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Biochemical and genetic evidence establishes a central role of the amyloid precursor protein
(APP) in Alzheimer disease (AD) pathogenesis. Biochemically, deposition of the b-amyloid
(Ab) peptides produced from proteolytic processing of APP forms the defining pathological
hallmark of AD; genetically, both point mutations and duplications of wild-type APP are
linked to a subset of early onset of familial AD (FAD) and cerebral amyloid angiopathy. As
such, the biological functions of APP and its processing products have been the subject of
intense investigation, and the past 20þ years of research have met with both excitement
and challenges. This article will review the current understanding of the physiological func-
tions of APP in the context of APP family members.

Synaptic dysfunction, cognitive decline, and
plaque deposition of the b-amyloid peptide

Ab, derived from the b-amyloid precursor pro-
tein APP, are hallmark features of Alzheimer
disease (AD). Since the molecular cloning of
APP, more than 20 years ago (Goldgaber et al.
1987; Kang et al. 1987; Tanzi et al. 1987), a large
body of biochemical and genetic evidence has
accumulated that identified Ab as a central
trigger for AD pathogenesis. Despite this, the
physiological role of APP and the question
of whether a loss of its functions contributes
to AD are still unclear. The secretases involved
in APP processing and Ab generation have
been cloned (see De Strooper et al. 2011;
Haass et al. 2011) and have since become major

therapeutic targets. Understanding the physio-
logical function of APP is also of immediate
relevance for AD pathogenesis. As Ab is gener-
ated as part of normal APP processing (Haass
et al. 1992), deregulation of Ab production
(either during pathogenesis or as a consequence
of secretase inhibitors) is expected to simulta-
neously affect other APP processing products
and may thus compromise physiologically
important signaling pathways. Two major ob-
stacles complicate the analysis of functions of
APP in vivo: (1) APP is subject to complex
proteolytical processing that generates several
polypeptides each of which likely performs spe-
cific functions, and (2) APP is part of a gene
family with partially overlapping functions.
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CELL BIOLOGY AND EXPRESSION

APP Processing

APP is an integral type I transmembrane pro-
tein with a single transmembrane domain, a
large extracellular ectodomain, and a short
cytoplasmic tail (Fig. 1). Processing is initiated
either by cleavage of APP by a-secretase within
the Ab region, or by cleavage by b-secretase
(BACE) at the amino terminus of Ab, leading
to the secretion of large soluble ectodomains,
termed APPsa and APPsb, respectively. Sub-
sequent processing of the carboxy-terminal
fragments (CTFb or CTFa) by g-secretase
results in the production of Ab, p3, and the
APP intracellular domain (AICD). More
recently, a novel amino-terminal fragment
(N-APP286) derived from APPsb was identified
as a ligand for death receptor 6 (DR6), a mem-
ber of the TNFR gene family (Nikolaev et al.
2009). Whereas in fibroblasts and nonneuronal
cell lines (e.g., HEK293 cells) a-secretase pro-
cessing is the dominant pathway, primary
neuronal cultures express high levels of BACE
and thus generate considerable amounts of
APPsb and Ab (Simons et al. 1996; Kuhn

et al. 2010). In adult mouse brain, secreted total
APPs constitutes at least 50% of all APP iso-
forms and in vivo studies using cycloheximide
injections revealed a half-life of 4–5 h for
both APPsa and APPsb, whereas APP-FL is
turned over much more rapidly (half-life of
ca. 1 h) (Morales-Corraliza et al. 2009).

APP Gene Family and Structure

APP is a member of an evolutionary conserved
gene family including APL-1 in Caenorhabditis
elegans (Daigle and Li 1993), APPL in Droso-
phila (Rosen et al. 1989; Luo et al. 1990), appa
and appb in zebrafish (Musa et al. 2001), and
in mammals besides APP the two amyloid pre-
cursor-like proteins, APLP1 and APLP2 (Wasco
et al. 1992, 1993; Slunt et al. 1994). APP family
proteins share conserved regions within the
ectodomain, in particular the E1 and E2
domains and the intracellular tail that shows
the largest sequence identity (Fig. 1). Interest-
ingly, the extracellular juxtamembrane regions
are highly divergent with the Ab sequence being
unique for APP. The E1 domain can be further
subdivided into a heparin-binding/growth
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Figure 1. Schematic overview of domain structure of APP family proteins. All APP family members share con-
served E1 and E2 extracellular domains, an acidic domain (Ac) and the YENPTY motif in the carboxyl terminus.
Note that Ab is unique for APP. HBD, Heparin binding domain; CuBD, Copper binding domain; KPI, Kunitz-
type protease inhibitor domain.
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factor-like domain and a metal (copper and
zinc) binding domain. The E1 domain is fol-
lowed by an acidic region and a Kunitz-type
protease inhibitor (KPI) domain (that is subject
to alternative splicing in both APP and APLP2).
The E2 region contains a second heparin bind-
ing domain and a RERMS motif implicated in
trophic functions (Ninomiya et al. 1993; Roch
et al. 1994). APP family proteins are posttrans-
lationally modified including N- and O-glyco-
sylation, sialylation, and CS GAG modification
of the ectodomain and are phosphorylated
at multiple sites within the intracellular car-
boxy-terminal domain (reviewed in Suzuki
and Nakaya 2008; Jacobsen and Iverfeldt
2009). Crystal structures of several subdomains
(reviewed in Reinhard et al. 2005; Gralle and
Ferreira 2007), including the recently deter-
mined complete E1 structure (Dahms et al.
2010) and AICD bound to the adaptor protein
Fe65 are available (Radzimanowski et al. 2010).
Membrane bound APP/APLP holoproteins
resemble cell surface receptors and have been
shown to bind to extracellular matrix compo-
nents (see below), but also interact with cell sur-
face proteins including Alcadein (Araki et al.
2003), F-spondin (Ho and Südhof 2004), Reelin
(Hoe et al. 2009b), LRP1 (Pietrzik et al. 2004),
sorL1/LR11 (Schmidt et al. 2007), Nogo-66
receptor (Park et al. 2006), Notch2 (Chen
et al. 2006), and Netrin (Lourenco et al. 2009).
Although several of these interactions regulate
APP processing, the physiological relevance of
these interactions is poorly understood. Inter-
action screens have led to the identification
of multiple intracellular binding partners
(reviewed in Jacobsen and Iverfeldt 2009).
Notably, the YENPTY motif that is conserved
from C. elegans to mammalian APP/APLPs,
confers clathrin mediated endocytosis, modu-
lates Ab generation (Perez et al. 1999; Ring
et al. 2007), and binds several kinases, as well
as adaptor proteins including mDab1, JIP, Shc,
Grb2, Numb, X11/mint family, and Fe65 family
proteins. Although in vitro studies have shown
that these interactions may not only modulate
APP processing but may also mediate cell sig-
naling, the in vivo relevance is only starting to
be revealed.

Although APLP1 and APLP2 lack the Ab
region they are similarly processed. Both APLPs
undergo ectodoamin shedding and soluble
APLPs have been detected in conditioned me-
dium of transfected cell lines or human ce-
rebrospinal fluid (Slunt et al. 1994; Webster
et al. 1995; Paliga et al. 1997). Likewise, p3/
Ab-like fragments (Eggert et al. 2004; Minogue
et al. 2009), as well as APLP1 and APLP2 in-
tracellular fragments (termed ALIDs) are gen-
erated in a g-secretase dependent manner
(Scheinfeld et al. 2002; Walsh et al. 2003).
Whereas there has been robust evidence indicat-
ing that APLP2 is processed by a- and
b-secretase (Eggert et al. 2004; Pastorino et al.
2004; Endres et al. 2005), APLP1 shedding
appeared to be independent of BACE activity
as it was not affected by BACE inhibitors (Eggert
et al. 2004; Minogue et al. 2009). A recent study
using BACE-KO and overexpressing mice
showed, however, that BACE deficiency sub-
stantially reduces brain APLP1s levels and that
ICDs of APP family members are released in
the absence of BACE (Frigerio et al. 2010).

Expression, Subcellular Localization,
and Axonal Transport

APP and APLP2 are expressed ubiquitously,
with particularly high expression in neurons,
in largely overlapping patterns during embry-
onic development and in adult tissue (Slunt
et al. 1994; Lorent et al. 1995; Thinakaran
et al. 1995). In contrast, APLP1 is found primar-
ily in the nervous system (Lorent et al. 1995).
Regarding their subcellular localization, APP/
APLPs are found both in somata and dendrites
as well as in axons (Yamazaki et al. 1995; Back
et al. 2007; Hoe et al. 2009a). APP/APLP
expression is up-regulated during neuronal
maturation and differentiation, undergoes rapid
anterograde transport, and is targeted in vesicles
distinct from synaptophysin transport vesicles
to synaptic sites (Koo et al. 1990; Sisodia et al.
1993; Kaether et al. 2000; Szodorai et al.
2009). The initial hypothesis that APP anchors
these vesicles via its carboxyl terminus to kine-
sin (Kamal et al. 2001), has been broadly ques-
tioned (Tienari et al. 1996; Lazarov et al. 2005;
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Back et al. 2007). Using time-lapse microscopy,
Szodorai recently showed unaltered velocity
of APPDCT-GFP transport and a requirement
for Rab3A GTPase activity for vesicle assembly
(Szodorai et al. 2009).

IN VITRO AND EX VIVO STUDIES OF APP

Cell and Synaptic Adhesion

Investigations of conserved domains support an
adhesion property for all members of the APP
family. The extracellular sequence of APP has
been found to interact with various extracellular
matrix components, such as heparin (Clarris
et al. 1997; Mok et al. 1997), collagen type I
(Beher et al. 1996), and laminin (Kibbey et al.
1993), indicating a role of APP in cell-matrix
adhesion. Structural and functional studies
also implicate a role of the APP extracellular
domains in facilitating cell–cell adhesion
through transcellular interactions. Of interest,
X-ray analysis revealed that the E2 domain of
APP could form antiparallel dimers (Wang
and Ha 2004). Both Dahms et al. (2010) and
Gralle et al. (2006) reported that heparin bind-
ing to the extracellular E1 or E2 domain induces
APP/APP dimerization. Cell culture studies
revealed that APP family members form
homo- or heterotypic cis-dimers, mainly via
the E1 domain and the GxxxG motif in the
transmembrane domain (Kaden et al. 2008),
and that cis-dimerization modulates g-secretase
cleavage (Richter et al. 2010). Trans-dimeriza-
tion of APP family members can promote
cell–cell adhesion (Soba et al. 2005). Using a
primary neuron/HEK293 mixed culture assay,
Wang et al. (2009) reported that transcellular
APP/APP interaction induces presynaptic
specializations in cocultured neurons. These
studies identify APP proteins as a novel class
of synaptic adhesion molecules (SAM) with
shared biochemical properties as neurexins
(NX)/neuroligins (NL), SynCAMs, and leu-
cine-rich repeat transmembrane neuronal pro-
teins (LRRTM) (Scheiffele et al. 2000; Biederer
et al. 2002; Graf et al. 2004; Sara et al. 2005; Fogel
et al. 2007; Linhoff et al. 2009). Like NX/NL and
SynCAM-mediated synaptic adhesion in which

extracellular sequences engage transsynaptic
interactions and the intracellular domains
recruit pre- or postsynaptic complexes (re-
viewed in Dalva et al. 2007), both the extracel-
lular and intracellular domains of APP are
required to mediate the synaptogenic activity.
Consistent with Soba et al. (2005), the E1
domain plays a more active role in synaptic
adhesion. Interestingly, the highly conserved
GYENPTY sequence of the APP intracellular
domain could form a tripartite complex with
Munc 18 interacting protein (Mint/X11) and
calcium/calmodulin-dependent serine protein
kinase (CASK) similar to that of neurexin and
SynCAM (Hata et al. 1996; Biederer and Südhof
2000; Biederer et al. 2002), and the SynCAM
carboxy-terminal sequence could functionally
replace the corresponding APP domain in the
coculture assay (Wang et al. 2009), suggesting
that the Mint/CASK complexes may be the
common mediators for the different classes of
synaptic adhesion proteins. Thus, the precise
role of APP-mediated synaptic adhesion in cen-
tral synapses, whether it involves interaction
with other SAMs, and the relationship between
APP-mediated synaptogenesis and synaptic
dysfunction occurring in AD are interesting
questions that warrant further investigation.

Besides a direct role of APP/APP interac-
tion in cell and synaptic adhesion, APP has
been shown to colocalize with integrins on the
surface of axons and at the sites of adhesion
(Storey et al. 1996; Yamazaki et al. 1997; Young-
Pearse et al. 2008). It has also been reported to
interact with other cell adhesion molecules
including NCAM (Ashley et al. 2005), NgCAM
(Osterfield et al. 2008), and TAG 1 (Ma et al.
2008). As such, APP may play a modulatory
role through interacting with these cell adhesion
molecules.

Neural and Synapto-Trophic Functions

A large body of evidence supports a trophic
function of APP in neurons and synapses. Con-
sistent with its expression pattern, deletion or
reduction of APP is associated with impaired
neuronal viability in vitro and reduced synaptic
activity in vivo (Allinquant et al. 1995; Perez
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et al. 1997; Hérard et al. 2006). Hippocampal
neurons deficient for APP (or APLPs) show ini-
tially reduced neurite outgrowth, whereas, after
prolonged culture axons are elongated and neu-
rite branching is reduced (Perez et al. 1997;
Young-Pearse et al. 2008). However, it should
be noted that studies using neuronal cultures
derived from various APP/APLP1/APLP2
knockout combinations or obtained by differ-
entiation of embryonic stem cells lacking APP
family members failed to detect a requirement
of APP proteins in either neuronal differentia-
tion or survival (Heber et al. 2000; Bergmans
et al. 2010).

The trophic activity of APP can be mediated
by the full-length protein and likely involves
the APP adhesion properties discussed above.
In particular, binding of APP to extracellular
proteoglycans has been suggested to play a role
in inducing neurite outgrowth, and a peptide
homologous to the APP heparin-binding
domain blocked this effect (Small et al. 1994,
1999). Qiu et al. found that when APP-trans-
fected CHO cells were used as a substrate for
the growth of primary rat hippocampal neurons,
increased surface APP expression stimulated
short-term neuronal adhesion and longer-term
neurite outgrowth (Qiu et al. 1995). Neverthe-
less, ample literature points to a potent role of
the a-secretase processed soluble fragment
(APPsa) in the growth promoting and neurotro-
phic activities. One of the earliest indications
came from the observation that secreted APPs,
through the “RERMS” motif in the E2 domain,
promoted fibroblast proliferation (Saitoh et al.
1989; Ninomiya et al. 1993a; Jin et al. 1994).
Moderate overexpression of APP in transgenic
mice, infusion of APPsa or the RERMS penta-
peptide into the ventricle, or an indirect increase
of APPsa levels because of overexpression of
a-secretase, has been shown to increase synaptic
density (Mucke et al. 1994; Roch et al. 1994;
Meziane et al. 1998; Bell et al. 2008). Moreover,
gain- or loss-of-function studies with either
intraventricular APPsa infusion, down-regula-
tion by antibody infusion or pharmacological
inhibition of a-secretase coherently showed a
function for APPsa in spatial memory and
for LTP (Turner et al. 2003; Taylor et al. 2008).

Caille et al. provided evidence that APPsa and
APLP2s act as cofactors for epidermal growth
factor (EGF) to stimulate the proliferation of
neurosphere cultures in vitro and neural stem
cells in the subventricular zone of adult rodent
brain in vivo (Caille et al. 2004). Gakhar-
Koppole et al. (2008) and Rohe et al. (2008)
also reported that APPs stimulated neurogenesis
and neurite outgrowth, but suggested that it is
mediated through enhanced ERK phosphoryla-
tion and may be dependent on membrane-
bound APP. Han et al. (2005) offered yet a differ-
ent mechanism that the growth promoting
property is mediated by the ability of APPsa to
down-regulate CDK5 and inhibit t hyperphos-
phorylation. Of direct physiological relevance,
growth and neuronal phenotypes reported in
APP deficient mice were shown to be fully
restored by expressing only APPsa (Ring et al.
2007), and the lethality of the C. elegans apl-1
null mutant can be rescued by expressing only
the APL-1 extracellular domain (Hornsten
et al. 2007; Wiese et al. 2010).

Axon Pruning and Degeneration

APPsa has shown synaptotrophic and neuro-
protective functions, whereas APPsb was re-
ported to be much less active or may even be
toxic (reviewed in Turner et al. 2003). Recently,
employing organotypic slice cultures, Copanaki
et al. showed that APPsa (and not APPsb) antag-
onizes dendritic degeneration and neuron death
triggered by proteasomal stress (Copanaki et al.
2010). The most striking difference came from
the study of Nikolaev et al. (2009), which re-
ported that soluble APPsb, but not APPsa,
undergoes further cleavage to produce an ami-
no-terminal �35 kDa APP derivative (N-APP),
which in turn binds to the death receptor DR6
and mediates axon pruning and degeneration
under trophic withdrawal conditions. The inves-
tigators attempted to link this pathway to both
axonal pruning during normal development
and axon- and neurodegeneration in AD. The
APPsb isoform specific cleavage and the differen-
tial, or opposite activities between APPsa and
APPsb, are intriguing as there is only 17 amino
acids differences between the two isoforms.

Functions of APP Proteins
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Intracellular Signaling

Besides the g-secretase cleavage that yields
Ab40 and Ab42, PS-dependent proteolysis
also occurs at the 1-site of the membrane-intra-
cellular boundary to generate AICD (Sastre
et al. 2001; Weidemann et al. 2002; Zhao et al.
2005). This cleavage is highly reminiscent of
the PS-mediated release of the Notch intracellu-
lar domain (NICD) obligatory for Notch signal-
ing (reviewed in Selkoe and Kopan 2003).
Accordingly, AICD has been shown to translo-
cate to the nucleus (Cupers et al. 2001; Gao
and Pimplikar 2001; Kimberly et al. 2001).
AICD is labile but can be stabilized by Fe65
(Kimberly et al. 2001). Using a heterologous
reporter system, AICD was shown to form a
transcriptionally active complex with Fe65 and
the chromatin-remodeling factor Tip60 (Cao
and Südhof 2001; Gao and Pimplikar 2001).
However, subsequent analyses painted a more
complex picture: (1) Follow-up studies by Cao
et al. provided a modified model, whereby
Fe65 is first recruited to the membrane-
anchored APP where it is activated through
an unknown mechanism. g-secretase cleavage
then releases Fe65 together with AICD, thereby
allowing Fe65 to enter the nucleus and to inter-
act with Tip60 (Cao and Südhof 2004); (2) Hass
and Yankner revealed that PS-dependent AICD
production is not required for the APP signaling
activity as it proceeds normally in PS null cells
and on PS inhibitor treatment (Hass and Yank-
ner 2005). Instead, the investigators provided
an alternative pathway involving Tip60 phos-
phorylation; (3) a later report documented
that the proposed signaling activity is, in fact,
executed by Fe65 independently of APP (Yang
et al. 2006). Last, the link of Fe65 to chromatin
remodeling instead of transcription suggests
that APP may not act on specific genes, but
rather modulates the overall transcriptional
state of a cell (Giliberto et al. 2008).

Regardless of the molecular mechanisms, a
trans-activating role of the APP/Fe65/Tip60
complex has been consistently documented, at
least in overexpression systems using artificial
reporter constructs. Accordingly, effort has
been taken to identify the downstream targets,

which reportedly include KAI (Baek et al.
2002), GSK3b (Kim et al. 2003; Ryan and Pim-
plikar 2005), neprilysin (Pardossi-Piquard et al.
2005), EGFR (Zhang et al. 2007), p53 (Checler
et al. 2007), LRP (Liu et al. 2007), APP itself
(von Rotz et al. 2004), and genes involved in cal-
cium regulation (Leissring et al. 2002) and cyto-
skeletal dynamics (Müller et al. 2007). However,
the validity of these proposed targets have been
either questioned or disputed (Hebert et al.
2006; Yang et al. 2006; Chen and Selkoe 2007;
Repetto et al. 2007; Giliberto et al. 2008; Tamboli
et al. 2008; Waldron et al. 2008; Aydin et al. 2011).
Overall, as attractive as the APP/AICD signaling
model is, and regardless of the intense effort
devoted to this topic in the past 10 years, neither
the molecular pathways nor the downstream
targets have been unambiguously established.

Apoptosis

Interestingly, AICD has been shown to be further
cleaved by caspases at amino acid 664 of APP
(695 numbering) to release two smaller frag-
ments, Jcasp and C31; the latter contains the
last 31 amino acids of APP and has been pro-
posed to mediate cytoxicity in a full-length
APP dependent manner (Bertrand et al. 2001;
Lu et al. 2003; Park et al. 2009). In support of a
functional role of this pathway, neuronal cultures
generated from AICD transgenic mice are found
to be more susceptible to toxic stimuli (Giliberto
et al. 2008), and impaired synaptic plasticity and
learning and memory seen in APP transgenic
models were corrected in a mouse line in which
the caspase site was mutated despite the presence
of abundant amyloid pathology (Galvan et al.
2006). However, a more recent publication chal-
lenged these findings (Harris et al. 2010), and the
physiological significance of this cleavage event
thus requires further investigation.

IN VIVO LOSS-OF-FUNCTION STUDIES
OF APP FAMILY PROTEINS

C. elegans and Drosophila

Drosophila deficient for the single APPL gene
are viable, show a defect in fast phototaxis
(Luo et al. 1992), and reduced synaptic bouton
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numbers at the neuromuscular junction NMJ.
This activity involves a complex between
APPL, the cell adhesion molecule fasciclin and
Drosophila Mint/X11 (Torroja et al. 1999; Ash-
ley et al. 2005). Knockout of the C. elegans
ortholog APL-1, which is expressed in multiple
tissue including neurons and muscle, disrupts
molting and morphogenesis and results in laval
lethality. Interestingly, this lethality could be
rescued by neuronal expression of only the
extracellular domain of APL-1, suggesting a
key physiological role for this APPsa related
fragment (Hornsten et al. 2007).

APP/APLP Single Knockout Mice

Three APP mouse mutants, one carrying a
hypomorphic mutation of APP (APPD) (Mül-
ler et al. 1994) and two with complete deficien-
cies of APP (Zheng et al. 1995; Li et al. 1996)
have been generated and revealed comparable
phenotypes (Anliker and Müller 2006). APP-
KO mice are viable and fertile, showing reduced
body weight (about 15%–20% smaller) and
brain weight (about 10% less) that was associ-
ated with reduced size of forebrain commissures
and agenesis of the corpus callosum, consistent
with a role of APP for neurite outgrowth and/
or axonal pathfinding (Zheng et al. 1995; Ma-
gara et al. 1999). APP-KO mice also showed
increased brain levels of copper (White et al.
1999), cholesterol and sphingolipid (Grimm
et al. 2005). In addition, APP-KO animals
showed hypersensitivity to kainate-induced
seizures (Steinbach et al. 1998), suggesting a
role of APP for neuronal excitation/inhibition
balance. Behavioral studies revealed reduced
locomotor and exploratory activity, altered cir-
cadian activity (Müller et al. 1994; Zheng et al.
1995; Ring et al. 2007), and a deficit in grip
strength (Zheng et al. 1995; Ring et al. 2007),
indicating compromised neuronal or muscular
function (see also NMJ phenotype of double
knockouts below). In the Morris water maze,
APP-KO mice show impairments, both in learn-
ing and spatial memory, that are associated with
a defect in long-term potentiation (LTP) (Daw-
son et al. 1999; Phinney et al. 1999; Seabrook
et al. 1999; Ring et al. 2007). However, these

impairments are not caused by a gross loss of
neurons or synapses, as stereological quantifica-
tion revealed normal neuron and synaptic bou-
ton counts in the hippocampus of aged APP
null mice (Phinney et al. 1999). Surprisingly, a
recent study showed that APP deficiency leads
to an increase in spine density in apical den-
drites of cortical (layers 3 and 5) neurons (Bitt-
ner et al. 2009). The same group had previously
reported an increase in synapse density in low-
density cultures of self-innervating (autaptic)
hippocampal neurons (Priller et al. 2006), but
normal synaptic density in adult APP-KO
mice (Priller et al. 2006). Thus, adaptive mech-
anisms (e.g., activity-dependent synaptic elimi-
nation) likely counteract early developmental
changes. It remains to be seen whether altera-
tions in spine density are also present in other
brain areas of APP family KOs, which signaling
pathways are involved, and how this may relate
to functional changes.

Although basal glutamatergic synaptic trans-
mission and paired pulse facilitation was un-
affected in hippocampal slice recordings of
APP-KO mice, a deficit in paired pulse depres-
sion of GABAergic IPSCs may contribute to the
LTP defect of APP-KO mice (Seabrook et al.
1999). This may involve, as hypothesized
(Seabrook et al. 1999), a reduction in feedback
suppression mediated by presynaptic GABAB

autoreceptors (but see below Yang et al.
2009). Although the molecular mechanisms
of these alterations remain to be determined,
these studies indicate that defects in Ca2þ-
handling, synaptic plasticity and/or neuronal
network properties, rather than gross structural
changes, cause functional impairments of APP
knockout mice. Indeed, recently it was shown
that APP is involved in the regulation of
L-type Ca channel LTCCs level (Yang et al.
2009). APP-KO mice showed increased levels
of CaV1.2 channels in the striatum that lead
to alterations in GABAergic short term plas-
ticity in striatal and hippocampal neurons,
such as reduced GABAergic paired pulse in-
hibition and increased GABAergic posttetanic
potentiation (Yang et al. 2009). Moreover,
there is recent evidence from overexpression
and APP knockdown studies in hippocampal
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neurons indicating an Ab independent role
of APP for the regulation of Ca2þ-oscillations
(Santos et al. 2009).

Combined Knockouts of APP Family
Members

To test whether APLPs may functionally com-
pensate for APP deficiency, mice lacking indi-
vidual or all possible combinations of APP
family proteins have been generated (reviewed
in Anliker and Müller 2006; Zheng and Koo
2006). APLP1-KO mice revealed a somatic
growth deficit as the only abnormality (Heber
et al. 2000a), whereas, to date, no abnormalities
have been found for APLP2-KO mice (von Koch
et al. 1997). It should be kept in mind, however,
that APLP deficient mice have not been
examined in comparable detail as APP-KOs.
In contrast to the subtle phenotypes of single
mutants, double knockout mice (DKO) carry-
ing APLP2/APLP1 and APLP2/APP-deficien-
cies proved lethal shortly after birth (von
Koch et al. 1997; Heber et al. 2000). Surpris-
ingly, APLP1/APP-deficient mice turned out
to be viable, fertile, and without any additional
abnormalities (Heber et al. 2000). These data
indicated redundancy between APLP2 and
both other family members, and corroborate a
key physiological role for APLP2. None of the
lethal double mutants, however, displayed ob-
vious histopathological abnormalities (exam-
ined at the light microscopic level) in the
brain. So far, the postnatal lethality of the
APP/APLP2-DKO precluded the analysis of
APP/APLP2 mediated functions in the post-
natal and adult nervous system. However,
organotypic hippocampal slice cultures can be
studied in case of early postnatal lethality. Of
note, using this technique, APP/APLP2-DKO
mutants revealed defects in basal glutamatergic
synaptic transmission that were absent in single
mutants (Schrenk-Siemens et al. 2008). Thus, a
more complete picture of APP/APLP function
in the CNS will await the generation of brain
specific conditional mutants.

In the peripheral nervous system, APP and
APLP2 play a redundant and essential role
for neuromuscular synapse formation and

function, as diaphragm preparations from
newborn APP/APLP2-DKO mice show exces-
sive nerve growth, a widened endplate pattern,
reduced apposition of pre- and postsynaptic
components, and severely impaired (spontane-
ous and evoked) neurotransmission (Wang
et al. 2005). Moreover, submandibular ganglia
of APP/APLP2-DKO mice showed a reduction
in active zone size, synaptic vesicle density,
and number of docked vesicles (Yang et al.
2005) pointing to primarily presynaptic defects
(but see conditional mutants). Thus, impaired
function of the NMJ likely causes early postna-
tal lethality of combined mutants and defects
in grip strength in APP single KOs. Indeed, sub-
sequent analysis of neuromuscular transmis-
sion of APP-KO mice showed reduced paired
pulse facilitation that was associated with an
increase in asynchronous presynaptic transmit-
ter release mediated by N- and L-type Ca2þ

channels (Yang et al. 2007).
Triple KO mice lacking all three APP

family members die shortly after birth. Unlike
the DKO mutants, which did not display
histological alterations in the brain, 80% of all
triple knockouts showed cranial abnormalities
(Herms et al. 2004). The majority of animals
showed focal dysplasia resembling human type
II lissencephaly and a partial loss of cortical
Cajal-Retzius cells (Herms et al. 2004). Within
affected areas, neuronal cells from the cortical
plate migrated beyond their normal positions
and protruded into the marginal zone and the
subarachnoid space, indicating a critical role
for APP family members in neuronal ad-
hesion and/or positioning (Herms et al.
2004). Interestingly, a very similar phenotype
was detected in mice lacking the APP interac-
tors Fe65 and Fe65L1 (Guénette et al. 2006).
These data suggest that APP family proteins
may mediate some of their function(s) via an
APP/Fe65 signaling complex. A role of APP
family members in neuronal positioning/
migration is further supported by acute in
utero knockdown of APP (Young-Pearse et al.
2007) in rats using shRNA electroporation. In
summary, these data corroborate an essential
role of the APP gene family for normal brain
development.
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APP CONDITIONAL KNOCKOUT

Germline deletion of APP and APLP2 in mice
results in a general impairment in pre- and post-
synaptic patterning and a specific defect in pre-
synaptic targeting of CHT (Wang et al. 2005,
2007). Conditional alleles of APP and APLP2
have been generated (Wang et al. 2009; Mallm
et al. 2010). Consistent with the synaptic adhe-
sion property of APP, deletion of APP (on a
global APLP2-KO background) in either presyn-
aptic motor neurons or in postsynaptic muscle
was shown to lead to similar neuromuscular
synapse defects (Wang et al. 2009). Interestingly,
postsynaptic APP expression is required to
mediate presynaptic CHT targeting and synap-
tic transmission, suggesting that transsynaptic
APP/APP interaction is necessary in recruiting
the presynaptic APP/CHT complex and choli-
nergic synaptic function. Whether APP modu-
lates other synaptic processes through similar
recruitment of synaptic proteins is an interesting
question requiring further investigation.

In Vivo Defined Genetic Modifications of
APP Proteins

The above knockout animals provide important
information concerning the physiological func-
tions of APP proteins, which may be executed
either as a full-length protein or as various pro-
cessing products. The creation of knockin
alleles expressing defined proteolytic fragments
of APP offers a powerful system to delineate the
APP functional domains in vivo. In this regard,
knockin mice that express a- or b-secretase
processed soluble APP (APPsa or APPsb) or
membrane anchored APP containing muta-
tions of the highly conserved carboxy-terminal
sequences have been generated. These alleles are
summarized in Figure 2 and will be discussed in
this section.

APPsa and APPsb Knockin

Ring et al. (2007) created a strain of APPsa
knockin mice by introducing a stop codon
immediately after the a-secretase cleavage site.
Interestingly, all of the phenotypes reported in
APP deficient mice including body and brain

weight deficits, grip strength deficits, altera-
tions in locomotor activity, and impaired spa-
tial learning and LTP have been shown to be
fully restored by expressing only APPsa (Ring
et al. 2007). Consistently, Taylor et al. (2008)
showed a requirement for APPsa for in vivo
LTP employing infusion ofa-secretase inhibitor
or recombinant APPsa, respectively. This cru-
cial function of APPsa for synaptic plasticity
and cognition is also of relevance for AD, as
reduced CSF levels of APPsa and a-secretase
ADAM10 are prominent features of sporadic
AD cases (Lannfelt et al. 1995; Sennvik et al.
2000; Colciaghi et al. 2002; Tyler et al. 2002).

Li et al. (2010a) generated an APPsb
knockin allele that allows investigation of the
stability and possible cleavage of APPsb in the
absence of APPsa. Contrary to Nikolaev
(2009), the APPsb protein was shown to be
highly stable in vivo and does not undergo fur-
ther cleavage under regular cell culture condi-
tions in vitro. Crossing the APPsb allele to
APLP2 null background revealed that APPsb
failed to rescue the nerve sprouting phenotype
of the APP/APLP2 null neuromuscular junc-
tion or early postnatal lethality (Li et al.
2010a). These data support the view that APPsb
exists as a stable protein and that the neuromus-
cular synapse defects present in APP/APLP2
null mice is not caused by the lack of APPsb
and, by extension, a defective APPsb/DR6
pathway. However, when crossing the APPsa
knockin allele (Ring et al. 2007) to an APLP2
null background, most of the combined
mutants survived into adulthood (Weyer et al.
2011). These data suggest a distinct functional
role of secreted APPsa sufficient to partially res-
cue the lethality of APP/APLP2-DKO mice, and
revealed a synergistic role of both APP and
APLP2 for hippocampal function and synaptic
plasticity (Weyer et al. 2011).

Deletion or Mutation of the APP
Intracellular Domain

Two APP carboxy-terminal deletion knockin
mice have been reported. One deletes the last
15 amino acids of the APP sequence (APPDCT15)
(Ring et al. 2007); the other replaces mouse Ab

Functions of APP Proteins
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with the human Ab sequence containing the
Swedish, Arctic, and London FAD mutations
and simultaneously deletes the last 39 residues
of the APP sequence (APP/hAb/mutC) (Li
et al. 2010b). Crossing the APP/hAb/mutC
allele to APLP2 null background resulted in
similar neuromuscular synapse defects and
early postnatal lethality as in mice doubly
deficient in APP and APLP2, supporting a func-
tional role of the APP carboxy-terminal domain
in these development activities. Nevertheless,
Ab production and amyloid pathology could
proceed without the carboxy-terminal se-
quences (Li et al. 2010b). An essential role of
the APP carboxy-terminal domain, specifically
the YENPTY motif, in development was shown
by the creation of APP knockin mice in which
the Tyr682 residue of the Y682ENPTY sequence
was changed to Gly (APPYG). Crossing the

homozygous knockin mice on APLP2-KO
background showed that the APPYG/YG/
APLP22/2 mice show neuromuscular synapse
deficits and early lethality similar to APP/
APLP2 double KO mice (Barbagallo et al.
2011a). In sharp contrast, similar analysis of
the knockin mice with mutation of the highly
conserved Thr668 residue (APPTA) showed that
this site is dispensable for the APP-mediated
development function (Barbagallo et al. 2011b).

CONCLUDING REMARKS

Because of the central role of APP in AD
pathogenesis, a great deal of effort has been
devoted to understanding the biological func-
tions of APP since its cloning in 1988. In vitro
and in vivo studies have shown important activ-
ities of APP in various neuronal and synaptic
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Figure 2. Schematic representation of APP and its knock-in constructs (not drawn to scale). EX, TM, and IC
stand for extracellular, transmembrane, and intracellular region, respectively. E1 and E2 domains are marked
in yellow and orange, respectively. mAb and hAb represent mouse and human Ab, respectively. b, a, and g indi-
cate the cleavage sites by b-, a-, and g-secretase, respectively. ��� represents signal peptide. ��� symbolizes the
FLAG tag. Residue T668, and YENPTY motif are labeled to illustrate the corresponding point mutations in
APP-YG knock-in and APP-TA knock-in mice. �, Swedish mutation (K595M596-N595L596); ��, Arctic muta-
tion (E618-G618); ���, London mutation (V642-I618), which are introduced in the APP/hAb/mutC knock-in
allele. All residues are numbered according to APP695 numbering.
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processes, which can be executed either as a full-
length protein or as one of the processing prod-
ucts. However, the underlying mechanisms
remain largely undefined and often controver-
sial. Key questions regarding whether APP is a
receptor or a ligand or both, whether APP is
by itself a signaling molecule or rather plays a
secondary role in gene regulation, how APP
function is coordinated between its full-length
form and the proteolytic cleavage products
and by its many intracellular binding partners
awaits further investigation. The creation of
the comprehensive panel of APP mouse strains
including global inactivation, tissue-specific
knockout and defined genetic modifications,
combined with modern biological tools such
as powerful large-scale experimentation and
exciting neuroimaging technology, place us in
an excellent position to address these questions.
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Aydin D, Filippov MA, Tschäpe JA, Gretz N, Prinz M, Eils R,
Brors B, Müller UC. 2011. Comparative transcriptome
profiling of amyloid precursor protein family members
in the adult cortex. BMC Genomics 12: 160.

Back S, Haas P, Tschape JA, Gruebl T, Kirsch J, Müller U,
Beyreuther K, Kins S. 2007. b-amyloid precursor protein
can be transported independent of any sorting signal to
the axonal and dendritic compartment. J Neurosci Res
85: 2580–2590.

Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld
MG. 2002. Exchange of N-CoR corepressor and Tip60
coactivator complexes links gene expression by NF-kB
and b-amyloid precursor protein. Cell 110: 55–67.

Barbagallo APM, Wang Z, Zheng H, D’Adamio L. 2011a. A
single tyrosine residue in the amyloid precursor protein
intracellular domain is essential for developmental func-
tion. J Biol Chem (in press) (JBC/2011/219837).

Barbagallo APM, Wang Z, Zheng H, D’Adamio L. 2011b.
The intracellular threonine of amyloid precursor protein
that is essential for docking of Pin1 is dispensable for
developmental function. PLoS ONE (in press).

Beher D, Hesse L, Masters CL, Multhaup G. 1996. Regula-
tion of amyloid protein precursor (APP) binding to col-
lagen and mapping of the binding sites on APP and
collagen type I. J Biol Chem 271: 1613–1620.

Bell KF, Zheng L, Fahrenholz F, Cuello AC. 2008. ADAM-10
over-expression increases cortical synaptogenesis. Neuro-
biol Aging 29: 554–565.

Bergmans BA, Shariati SA, Habets RL, Verstreken P, Schoon-
jans L, Müller U, Dotti CG, De Strooper B. 2010. Neurons
generated from APP/APLP1/APLP2 triple knockout
embryonic stem cells behave normally in vitro and in
vivo: Lack of evidence for a cell autonomous role of the
amyloid precursor protein in neuronal differentiation.
Stem Cells 28: 399–406.

Bertrand E, Brouillet E, Caille I, Bouillot C, Cole GM,
Prochiantz A, Allinquant B. 2001. A short cytoplasmic
domain of the amyloid precursor protein induces apop-
tosis in vitro and in vivo. Mol Cell Neurosci 18: 503–511.
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mer RE, Südhof TC, Wang R, Zheng H. 2010b. Genetic
dissection of the amyloid precursor protein in develop-
mental function and amyloid pathogenesis. J Biol Chem
285: 30598–30605.

Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H,
Nygaard HB, Airaksinen MS, Strittmatter SM, Craig AM.
2009. An unbiased expression screen for synaptogenic
proteins identifies the LRRTM protein family as synaptic
organizers. Neuron 61: 734–749.

Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL,
Herz J, Muglia L, Bu G. 2007. Amyloid precursor protein
regulates brain apolipoprotein E and cholesterol meta-
bolism through lipoprotein receptor LRP1. Neuron 56:
66–78.

Lorent K, Overbergh L, Moechars D, De Strooper B, Van
Leuven F, Van den Berghe H. 1995. Expression in mouse
embryos and in adult mouse brain of three members of
the amyloid precursor protein family, of the a-2-macro-
globulin receptor/low density lipoprotein receptor-
related protein and of its ligands apolipoprotein E,
lipoprotein lipase, a-2-macroglobulin and the 40,000
molecular weight receptor-associated protein. Neuro-
science 65: 1009–1025.

Lourenco FC, Galvan V, Fombonne J, Corset V, Llambi F,
Müller U, Bredesen DE, Mehlen P. 2009. Netrin-1 inter-
acts with amyloid precursor protein and regulates
amyloid-b production. Cell Death Differ 16: 655–663.

Lu DC, Soriano S, Bredesen DE, Koo EH. 2003. Caspase
cleavage of the amyloid precursor protein modulates
amyloid b-protein toxicity. J Neurochem 87: 733–741.

Luo LQ, Martin-Morris LE, White K. 1990. Identification,
secretion, and neural expression of APPL, a Drosophila
protein similar to human amyloid protein precursor. J
Neurosci 10: 3849–3861.

Luo L, Tully T, White K. 1992. Human amyloid precursor
protein ameliorates behavioral deficit of flies deleted for
Appl gene. Neuron 9: 595–605.

Ma QH, Futagawa T, Yang WL, Jiang XD, Zeng L, Takeda Y,
Xu RX, Bagnard D, Schachner M, Furley AJ, et al. 2008. A
TAG1-APP signalling pathway through Fe65 negatively
modulates neurogenesis [see comment]. Nat Cell Biol
10: 283–294.

Magara F, Müller U, Li ZW, Lipp HP, Weissmann C, Stagljar
M, Wolfer DP. 1999. Genetic background changes the pat-
tern of forebrain commissure defects in transgenic mice
underexpressing the b-amyloid-precursor protein. Proc
Natl Acad Sci 96: 4656–4661.

Mallm JP, Tschape JA, Hick M, Filippov MA, Müller UC.
2010. Generation of conditional null alleles for APP
and APLP2. Genesis 48: 200–206.

Meziane H, Dodart JC, Mathis C, Little S, Clemens J, Paul
SM, Ungerer A. 1998. Memory-enhancing effects of
secreted forms of the b-amyloid precursor protein in
normal and amnestic mice. Proc Natl Acad Sci 95:
12683–12688.

Minogue AM, Stubbs AK, Frigerio CS, Boland B, Fadeeva
JV, Tang J, Selkoe DJ, Walsh DM. 2009. g-secretase
processing of APLP1 leads to the production of a
p3-like peptide that does not aggregate and is not toxic
to neurons. Brain Res 1262: 89–99.

Mok SS, Sberna G, Heffernan D, Cappai R, Galatis D, Clarris
HJ, Sawyer WH, Beyreuther K, Masters CL, Small DH.
1997. Expression and analysis of heparin-binding regions
of the amyloid precursor protein of Alzheimer’s disease.
FEBS Lett 415: 303–307.

Morales-Corraliza J, Mazzella MJ, Berger JD, Diaz NS, Choi
JH, Levy E, Matsuoka Y, Planel E, Mathews PM. 2009. In
vivo turnover of t and APP metabolites in the brains of
wild-type and Tg2576 mice: Greater stability of sAPP in
the b-amyloid depositing mice. PLoS One 4: e7134.

Mucke L, Masliah E, Johnson WB, Ruppe MD, Alford M,
Rockenstein EM, Forss-Petter S, Pietropaolo M, Mallory
M, Abraham CR. 1994. Synaptotrophic effects of human
amyloid b protein precursors in the cortex of transgenic
mice. Brain Res 666: 151–167.

Müller U, Cristina N, Li ZW, Wolfer DP, Lipp HP, Rulicke T,
Brandner S, Aguzzi A, Weissmann C. 1994. Behavioral
and anatomical deficits in mice homozygous for a modi-
fied b-amyloid precursor protein gene. Cell 79: 755–765.

Müller T, Concannon CG, Ward MW, Walsh CM, Tirniceriu
AL, Tribl F, Kogel D, Prehn JH, Egensperger R. 2007.
Modulation of gene expression and cytoskeletal dynam-
ics by the amyloid precursor protein intracellular domain
(AICD). Mol Biol Cell 18: 201–210.

Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE,
Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup
G. 2007. GxxxG motifs within the amyloid precursor
protein transmembrane sequence are critical for the eti-
ology of Ab42. EMBO J 26: 1702–1712.

Musa A, Lehrach H, Russo VA. 2001. Distinct expression
patterns of two zebrafish homologues of the human
APP gene during embryonic development. Dev Genes
Evol 211: 563–567.

Nikolaev A, McLaughlin T, O’Leary DDM, Tessier-Lavigne
M. 2009. APP binds DR6 to trigger axon pruning and
neuron death via distinct caspases. Nature 457: 981–990.

Ninomiya H, Roch JM, Sundsmo MP, Otero DA, Saitoh T.
1993. Amino acid sequence RERMS represents the active
domain of amyloid b/A4 protein precursor that pro-
motes fibroblast growth. J Cell Biol 121: 879–886.

Osterfield M, Egelund R, Young LM, Flanagan JG. 2008.
Interaction of amyloid precursor protein with contactins
and NgCAM in the retinotectal system. Development 135:
1189–1199.

Paliga K, Peraus G, Kreger S, Durrwang U, Hesse L,
Multhaup G, Masters CL, Beyreuther K, Weidemann A.
1997. Human amyloid precursor-like protein 1–cDNA
cloning, ectopic expression in COS-7 cells and identifica-
tion of soluble forms in the cerebrospinal fluid. Eur J Bio-
chem 250: 354–363.

Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da
Costa C, Vincent B, Ring S, D’Adamio L, Shen J, Müller

U.C. Müller and H. Zheng

14 Cite this article as Cold Spring Harb Perspect Med 2012;4:a006288

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



U, et al. 2005. Presenilin-dependent transcriptional con-
trol of the Ab-degrading enzyme neprilysin by intracellu-
lar domains of bAPP and APLP. Neuron 46: 541–554.

Park JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li W, Lee
DH, Strittmatter SM. 2006. Alzheimer precursor pro-
tein interaction with the Nogo-66 receptor reduces
amyloid-b plaque deposition. J Neurosci 26: 1386–1395.

Park SA, Shaked GM, Bredesen DE, Koo EH. 2009. Mecha-
nism of cytotoxicity mediated by the C31 fragment of the
amyloid precursor protein. Biochem Biophys Res Com-
mun 388: 450–455.

Pastorino L, Ikin AF, Lamprianou S, Vacaresse N, Revelli
JP, Platt K, Paganetti P, Mathews PM, Harroch S, Bux-
baum JD. 2004. BACE (b-secretase) modulates the proc-
essing of APLP2 in vivo. Mol Cell Neurosci 25: 642–649.

Perez RG, Zheng H, Van der Ploeg LH, Koo EH. 1997. The
b-amyloid precursor protein of Alzheimer’s disease
enhances neuron viability and modulates neuronal polar-
ity. J Neurosci 17: 9407–9414.

Perez RG, Soriano S, Hayes JD, Ostaszewski B, Xia W, Selkoe
DJ, Chen X, Stokin GB, Koo EH. 1999. Mutagenesis iden-
tifies new signals forb-amyloid precursor protein endocy-
tosis, turnover, and the generation of secreted fragments,
including Ab42. J Biol Chem 274: 18851–18856.

Phinney AL, Calhoun ME, Wolfer DP, Lipp HP, Zheng H,
Jucker M. 1999. No hippocampal neuron or synaptic
bouton loss in learning-impaired aged b-amyloid pre-
cursor protein-null mice. Neuroscience 90: 1207–1216.

Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH.
2004. FE65 constitutes the functional link between the
low-density lipoprotein receptor-related protein and
the amyloid precursor protein. J Neurosci 24: 4259–4265.

Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA,
Herms J. 2006. Synapse formation and function is modu-
lated by the amyloid precursor protein. J Neurosci 26:
7212–7221.

Qiu WQ, Ferreira A, Miller C, Koo EH, Selkoe DJ. 1995.
Cell-surfaceb-amyloid precursor protein stimulates neu-
rite outgrowth of hippocampal neurons in an isoform-
dependent manner. J Neurosci 15: 2157–2167.

Radzimanowski J, Simon B, Sattler M, Beyreuther K, Sin-
ning I, Wild K. 2010. Structure of the intracellular
domain of the amyloid precursor protein in complex
with Fe65-PTB2. EMBO Rep 9: 1136–1140.

Reinhard C, Hebert SS, De Strooper B. 2005. The amyloid-b
precursor protein: Integrating structure with biological
function. EMBO J 24: 3996–4006.

Repetto E, Yoon IS, Zheng H, Kang DE. 2007. Presenilin 1
regulates epidermal growth factor receptor turnover
and signaling in the endosomal-lysosomal pathway.
J Biol Chem 282: 31504–31516.

Richter L, Munter LM, Ness J, Hildebrand PW, Dasari M,
Unterreitmeier S, Bulic B, Beyermann M, Gust R, Reif
B, et al. 2010. Amyloid b 42 peptide (Ab42)-lowering
compounds directly bind to Ab and interfere with amy-
loid precursor protein (APP) transmembrane dimeriza-
tion. Proc Natl Acad Sci 107: 14597–14602.

Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Fili-
ppov MA, Herms J, Buchholz C, Eckman CB, Korte M,
et al. 2007. The secreted b-amyloid precursor protein
ectodomain APPsa is sufficient to rescue the anatomical,

behavioral, and electrophysiological abnormalities of
APP-deficient mice. J Neurosci 27: 7817–7826.

Roch JM, Masliah E, Roch-Levecq AC, Sundsmo MP, Otero
DA, Veinbergs I, Saitoh T. 1994. Increase of synaptic den-
sity and memory retention by a peptide representing the
trophic domain of the amyloid b/A4 protein precursor.
Proc Natl Acad Sci 91: 7450–7454.

Rohe M, Carlo AS, Breyhan H, Sporbert A, Militz D,
Schmidt V, Wozny C, Harmeier A, Erdmann B, Bales
KR, et al. 2008. Sortilin-related receptor with A-type
repeats (SORLA) affects the amyloid precursor protein-
dependent stimulation of ERK signaling and adult neu-
rogenesis. J Biol Chem 283: 14826–14834.

Rosen DR, Martin-Morris L, Luo LQ, White K. 1989. A Dro-
sophila gene encoding a protein resembling the human
b-amyloid protein precursor. Proc Natl Acad Sci 86:
2478–2482.

Ryan KA, Pimplikar SW. 2005. Activation of GSK-3 and
phosphorylation of CRMP2 in transgenic mice express-
ing APP intracellular domain. J Cell Biol 171: 327–335.
Epub 2005 Oct 17.

Saitoh T, Sundsmo M, Roch JM, Kimura N, Cole G, Schu-
bert D, Oltersdorf T, Schenk DB. 1989. Secreted form
of amyloid b protein precursor is involved in the growth
regulation of fibroblasts. Cell 58: 615–622.

Santos SF, Pierrot N, Morel N, Gailly P, Sindic C, Octave JN.
2009. Expression of human amyloid precursor protein in
rat cortical neurons inhibits calcium oscillations. J Neu-
rosci 29: 4708–4718.

Sara Y, Biederer T, Atasoy D, Chubykin A, Mozhayeva MG,
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