of the study
is to estimate how many independent effects were in the dataset. The SNP were not
independent of one another. They occur in blocks of size (5, 1, 1, 3, 7, 2, 1, 1, 1, 1), with
high correlations within blocks, typically over 0.6 and as high as 0.9, see Table 1 for more
details.

Table 2 displays the number of variables selected by the Lasso, Adaptive Lasso, SCAD and
Full SCAD for 1000 different crossvalidation runs. The SCAD here represents the
minimization of the SCAD objective function using the one-step local linear approximation
method of Zou and Li (2008) and full SCAD is the original algorithm of Fan and Li (2001).
The number of nonzero estimated coefficients N(λ ̂) is both extremely variable and
surprisingly large, for example, regardless of what method is used 8 or more SNP are
selected over 50% of the time. We have computed the percentage of times each variable was
selected over the 1000 runs of the Adaptive Lasso. For example, variable 23 was selected in
every cross-validation run, while variable 22 was selected in over 90% of the runs but less
than 100%. If one insists that a variable appears at least 90% of the time, the data suggest 5
independent effects. In contrast, if we use BIC to select the penalty parameter, λ, SCAD and
Full SCAD only select 1 independent effect.

Graphical summaries for the SNP data are given in the top panels of Figure 1 for the Lasso
and Figure 2 for the Adaptive Lasso. In both figures, the bottom half of the plot shows a
density estimate of the selected values of the smoothing parameter over the 1000 cross-
validation runs. The top half of each plot shows the size of the coefficient estimates relative
to their ordinary logistic regression estimates as λ is varied. The variability of the estimates
of λ and the variability in the number of nonzero estimates is clear from these figures. One
striking feature of these figures is that the Adaptive Lasso smoothing parameter estimates
are much more variable than those of the Lasso.
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2.2 Simulation Study
In our simulation study, we set the sample size n = 10, 000, and selected the covariates by
sampling with replacement from the controls in the SNP data. We set the regression
parameter  = (0, 0, −0.15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.15, 0.20, 0, 0, 0, 0, 0, 0, 0, 0, 0.40)T, so
that there are four independent effects, with relative risks (1.16, 1.16, 1.22, 1.50), where the
relative risk is the exponential of the regression coefficient. These are roughly in accord with
the overall estimates of four SNP in the actual data.

With the somewhat greater sample size we expect the SCAD and Adaptive Lasso to have
better properties than in the data, but as seen in Table 3, even though there are only 4
independent effects, the Adaptive Lasso with 10-fold cross-validation selects 8 or more
variables more than 50% of the time and the one step SCAD selects 14 more than 80% of
the time. In general the full SCAD selects a smaller number of variables than all other
methods, but still selects at least 10 more than 50% of the time, see Table 3. In addition, if
we use BIC to select the penalty λ in SCAD, fewer variables are chosen, however at least 7
are chosen more than 50% of the time, see Table 4, so that BIC is not a panacea.

2.3 Summary
The data analysis of Section 2.1 and the simulation of Section 2.2 show that 10-fold cross-
validation, even with oracle methods such as the Adaptive Lasso and SCAD, will have a
quite variable number of nonzero parameters, and it is not readily the case that independent
effects can be detected by the parameter estimates alone. However, with 1000 runs of cross-
validation, the overall summary measures and graphs suggest that a clearer picture will arise.
In practice, of course, it would not be desirable to run 1000 regularized logistic regressions,
for speed if nothing else, and this opens up the issue of how to actually analyze such data.

3. DISCUSSION
SCAD and the Adaptive Lasso are consistent model selectors. There has been some
theoretical work about their behavior when the effects are sparse but small in the contiguous
sense (Hjort and Claeskens 2003; Leeb and Pötscher 2005; Pötscher and Leeb 2007).
However, as far as we are aware, there has been no study of the Adaptive Lasso and SCAD
in the sparse but small effect case when the smoothing parameter is selected by the common
method of m-fold cross-validation. We have restricted our attention to 10-fold cross-
validation, but in our examples similar results are found for m = 20 and m = 5.

Our empirical evidence is admittedly limited, but we strongly question the suitability of
performing only a single run of 10-fold crossvalidation with any oracle method, and not just
SCAD and the Adaptive Lasso.
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Figure 1.
Plot for Lasso for the SNP data. Each colored line on the top half of the graph represents a
different coefficient and shows the magnitude of that coefficient, relative to the ordinary
logistic regression estimate, when the smoothing parameter λ varies. The smaller lambda,
that is, the larger −log(λ), allows more variables to be included in the model. The bottom
half of the graph shows the negative of the normalized density function to demonstrate the
range of λ that were selected in the 1000 cross-validation runs. The online version of this
figure is in color
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Figure 2.
Plot for Adaptive Lasso for the SNP data. Each colored line on the top half of the graph
represents a different coefficient and shows the magnitude of that coefficient, relative to the
ordinary logistic regression estimate, when the smoothing parameter λ varies. The smaller
lambda, that is, the larger −log(λ), allows more variables to be included in the model. The
bottom half of the graph shows the negative of the normalized density function to
demonstrate the range of λ that were selected in the 1000 cross-validation runs. The online
version of this figure is in color
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Table 2

Results of analysis of prostate cancer data after 1, 000 10-fold crossvalidation runs of Lasso, Adaptive Lasso,
one step SCAD, and full SCAD. The entries are the number of times there are k nonzero nonintercept
parameters. The value of k is shown in the first column.

Distribution of number of parameters selected

Nonintercept variable Lasso Adaptive Lasso SCAD Full SCAD

1 0 0 11 15

2 0 0 1 53

3 0 1 2 74

4 0 22 28 152

5 0 231 17 39

6 0 73 38 148

7 2 81 0 47

8 0 179 167 0

9 336 146 173 184

10 654 65 0 0

11 2 125 0 0

12 0 64 563 0

13 0 6 0 0

14 0 0 0 0

15 6 7 0 0

16 0 0 0 288

17 0 0 0 0

18 0 0 0 0

19 0 0 0 0

20 0 0 0 0

21 0 0 0 0

22 0 0 0 0

23 0 0 0 0
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Table 3

Results for the simulation in Section 2.2 using the Lasso, Adaptive Lasso, one step SCAD, and full SCAD.
The entries are the number of times there are k non-zero non-intercept parameters. The value of k is shown in
the first column.

Distribution of number of parameters selected

Nonintercept variable Lasso Adaptive Lasso SCAD Full SCAD

1 0 0 3 11

2 0 2 0 36

3 1 13 0 61

4 1 22 9 131

5 6 44 23 107

6 17 43 57 93

7 48 58 86 83

8 69 57 92 69

9 81 73 79 70

10 92 74 83 43

11 82 76 131 25

12 79 84 127 26

13 95 79 106 45

14 84 52 107 54

15 67 33 59 55

16 61 30 24 48

17 37 13 9 32

18 48 13 3 7

19 39 13 1 3

20 37 6 1 1

21 24 3 0 0

22 15 1 0 0

23 17 211 0 0
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Table 4

Results of simulation in Section 2.2 using BIC to select the penalty in the one step SCAD and full SCAD. The
entries show the number of times there are k nonzero nonintercept parameters out of 1000 simulations. The
value of k is shown in the first column.

Distribution of number of parameters selected

Nonintercept variable SCAD Full SCAD

1 0 0

2 0 0

3 267 384

4 63 65

5 87 23

6 60 10

7 40 30

8 27 34

9 35 55

10 53 59

11 67 64

12 72 46

13 71 45

14 68 38

15 57 43

16 21 45

17 8 27

18 3 23

19 1 3

20 0 2

21 0 2

22 0 2

23 0 0
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