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Abstract
Many aspects of visual coding have been successfully predicted by starting from the statistics of
natural scenes and then asking how the stimulus could be efficiently represented. We started from
the representation of color characterized by uniform color spaces, and then asked what type of
color environment they implied. These spaces are designed to represent equal perceptual
differences in color discrimination or appearance by equal distances in the space. The relative
sensitivity to different axes within the space might therefore reflect the gamut of colors in natural
scenes. To examine this, we projected perceptually uniform distributions within the Munsell,
CIEL*u*v* or CIEL*a*b* spaces into cone-opponent space. All were elongated along a bluish-
yellowish axis reflecting covarying signals along the L-M and S-L+M cardinal axes, a pattern
typical (though not identical) to many natural environments. In turn, color distributions from
environments were more uniform when projected into the CIEL*a*b* perceptual space than when
represented in a normalized cone-opponent space. These analyses suggest the bluish-yellowish
bias in environmental colors might be an important factor shaping chromatic sensitivity, and also
suggest that perceptually uniform color metrics could be derived from natural scene statistics and
potentially tailored to specific environments.

Introduction
Uniform color spaces are designed with the aim that equal distances in the space correspond
to color differences of equal perceptual magnitude. Color differences do not vary linearly
with changes in the stimulus spectrum, and thus it is well known that linear color spaces, for
example based on the spectral sensitivities of the cones or cone-opponent channels, are not
perceptually uniform. Uniform spaces must therefore apply distortions of the cone
excitations in order to compensate for the variations in visual sensitivity and appearance for
different stimuli and viewing conditions.

A number of uniform color spaces have been developed and are in wide use1–4. The
structure of these spaces is based on empirical measurements of color discrimination and
appearance. For example, the Munsell and Natural Color systems are color order systems
and were derived from scaling experiments measuring the suprathreshold appearance
differences between samples differing along defined dimensions corresponding to lightness,
value, or chroma or to the Hering primaries5, 6. Other spaces such as CIE L*u*v* and
L*a*b* were based on transformations of the CIE 1931 tristimulus values so that threshold
color differences were equated in different regions of color space7, 8, and are designed to
provide a uniform metric for representing color differences. Different perceptual color
spaces or order systems thus approximately embody the characteristics of human color
vision at threshold and/or suprathreshold levels. But what gives rise to these characteristics?
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A powerful approach to understanding visual coding has been to characterize the properties
of the visual environment and then ask what these properties predict about visual
representations9–11. Many previous studies have adopted this strategy to specifically
examine the visual encoding of color. For example, the distribution of intensity levels or
chromaticities in natural scenes is not flat but instead is strongly peaked, so that most points
in the scene have lower contrast. The most efficient representation of contrast should give
equal importance to all possible levels of the channel’s output, and this predicts the
sigmoidal response of the neural contrast response (so that the response changes rapidly at
stimulus levels that are common while saturating at levels that are rare)12, 13. The
probability distributions of colors in scenes have also been used to infer the number and
organization of semantic categories required to represent color14, 15 and lightness16. Similar
arguments have been used to predict the relative sensitivity to different color directions
based on the relative range of the stimulus distribution along different axes (e.g. so that
sensitivity to the cone contrasts signaling chromatic differences is much higher than for
luminance differences because the available chromatic contrasts are much more
restricted)13. Moreover, redundancy reduction has provided a functional account of the
transformation of the cone responses into an opponent representation17–23, while
independent components analysis of scene statistics has been used to predict the color and
spatial characteristics of cortical cells24. Analyses based on natural scene statistics have also
been used to derive the spatiochromatic properties of receptive fields25–28 and spatial color
contrast29, as well as to infer the interdependence of different perceptual attributes defining
color30.

From this perspective, uniform color spaces are of potential interest because they should
reflect visual representations of color that are matched to properties of the color
environment. For example, the relative scaling along different axes should reflect the gamut
of color signals along these axes. The spaces might therefore provide clues about the
structure of the environment that the visual system is calibrated for. We were specifically
interested in what these spaces might suggest about the dominant axis of color variation in
the environment. In many natural scenes colors tend to vary primarily along bluish-
yellowish axes, which correspond to variations in the longwave-sensitive (L) cones opposed
by signals in both the medium- (M) and shortwave-sensitive (S) cones22, 31, 32. If the
perceptual scaling of color were matched to this variation, then we might expect these
spaces to reveal reduced sensitivity for such axes. To test this, we projected distributions
that were perceptually uniform by the metrics of different spaces, into cone-opponent space,
and then compared these predicted distributions to the color variations observed in natural
images. Conversely, we also started with empirically defined natural color distributions and
asked how evenly sampled they became when projected into perceptually uniform color
spaces.

Methods
Color spaces

We analyzed three common uniform color spaces: the Munsell color system, CIE 1976
L*u*v* and CIE 1976 L*a*b*. For each we generated a set of colors based on a uniform
sampling within a sphere defined by the lightness and chromatic dimensions of the space.
For the Munsell space points were sampled in cylindrical coordinates and were based on
tabled values of Munsell coordinates. For L*u*v* and L*a*b* we instead sampled in much
finer steps along Cartesian coordinates within a sphere. Differences in sampling density
between the spaces were thus arbitrary but do not affect the analyses. The sphere was
centered on a presumed adapting background corresponding to (0.33, 0.329), and had a
radius of 4 in value and chroma (Munsell) or 25 in delta E (for CIE Luv and Lab).
Coordinates within each space were converted into the corresponding values in a scaled
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version of the linear cone-opponent space of MacLeod and Boynton33 and Derrington,
Krauskopf and Lennie34. The latter represents color in terms of contrast (relative to the
adapting background color) along the three cardinal axes of early post-receptoral color
coding: an achromatic axis (L+M+S) and two chromatic axes defined by the opposing
signals in long- and medium-wavelength sensitive cones (L−M), or the opposing signals in
the short-wavelength cones vs. the L and M cones [S-(L+M)]35. The relative scaling of the
three axes is arbitrary or task-specific. For our analysis we used the scaling from our
previous measurements of natural color distributions22, 31, which in turn was chosen to
roughly equate sensitivity and adaptation along the different axes21. Coordinates in the
space are defined by:

where rmb and bmb are the coordinates in the MacLeod-Boynton diagram and (0.6568,
0.01825) the MacLeod-Boynton chromaticity of Illuminant C.

After projection into the cone-opponent space, the set of contrasts were analyzed to estimate
the principal components of the distribution as well as the relative variance along the
principal axes.

Results
Figure 1 shows the projections into the cone-opponent space of color distributions that are
uniform within the Munsell, CIE L*u*v* or CIE L*a*b* spaces. The three columns plot the
coordinates along the three different pairs of cardinal axes. To examine the bias in the
distributions, we estimated the angles of the three orthogonal principal axes of the contrast
variations. These are shown by the solid lines within each distribution. For all 3 spaces, the
color distributions become strongly elongated along the second and fourth quadrants of the
cone-opponent space. We refer to variations between these quadrants in general as a “bluish-
yellowish” variation, since unique blue falls in the second quadrant and unique yellow in the
fourth quadrant of our cone opponent space36. For the uniform spaces the principal axis is at
−29 deg (Table 1). This is not a pure blue-yellow axis but instead corresponds to a color
variation roughly from bluish-green to orange, though again to variations in the L cones
opposed by both the S and M cones. Thus all 3 spaces predict a weaker sensitivity to this
color direction, insofar as larger differences in cone excitation along this axis are required
for the same perceptual difference.

Consistent with this shallow angle, the variance in color signals along the L−M axis is
roughly 1.4 times greater than contrasts along the S-L+M axis. Note that the scaling within
the cone-opponent space was based on estimates of the relative sensitivity to the two axes21,
and thus this relative sensitivity is at least approximately preserved in each of the uniform
spaces. That is, the spaces give roughly equal perceptual weight to the independent signals
along the cardinal chromatic axes. This is very different from the relative weights in terms
of metrics such as cone contrasts, for which the relative sensitivity to signals along the
cardinal axes is markedly different37, 38.

The perceptually uniform distributions share similar characteristics - and important
differences - to the distributions of colors in natural environments. For example, Figure 2
plots the distribution of chromaticities (i.e. the S vs. LM plane) within the same cone-
opponent space for collections of outdoor scenes sampled by Webster, Mizokami, and
Webster31. The four distributions were measured for two locations (Western Ghats in India
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or the Sierra Nevadas in the US), and at two different times of the year (corresponding to
“wet” and “dry” seasons). Details of these images and analyses are given in Webster et al31.
All four of the natural color distributions again have a strong orientation along the negative
diagonal of the space, in part reflecting the variation from sky to earth, (though this bias
persists in the color distributions restricted to earth)31. There is thus a rough qualitative
agreement between the color bias in the scenes and the bias predicted by uniform color
metrics. However, chromatic contrasts in the natural distributions are more strongly tilted
toward the vertical axis, with angles ranging from −45 deg or more. Thus the scenes had a
higher relative variance in S-L+M contrasts than predicted by the spaces.

If the “bluish-yellowish” bias in uniform spaces reflected scaling that (albeit roughly)
matches the perceptual gamut of color to the range of colors in natural scenes, then the color
distributions taken from scenes should become more uniform when projected into the
perceptual spaces. To test this, we converted the color distributions for the four
environments into CIE L*a*b*, and then compared the shapes of the distributions within the
uniform vs. cone-opponent space. To ensure that this analysis was not affected by the
arbitrary choice of scaling along the cone-opponent axes, we first converted each of the four
raw distributions shown in Figure 2 by weighting the relative contribution of the separate
sky and earth color distributions for each environment so that the mean chromaticity was as
close as possible to white39. Next, we rescaled the cone-opponent axes so that the RMS
contrast along each axis was equated. This allowed the distributions to be as close as
possible to spherical in the linear cone-opponent space (since they were now forced to have
equal radii along the three cardinal axes). Finally, we measured how uniform the resulting
distributions were from the ratio of the variances along the principal and orthogonal axes in
the chromatic plane. A ratio of 1 corresponded to an effectively circular distribution, while
values greater than 1 corresponded to distributions that were instead elliptical and thus less
uniform These ratios are shown in Table 2 and compared to the ratios taken when the same
distributions were projected into CIE L*a*b*. For all four environments the chromatic
variance along the principal and orthogonal axes is more similar within the uniform color
space. That is, the natural color distributions are themselves more uniform when represented
by a perceptually uniform color space such as CIE L*a*b*.

Discussion
In this study we started with the premise that uniform color spaces embody the
transformations of the cone signals required to efficiently represent the statistics of color
distributions in the observer’s environment, and then asked what kind of color environment
the spaces implied. The general structure of these spaces shows important parallels with the
structure of color in natural scenes. This suggests that at least some of the general
characteristics of common uniform color spaces can be qualitatively accounted for by the
characteristics of the color environment, and in turn, could point to which environmental
characteristics have been important in shaping the perceptual representation.

As we showed, one of these general characteristics is for chromatic sensitivity to be lowest
for “bluish-yellowish” color directions, in which signals from the S and M cones covary.
This bias is not surprising, because color spaces like CIE L*u*v* and L*a*b* were derived
from the McAdam ellipses describing just noticeable color differences40, 41, and Boynton et
al.42 showed that these ellipses are oriented along a bluish-yellowish axis. Heightened
discrimination along the orthogonal, reddish-greenish direction has also been found by
Krauskopf and Gegenfurtner43 and Danilova and Mollon44. Moreover, this sensitivity bias
has been observed in a number of other contexts. For example, achromatic settings show
more variation both within and between observers along the blue-yellow dimension45, 46. At
suprathreshold, McDermott et al.47 found in a visual search task that blue-yellow
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backgrounds were less effective distractors for reddish or greenish targets than vice versa,
while Juricevic, Wilkins and Webster48 found that ratings of visual discomfort (potentially
related to effective stimulus contrast49) were lower for blue-yellow patterns than reddish-
greenish patterns defined by the orthogonal axis. Weaker sensitivity to bluish-yellowish
contrasts has also been reported in adaptation effects such as the McCollough effect50.
Finally, a recent study by Goddard et al.51 found that BOLD responses in different visual
cortical areas were weaker for bluish-yellowish patterns than for reddish-greenish patterns
matched for the same cardinal axis components. Thus the bias seen in perceptually uniform
spaces is consistent with a general sensitivity bias against bluish-yellowish color directions
seen in many visual tasks.

However, this bias is nevertheless of interest because it reflects an interaction between the L
−M and S-(L+M) cardinal axes that have been thought to be central to the early
postreceptoral encoding of chromatic signals34, 35, and thus raises the question of how these
axes are matched to color in the environment. Color signals along these axes have been
found to vary roughly (though not completely) independently for some natural scenes (of
dense vegetation), and this had led to suggestions that the cardinal axes are the optimal
opponent transformations for representing natural color signals20. However, as noted this
independence is not characteristic of many natural environments. Webster and Mollon22 and
Webster et al.31 found that the dominant axes varied from close to the S-(L+M) axis for
scenes composed primarily of lush vegetation, but tended toward a pure blue-yellow
variation for more panoramic and arid scenes. The present results suggest that more bluish-
yellowish scenes may have played a more dominant role in shaping chromatic sensitivity. A
related and possibly mutual factor is that the blue-yellow axis is also the principal axis of
variation in natural daylight52–54. In either case, our results are consistent with the idea that
the greater variance in the natural world along the bluish-yellowish dimension is matched by
a weaker relative sensitivity to this dimension in color vision, as reflected in the scaling of
uniform color spaces. This is further suggested by our finding that natural color distributions
themselves become less biased when represented in perceptually uniform color spaces.

Our results also highlight discrepancies between the stimulus distributions and the
perceptual scaling of color. Quantitatively, there was a clear difference between the actual
axis of minimum sensitivity implied by the perceptual spaces and the axis of maximum
contrast in the color distributions. Specifically, the perceptual minima are along axes that are
more orange-cyan than a pure blue-yellow, and fall outside the range of any of the outdoor
scenes sampled by Webster et al, which instead varied from axes close to unique blue-
yellow to purple-yellowish green axes close to the S axis31. This raises the possibility that
color sensitivity has been shaped in the short term by environments with different color
distributions. In fact, natural scenes may be uncharacteristic of the colors most individuals
are exposed to in the more carpentered environments of modern societies. The color
distributions of such environments are not well characterized, in part because of the interest
in understanding the visual environments that shaped adaptations of the visual system over
evolutionary timescales20, 22, 24, 31, 55–58. Thus it remains to be seen whether largely indoor
and constructed environments might provide a more accurate prediction of the ontogeny of
color sensitivity.

A second clear discrepancy is that these color spaces do not reflect the characteristics of
color contrast discrimination. While the CIE spaces were purportedly intended to reflect
color differences for an observer adapted to daylight59, under this adaptation sensitivity is
best near the adapting point and falls with increasing saturation or contrast from
white13, 43, 60. In the CIE spaces sensitivity instead decreases monotonically with increasing
S cone activity while remaining relatively constant with variations along the L−M axis, a
pattern which is more typical of adaptation to the chromaticity that is being judged43, 61.
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This scaling is consistent with the transformations of cone signals that would be required to
adjust to changes in the illuminant to maintain color constancy62, but does not capture
contrast sensitivity, which does roughly follow the non-uniform distribution of contrasts in
scenes12, 13. Uniform spaces that were constructed based on empirical measurements of
contrast discrimination or on characteristic contrast distributions might therefore provide a
better perceptual metric for some viewing contexts.

Finally, we have discussed uniform color spaces as if they were in fact perceptually uniform.
Yet it is well known that they only approximate human judgments, and the fact that there is
more than one “uniform” space highlights that there can be important discrepancies between
distances within the space and observers’ perceptions of those differences. For instance, the
metrics for spaces like CIE L*u*v* and L*a*b* were in part constrained by the desire to
provide a relatively simple and general transformation from CIE 1931 chromaticities.
Because they were based on threshold discrimination they do not accurately predict large
color differences and this has prompted exploration of alternative measures, for example
based on reaction times for suprathreshold stimuli63, 64. Because they were based on
uniform fields they also fail to predict color differences at high spatial frequencies or in
complex images, and this has led to elaborated spaces that include weightings for spatial
contrast sensitivity65–67. Our analyses suggest that another potential measure to exploit for
predicting the perceptual impact of large color differences would be of the color statistics of
the environment. Such considerations also suggest the possibility of tailoring perceptual
color spaces to specific environments or contexts. To the extent that individuals are
immersed in particular color worlds, for example because of their culture or vocation, their
sensitivity may be adapted to the idiosyncratic color distributions of their environment68.
The principles we explored could be used to guide the construction of spaces that better
capture the experience of color for observers in these contexts, and thus could in theory
better predict perceptual judgments and performance for these observers.
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Figure 1.
Spherical distributions in the Munsell (left), CIE L*u*v* (middle) or CIE L*a*b* (right)
spaces projected into the cone opponent space. Each row plots the distributions along
different pairs of the cardinal axes; top: the S vs. LM isoluminant plane; middle: luminance
and LM plane; bottom: luminance vs. S plane. Lines show the axes of the first (solid) or
second (dashed) principal components of the distributions in each of the projected planes.
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Figure 2.
Natural color distributions measured from two outdoor locations (top: Sierra Nevadas, USA;
bottom: Western Ghats, India) and during two seasons (lush and arid)31. Plots show the
pooled distributions of the chromaticities from individual scenes sampled in each
environment. Lines show the axes of the first (solid) or second (dashed) principal
components of the distributions in each of the projected planes.
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Table 2

Ratio of variance in signals along the principal and orthogonal chromatic axes of the natural distributions from
the four environments. Values closer to one represent more circular or unbiased distributions. Cone-opponent
ratio gives a measure of the bias when the color distributions are represented in the cone-opponent space after
rescaling the space so that the variance along each cardinal axis is equated. L*a*b* ratio gives a measure of
the bias when the chromaticities are instead represented by their coordinates in the uniform color space.

Natural Distribution Cone-Opponent Ratio CIE L*a*b*

Dog Valley Lush 2.80 2.05

Dog Valley Arid 4.50 3.61

India Lush 1.96 1.46

India Arid 4.23 1.62

Mean 3.37 2.19
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