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Frontotemporal dementia (FTD) comprises a group of behavioral, language, and movement
disorders. On the basis of the nature of the characteristic protein inclusions, frontotemporal
lobar degeneration (FTLD) can be subdivided into the common FTLD-tau and FTLD-TDPas
well as the less common FTLD-FUS and FTLD-UPS. Approximately 10% of cases of FTD are
inherited in an autosomal-dominant manner. Mutations in seven genes cause FTD, with
those in tau (MAPT), chromosome 9 open reading frame 72 (C9ORF72), and progranulin
(GRN) being the most common. Mutations in MAPT give rise to FTLD-tau and mutations
in C9ORF72 and GRN to FTLD-TDP. The other four genes are transactive response–DNA
binding protein-43 (TARDBP ), fused in sarcoma (FUS ), valosin-containing protein (VCP ),
and charged multivesicular body protein 2B (CHMP2B). Mutations in TARDBP and VCP
give rise to FTLD-TDP, mutations in FUS to FTLD-FUS, and mutations in CHMP2B to
FTLD-UPS. The discovery that mutations in MAPT cause neurodegeneration and dementia
has important implications for understanding Alzheimer disease.

THE CONCEPT OF FRONTOTEMPORAL
DEMENTIA: HISTORICAL OVERVIEW

Frontotemporal dementia (FTD) results from
degeneration of the cortex of the frontal and

temporal lobes, often in conjunction with the
degeneration of subcortical brain regions. This
gives rise to a spectrum of behavioral, language,
and movement disorders. A link exists between
FTD and forms of motor neuron disease
(MND). Work on FTD stretches back to the
end of the 19th century.

Arnold Pick was Professor of Neuropsy-
chiatry at the German University in Prague
from 1886 to 1921. In 1892, he described a 71-
year-old man with behavioral disturbances,
aphasia, and dementia (Pick 1892). At autopsy,
marked atrophy of the left temporal lobe rather
than the diffuse atrophy characteristic of se-
nile dementia was present. Although Pick was
doubtful of the primacy of these observations,
his paper is considered to be the first description
of lobar cortical atrophy. At the time, there
was much interest in language abnormalities,
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following the description of motor and sensory
aphasias (Broca 1861; Wernicke 1874; see also
Freud 1891). A few years later, Déjerine and Sér-
ieux (1897) described a case of sensory aphasia
with bilateral temporal atrophy. Pick went on to
report four additional cases with temporal lobe
atrophy and language disturbances (Pick 1901,
1904). In 1906, he described a patient with dis-
inhibition and mixed apraxia who had severe
bilateral frontal and left-sided parietal atrophy,
with a more moderate atrophy of the left tempo-
ral lobe (Pick 1906). Pick was mainly interested
in comparing the clinical picture with the mac-
roscopic appearance of the brain. He made no
systematic attempt at identifying histopatho-
logical abnormalities. Alzheimer discovered
the association of argyrophilic intracytoplasmic
inclusions and ballooned neurons with lobar
cortical atrophy, in the absence of the plaques
and tangles he had described four years earlier
(Alzheimer 1907, 1911). This revealed the exis-
tence of a second type of intraneuronal inclu-
sion and established that different inclusions
can characterize distinct clinical entities.

Richter proposed that lobar cortical atro-
phies are hereditary diseases (Richter 1918)
and Gans, a pupil of Pick, linked his mentor’s
name to cases of lobar cortical atrophy (Gans
1923). Additional examples of frontal and/or
temporal cortical atrophy with or without
argyrophilic inclusions were subsequently re-
ported and the clinical condition was called
“Pick’s disease” (Onari and Spatz 1926; Stertz
1926). Unlike Pick, who believed to have
described atypical forms of senile dementia,
Onari and Spatz considered Pick’s disease to
be a distinct entity. One of their patients
(Therese Mühlich) had already been described
by Alzheimer. Carl Schneider proposed a
three-stage model for the clinical course of
Pick’s disease (Schneider 1927, 1929). In most
individuals, the first stage is characterized by
disinhibition and impaired judgement, al-
though Schneider recognized that amnestic
aphasia is the presenting symptom of temporal
lobe atrophy. The second stage is dominated by
progressive dementia and focal symptoms, such
as apathy in frontal lobe atrophy and sensory
aphasia in temporal lobe atrophy. Stereotyped

perseverations of speech, movement, and facial
expression also appear. The third stage is char-
acterized by dementia and severe language
problems, resulting in a vegetative state with
flexion contractures. Schneider concluded that
the argyrophilic inclusions and ballooned cells
described by Alzheimer were diagnostic of Pick’s
disease. Similar cases were described in the
1930s, when it became clear that lobar cortical
atrophy has a high degree of heritability, irre-
spective of the presence of argyrophilic inclu-
sions (Grünthal 1930; Verhaart 1930; Von
Braunmühl and Leonhard 1934). The link
between frontal lobe dementia and MND was
also recognized (Meyer 1929; Von Braunmühl
1932). The early work was summarized and dis-
cussed by Van Mansvelt (1954) and Lüers and
Spatz (1957).

Interest in the focal dementias waned after
World War II, before it was rekindled in the
1970s and 1980s. Cases of Pick’s disease with
argyrophilic inclusions and ballooned neurons
(type A) were now distinguished from those
with ballooned neurons lacking argyrophilic
inclusions (type B) and those lacking both
ballooned neurons and argyrophilic inclusions
(type C) (Constantinidis 1974). Work by
Brun, Gustafson, and Neary showed that some
individuals with frontal lobe atrophy lacked a
distinctive histopathology (Brun 1987; Gustaf-
son 1987; Neary et al. 1988). Clinically, these
patients suffered from a severe personality
disorder, which is now known as behavioral-
variant FTD (bvFTD). Mesulam described
primary progressive aphasia (PPA), with an
isolated language deficit as the most prominent
presenting feature, in the absence of strokes or
tumors (Mesulam 1982, 1987, 2001). PPA has
been divided into three syndromes (Gorno-
Tempini et al. 2011): (1) Semantic dementia
(SD), also known as semantic variant PPA, a flu-
ent aphasia with loss of word meaning (Snow-
den et al. 1989); (2) progressive nonfluent
aphasia (PNFA), also known as nonfluent/
agrammatic variant PPA, a disorder character-
ized by effortful, nonfluent speech (Grossman
et al. 1996); and (3) logopenic progressive
aphasia (LPA), also known as logopenic variant
PPA, a nonfluent aphasia with deficits in word
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retrieval and sentence repetition (Gorno-Tem-
pini et al. 2004b).

Symptoms correlate better with specific pat-
terns of brain atrophy than with the underlying
neuropathology. Prediction of the neuropathol-
ogy based on clinical picture remains challeng-
ing. FTD is the third most common cause of
early-onset dementia (disease onset ,65 years),
after Alzheimer disease and vascular dementia
(Rossor et al. 2010). Approximately 40% of
patients with FTD have a family history, but
only 10% of cases are inherited in a dominant
manner. Links exist with the corticobasal syn-
drome (CBS), progressive supranuclear palsy
(PSP), parkinsonism, and MND.

CLINICAL PRESENTATIONS OF
FRONTOTEMPORAL DEMENTIA

Behavioral-Variant Frontotemporal
Dementia (bvFTD)

bvFTD comprises more than half of the cases of
FTD and is the most heritable form. Presenting
features are insidious and include progressive
changes in the patient’s personality, interperson-
al conduct, and emotional modulation (Gus-
tafson 1987; Neary et al. 1988; Piguet et al.
2011a). A variable degree of language impair-
ment is also present. Apathy manifesting as pas-
sivity, inertia, reduced motivation, and social
withdrawal, associated with a lack of insight, is
common. Disinhibition often coexists alongside
apathy and manifests itself by impulsivity. Emo-
tional blunting characterized bya lackof empathy
is common. Abnormal eating behavior can be
extensive, resulting in marked weight gain. Ster-
eotypic and ritualistic behavior is common, as
expressed by motor stereotyping, including
humming, lip smacking, hand ruffling, and foot
tapping. Neglect of self-care and impairment of
other activities of daily living are common.
Most patients are unable to manage their finan-
cial affairs. Memory is relatively spared in the
early stages of bvFTD. By neuroimaging, four
subtypes have been identified based on relative
grey matter loss: frontal-dominant, frontotem-
poral, temporofrontoparietal, and temporal-
dominant (Whitwell et al. 2009a). Combined

frontotemporal and basal ganglion atrophy can
also be present, as can atrophy of a number of
other subcortical regions. bvFTD and Alzheimer
disease lead to divergent network activity pat-
terns, with atrophy in an anterior salience net-
work in bvFTD and a posterior default mode
network in Alzheimer disease (Zhou et al. 2010).

Semantic Dementia (SD)

SD is a progressive fluent aphasia, which is char-
acterized by the loss of word meaning (Snow-
den et al. 1989; Hodges and Patterson 2007).
Patients have difficulty in finding words, with
anomia being a defining feature. They also
complain of memory loss, but this does not in
general reflect true amnesia. Although language
deficits predominate, behavioral alterations also
occur. SD is the least heritable FTD syndrome. A
deficit in naming and word comprehension
predominates, with the patient’s vocabulary
being depleted of all but the most common
words. However, speech is fluent and the syntax
correct. This is often coupled with deficits in
person recognition, especially when the right
temporal lobe is affected. Although patients
are insightful and can be distressed by their con-
dition, lack of empathy and mental inflexibility
are common. Restriction of food preferences is
present without the overeating characteristic
of bvFTD. Compulsive behavior is prominent
and centers on visual objects (left temporal
lobe predominance) or on letters, words, and
symbols (right temporal lobe predominance).
By neuroimaging of grey matter, bilateral, often
asymmetric, anterior temporal lobe atrophy is
most prominent. The hippocampus can also
be affected (Mummery et al. 1999). White mat-
ter changes are found in the ventral language
pathways and the temporal components of
the dorsal language pathways (Galantucci et al.
2011).

Progressive Nonfluent Aphasia (PNFA)

PNFA is a disorder of expressive language.
Patients lose the ability to speak fluently, with
relative preservation of word comprehension
and nonlinguistic cognition (Grossman et al.
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1996). Several speech changes characterize PNFA.
At an early stage, patients speak less than nor-
mal and in shorter sentences. They show speech
apraxia, with effortful speech and phonological
errors. Word finding difficulty is commonly
observed, often resulting in muteness. Behav-
ioral features similar to those of bvFTD may
occur, but they are usually mild, with apathy
being most common. As the disease progresses,
extrapyramidal features become widespread
and can lead to a change in diagnosis (Gorno-
Tempini et al. 2004a). Heritability of PNFA is
intermediate between that of bvFTD and SD.
Neuroimaging shows a widening of the Sylvian
fissure, with atrophy of left posterior frontal and
insular regions (Neary et al. 2003; Nestor et al.
2003). In white matter, the most prominent
changes are found in the dorsal language path-
ways (Galantucci et al. 2011).

Logopenic Progressive Aphasia (LPA)

LPA is a progressive nonfluent aphasia, which is
characterized by a slow speech rate and word
retrieval difficulties (Gorno-Tempini et al.
2004b, 2008). Repetition of phrases is also
markedly impaired, in part as a result of limited
auditory-verbal short-term memory. Single-
word comprehension and semantic association
are largely preserved. It differs from the fast
output typical of patients with SD and the
agrammatism and articulation deficits charac-
teristic of PNFA. However, a language variant
of Alzheimer disease overlaps with LPA (Galton
et al. 2000; Alladi et al. 2007). It has been sug-
gested that LPA and posterior cortical atrophy
are clinical presentations of sporadic, early-
onset Alzheimer disease (Migliaccio et al.
2009). This nonmemory phenotype character-
izes about one quarter of patients (Van der Flier
et al. 2011). Inheritance of the APOE 14 allele
appears not to be a risk factor for LPA and
posterior cortical atrophy, distinguishing them
from the more common amnestic forms of
Alzheimer disease (Strittmatter and Roses
1995). Neuroimaging of LPA shows atrophy or
hypoperfusion of the left posterior superior
and middle temporal regions, and of the
inferior parietal region (Gorno-Tempini et al.

2004b). Brain atrophy is located more posteri-
orly than in SD and PNFA. White matter
changes are most marked in the temporoparie-
tal component of the dorsal language pathway
(Galantucci et al. 2011).

Frontotemporal Dementia and Corticobasal
Syndrome (CBS)

CBS and PSP are atypical parkinsonian disor-
ders. CBS is characterized by extrapyramidal
symptoms consisting of progressive asymmetric
rigidity and dystonia, and by signs of cortical
dysfunction in the form of PNFA, apraxia, cort-
ical sensory loss, alien limb syndrome, myo-
clonus, and hemineglect. For many years, the
emphasis was on the extrapyramidal compo-
nent, even though similarities with Pick’s dis-
ease were noticed early on (Rebeiz et al. 1968).
More recent work has shown that patients
with CBS can have aphasia or a behavioral
disorder characteristic of bvFTD (Lippa et al.
1991; Kertesz et al. 1994). Pathologically, CBS
is heterogenous, but its most common form is
corticobasal degeneration (CBD). Some cases
of CBS are dominantly inherited. Neuroimag-
ing shows variable frontoparietal and basal
ganglion atrophy (Whitwell et al. 2010).

Frontotemporal Dementia and Progressive
Supranuclear Palsy (PSP)

The clinical presentation of PSP includes verti-
cal supranuclear ophtalmoplegia with difficulty
looking up, bradykinesia, axial dystonia and
rigidity, pseudobulbar palsy and postural insta-
bility with backward falls (Steele et al. 1964;
Litvan et al. 1996). More than half of the
patients develop cognitive impairment. Apathy
and emotional blunting, accompanied by
mental slowness and reduced verbal fluency,
are common. A small percentage of cases of
PSP is inherited. By neuroimaging, atrophy in
premotor and supplemental motor areas is
observed, with sparing of the inferior frontal
lobe (Whitwell et al. 2010). Some patients
show PNFA with early apraxia of speech
(Josephs et al. 2006). Three subtypes of PSP
have been described: Richardson’s syndrome,
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PSP-parkinsonism, and PSP-pure akinesia with
gait freezing (Williams and Lees 2009). Cogni-
tive impairment and cortical atrophy are most
prominent in Richardson’s syndrome, which
corresponds to classical PSP.

Frontotemporal Dementia and
Parkinsonism Linked to Chromosome 17
(FTDP-17)

In the 1980s and 1990s, dominantly inherited
forms of FTD were identified (Ghetti et al.
2011). Extrapyramidal signs resembling CBS
and PSP also featured prominently. Amyotrophy
was present in some cases. These forms of inher-
ited FTD were given different names according
to their predominant clinical and pathological
features, including familial Pick’s disease, disin-
hibition-dementia-parkinsonism-amyotrophy
complex, familial progressive subcortical glio-
sis, familial presenile dementia with tangles,
autosomal-dominant parkinsonism, dementia
with pallido-ponto-nigral degeneration, and
multiple system tauopathy with presenile
dementia. Despite this heterogeneity, disease
was linked to the long arm of chromosome
17 (Wilhelmsen et al. 1994). The syndrome
received its name at a consensus conference dur-
ing which 13 families were presented (Foster
et al. 1997). FTDP-17 is divided into a demen-
tia-dominant and a parkinsonism-dominant
type. Neuroimaging shows variable frontotem-
poroparietal and basal ganglion atrophy (Whit-
well et al. 2009b).

Frontotemporal Dementia with Motor
Neuron Disease (MND)

MND can be associated with cognitive dysfunc-
tion (Morita et al. 1987). Mild frontal lobe
involvement is found in 30% of cases and in
�3% of cases FTD is present (Shaw 2010). A
psychotic phase consisting of vivid delusions
is an early sign. Behavioral and cognitive
changes tend to predate MND. Bulbar signs
are common and electromyography is as in
MND. Inherited cases of FTD-MND have
been linked to chromosome 9p21 (Vance et al.
2006). Neuroimaging shows posterior frontal

lobe atrophy (Whitwell et al. 2006). Based on
the presence of isolated upper MND in some
cases, further subclassification of FTD-MND
has been proposed (Josephs and Dickson 2007).

HISTOPATHOLOGY OF FRONTOTEMPORAL
LOBAR DEGENERATION (FTLD)

FTLD-Tau

In 1986, the argyrophilic inclusions of Pick’s
disease were shown to be immunoreactive for
hyperphosphorylated tau (Pollock et al. 1986),
a normally soluble microtubule-associated pro-
tein that stabilizes microtubules and promotes
microtubule assembly. It followed the finding
that the intracellular inclusions of Alzheimer
disease stain for hyperphosphorylated tau
(Brion et al. 1985; Grundke-Iqbal et al. 1986).
In adult human brain, six tau isoforms are
expressed from a single MAPT gene through
alternative mRNA splicing (Fig. 1A) (Goedert
et al. 1989a,b). Three isoforms have three re-
peats each and three isoforms have four repeats
each. By 1992, the paired helical filament of
Alzheimer disease had been shown to be made
of the six tau isoforms, each full-length and
hyperphosphorylated (Goedert et al. 1988,
1992; Wischik et al. 1988; Lee et al. 1991). Fila-
mentous tau inclusions were subsequently
shown to be characteristic of many cases of
FTDP-17 (Spillantini et al. 1996, 1998a).

Around 40% of patients with FTD show tau
inclusions (Fig. 2). They include most cases of
PNFA, �45% of cases of bvFTD and some cases
of SD (Piguet et al. 2011a). Most cases of LPA
are characterized by focal Alzheimer disease
pathology (Ab plaques and tau tangles), as are
some cases of SD and PNFA (Mesulam et al.
2008; Rabinovici et al. 2008). Focal Alzheimer
disease pathology accounts for �25% of autop-
sy cases of PPA. A frontal variant of Alzheimer
disease has also been described (Johnson et al.
1999). Tau inclusions are characteristic of Pick’s
disease, PSP, and CBD, which belongs to the
CBS spectrum (Goedert and Spillantini 2006).
They are not typical of FTD-MND, even though
MND can occur in conjunction with FTD and
tauopathy (Fu et al. 2010).
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Figure 1. MAPT and the six tau isoforms expressed in adult human brain and mutations in MAPT in fronto-
temporal dementia and parkinsonism linked to chromosome 17. (A) MAPT consists of 16 exons (E). Alternative
mRNA splicing of E2 (red), E3 (green), and E10 (yellow) gives rise to six tau isoforms (352-441 amino acids).
The constitutively spliced exons (E1, E4, E5, E7, E9, E11, E12, E13) are indicated in blue. E0, which is part of the
promoter, and E14 are noncoding (white). E6 and E8 (violet) are not transcribed in human brain. E4a (orange)
is only expressed in the peripheral nervous system. The repeats of tau (R1–R4) are shown, with three isoforms
having four repeats each (4R) and three isoforms having three repeats each (3R). Each repeat is 31 or 32 amino
acids in length. (B) Shown are 39 coding region mutations in E1, E9, E10, E11, E12, and E13 as well as seven
intronic mutations flanking E10.
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The anatomical distribution of pathology
rather than its molecular identity determines
the nature of the clinical syndromes. In most
cases of Alzheimer disease, the locus coeruleus,
entorhinal cortex, and hippocampus are the
initial targets of neurofibrillary pathology,
with the neocortex becoming affected later
(Braak and Del Tredici 2011). In Pick’s disease,
tau inclusions predominate in the cerebral cor-
tex, resulting in FTD (Piguet et al. 2011b). In
PSP, patients with Richardson’s syndrome have
a higher tau burden and a different distribution

of inclusions than patients with PSP-parkinson-
ism (Williams et al. 2007). The subthalamic
nucleus, substantia nigra, and globus pallidus
are the most affected brain regions. In CBD,
apraxia, rigidity, dystonia, and frontal lobe signs
reflect the presence of neuronal and glial tau
deposits in brainstem, basal ganglia, and cere-
bral cortex (Feany and Dickson 1995).

The repeats of tau form the core of the
filaments whose isoform composition varies
between diseases. The assembly of four-repeat
tau into filaments is characteristic of PSP,

FTLD-Tau FTLD-TDP FTLD-FUS FTLD-UPS

FTLD

3R Tau

Pick’s
disease PSP

CBD

MSTD

AGD

FTLD with
GGls

NFT
dementia

FTLD with
GRN mutations

FTLD with
TARDBP

 mutations

FTLD with
C9ORF72
mutations

FTLD with VCP
 mutations

FTLD with FUS
 mutations

FTLD with
MAPT mutations

FTLD with
MAPT mutations

FTLD with
MAPT mutations

NIFID

BIBD

FTLD with
CHMP2B
mutations

4R Tau 3/4R Tau
Sporadic

FTLD
Sporadic

FTLD
Sporadic

FTLD

Figure 2. Frontotemporal lobar degeneration (FTLD) molecular classification. Four subtypes (FTLD-Tau,
FTLD-TDP, FTLD-FUS, and FTLD-UPS) can be distinguished, based on what is known about the major com-
ponents that make up the pathological deposits (Tau protein, TDP-43, FUS and unknown protein). FTLD-Tau
and FTLD-TDP are more common than FTLD-FUS and FTLD-UPS. Tau deposits are made of either
three-repeat (3R), four-repeat (4R) or all six (3/4R) brain isoforms of tau. Together, FTLD-TDP, FTLD-FUS,
and FTLD-UPS make up FTLD-U, which is characterized by the presence of tau-negative, ubiquitin-positive
inclusions. In some cases of FTLD-U, the ubiquitinated protein is unknown; they are classified as FTLD-UPS,
to indicate that the inclusions can currently only be identified by markers of the ubiquitin-proteasome system.
Abbreviations: PSP, progressive supranuclear palsy; CBD, corticobasal degeneration; MSTD, multiple system
tauopathy with presenile dementia; AGD, argyrophilic grain disease; GGI, globular glial inclusion; NIFID,
neuronal intermediate filament inclusion disease; BIBD, basophilic inclusion body disease; UPS, ubiquitin-
proteasome system.
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CBD, and many cases of FTDP-17 (Fig. 3). It is
also typical of argyrophilic grain disease and
white matter tauopathy with globular glial
inclusions, which belong to the FTD spectrum.
A combination of neuronal and glial tau pathol-
ogy is in evidence, with the glial pathology
predominating in white matter tauopathy with
globular glial inclusions (Kovacs et al. 2008).

In contrast, in Pick’s disease and some cases of
FTDP-17, three-repeat tau predominates in
the neuronal inclusions (Fig. 3), whereas in Alz-
heimer disease, other diseases with extracellular
deposits, Guam Parkinsonism-dementia com-
plex, tangle-only dementia, and some cases
of FTDP-17, both three- and four-repeat tau
isoforms make up the neurofibrillary lesions.

Figure 3. FTLD-Tau. Inclusions in progressive supranuclear palsy (A,B), corticobasal degeneration (C), white
matter tauopathy with globular glial inclusions (D), argyrophilic grain disease (E), and Pick’s disease (F). Pro-
gressive supranuclear palsy, corticobasal degeneration, white matter tauopathy with globular glial inclusions
and argyrophilic grain disease are four-repeat tauopathies with abundant neuronal and glial tau filaments. Pick’s
disease is a three-repeat tauopathy with abundant neuronal tau filaments. Scale bar, 50 mm.
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Distinct sets of tau isoforms in different neuro-
degenerative diseases and the presence of mor-
phologically distinct filaments have led to the
suggestion that self-propagating conformers of
tau may exist (Goedert et al. 2010), akin to the
prion strains accounting for the conformational
variability of PrPSc (Colby and Prusiner 2011).
In support, experimental evidence for the inter-
cellular transfer of tau aggregates has been
adduced (Clavaguera et al. 2009; Frost et al.
2009).

FTLD-TDP

By 2006, most cases of FTLD were known
to exhibit either tau-positive or tau-negative
inclusions (FTLD-U) (Fig. 2). The latter were
first described in patients with MND (Okamoto
et al. 1991). Four histological subtypes (A–D)

of FTLD-U can be distinguished (Fig. 4) (Mack-
enzie et al. 2006, 2011; Sampathu et al. 2006).
Type A is associated with bvFTD and PFNA,
type B with bvFTD and FTD-MND, type C
with SD, and type D with familial inclusion
body myopathy with Paget’s disease of the
bone and frontotemporal dementia (IBMPFD).

In 2006, transactive response-DNA bind-
ing protein-43 (TDP-43) was identified as the
major component of the inclusions in most
cases of FTLD-U (Figs. 2 and 4), MND, and
FTLD-MND (Arai et al. 2006; Neumann et al.
2006). Around 50% of patients with FTD have
TDP-43 inclusions. They include most cases of
SD, �45% of cases of bvFTD, as well as some
cases of PNFA, LPA, FTDP-17, CBS, and PSP
(Piguet et al. 2011a). Most cases of FTD-
MND belong to the TDP-43 proteinopathy
group. In Alzheimer disease, TDP-43 deposits

Figure 4. FTLD-TDP: Histological subtypes (A–D). Type A is characterized by abundant TDP-43-immunoreac-
tive compact neuronal cytoplasmic inclusions and short dystrophic neurites, often with neuronal intranuclear
inclusions (A); type B by abundant compact and granular cytoplasmic inclusions (B); type C by abundant long
dystrophic neurites (C); and type D by abundant lentiform neuronal intranuclear inclusions and many short
dystrophic neurites (D). Scale bar, 50 mm.
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are found in a minority of cases in conjunc-
tion with the characteristic plaques and tangles
(Amador-Ortiz et al. 2007).

TDP-43 is a ubiquitously expressed 414
amino acid RNA-binding protein of the hetero-
genous nuclear ribonucleoprotein (hnRNP)
family with two RNA recognition motifs, nu-
clear localization and export signals, and a
carboxy-terminal glycine-rich region. The gly-
cine-rich region is predicted to show a prion
domain, based on an algorithm that identifies
yeast prion domains (Cushman et al. 2010).
TDP-43 binds to noncoding RNAs, introns,
and the 30-untranslated regions of mRNAs,
indicating a role in the integration of gene
regulation. It functions as a transcriptional
repressor and splicing modulator. UV-cross-
linking and immunoprecipitation analysis has
shown that TDP-43 has thousands of potential
targets, with a preference for long clusters of
UG-rich intronic sequences (Polymenidou
et al. 2011; Tollerey et al. 2011). It binds to
�30% of the mouse transcriptome. TDP-43
negatively regulates its own mRNA and protein
through binding to a long UG-rich region in its
30-untranslated region (Ayala et al. 2011). It is
predominantly nuclear, even though it nor-
mally shuttles between nucleus and cytoplasm.
In FTD, TDP-43 it is found mainly in the cyto-
plasm in a hyperphosphorylated, ubiquitinated,
and truncated form (Hasegawa et al. 2008).

FTLD-FUS

Most cases of FTLD-U show TDP-43 inclusions.
In 2009, inclusions made of fused in sarcoma
(FUS) were shown to account for the bulk of
TDP-43-negative FTLD-U (Fig. 2) (Neumann
et al. 2009a), following the discovery that mu-
tations in FUS cause familial forms of ALS
(Kwiatkowski et al. 2009; Vance et al. 2009).
Less than 10% of cases of FTLD have FUS inclu-
sions. They include atypical cases of FTLD-U,
basophilic inclusion body disease, and neuronal
intermediate filament inclusion body disease
(Munoz et al. 2009; Neumann et al. 2009a,b).
Neuroimaging of FTLD-FUS shows atrophy of
frontoinsular and cingulate cortex, and of the
head of the caudate nucleus (Josephs et al. 2010;

Seelaar et al. 2010). FTD-FUS should be sus-
pected when disease onset is before 40 years of
age, in the absence of a family history of FTD,
and the presence of caudate atrophy. This is rem-
iniscent of a case from the early literature (Bonfi-
glio 1938). The existence of cases of PPA with
FUS inclusions remains to be demonstrated.

FUS is a widely expressed 526 amino acid
protein with an amino-terminal region rich in
QGSY residues, a glycine-rich region, an RNA
recognition motif, two RGG domains, and a
zinc finger motif. Like TDP-43, it is a DNA/
RNA-binding protein that is involved in tran-
scriptional and translational regulation, as well
as in mRNA splicing and transport. The pre-
dicted prion domain of FUS resides in the
amino-terminal region (Cushman et al. 2010).
In normal brain, FUS is concentrated in the
nucleus, with smaller amounts in the cyto-
plasm. In FTD, the ability of FUS to shuttle to
the nucleus is impaired, resulting in its cyto-
plasmic accumulation. FUS inclusions contain
the full-length protein (Neumann et al. 2009a).
Staining for TDP-43 and FUS appears to be
mutually exclusive, suggestive of distinct sub-
types of FTLD-U.

FTLD-UPS

FTLD-TDP and FTLD-FUS account for the
majority of cases of FTLD-U. Additional forms
remain to be discovered, because inclusions that
are negative for TDP-43 and FUS, but positive
for components of the ubiquitin-proteasome
system (UPS), have been described (Fig. 2)
(Holm et al. 2009).

GENETICS OF FRONTOTEMPORAL
DEMENTIA

Dominantly inherited FTD is caused by muta-
tions in seven genes. Mutations in MAPT (Hut-
ton et al. 1998; Poorkaj et al. 1998; Spillantini
et al. 1998b), chromosome 9 open reading frame
72 (C9ORF72) (DeJesus-Hernandez et al. 2011;
Renton et al. 2011), and progranulin (GRN)
(Baker et al. 2006; Cruts et al. 2006) are the most
common. The other four genes are TARDBP
(Benajiba et al. 2009; Kovacs et al. 2009), FUS
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(Ticozzi et al. 2009), valosin-containing protein
(VCP) (Watts et al. 2004), and charged multive-
sicular body protein 2B (CHMP2B) (Skibinski
et al. 2005).

Mutations in MAPT

Mutations in MAPT account for �5% of cases
of FTD and are believed to cause disease
through a gain of toxic function mechanism.
Most mutations are located in exons 9–12
(which encode the repeats) and the adjacent
introns (Fig. 1B). It remains to be determined
whether the amino acid changes in codon 5 of
exon 1 are pathogenic. Mutations fall into two
largely nonoverlapping groups: those with a
primary effect at the protein level and those
influencing the alternative splicing of tau pre-
mRNA. Mutations acting at the protein level
change or delete single amino acids in tau.
This reduces the ability of tau to interact with
microtubules, suggesting that this interaction
is crucial for preventing the self-assembly of
tau (Hasegawa et al. 1998). Some mutations
also promote the assembly of tau into filaments
(Goedert et al. 1999; Nacharaju et al. 1999).
Mutations having their primary effect at the
RNA level are intronic or exonic and increase
the alternative mRNA splicing of exon 10.
This changes the ratio of 3- to 4-repeat iso-
forms, resulting in the relative overproduction
of 4-repeat tau and the formation of filamen-
tous inclusions made of 4-repeat tau.

Cases with MAPT mutations show abun-
dant filamentous inclusions made of hyper-
phosphorylated tau in either nerve cells or in
both nerve cells and glial cells. Clinical and neu-
ropathological phenotypes similar or identical
to those of Pick’s disease, PSP, CBD, and argy-
rophilic grain disease have been described. A
given mutation can lead to different clinical
syndromes in an individual family. Thus, muta-
tion P301S in exon 10 of MAPT caused bvFTD
in a father and CBD in his son (Bugiani et al.
1999), supporting the view that FTD and CBS
are part of the same disease spectrum (Kertesz
et al. 2000).

Haplotypes H1 and H2 characterize MAPT
in populations of European descent. They result

from a 900 kb inversion/noninversion (H1/
H2) polymorphism (Stefansson et al. 2005). In-
heritance of the H1 haplotype is a risk factor for
PSP and CBD (Williams and Lees 2009). This
was confirmed in a genome-wide association
study of PSP, which also implicated proteins
involved in vesicle traffic, the unfolded protein
response and the innate immune system (Hög-
linger et al. 2011). Heterozygous microdeletions
in the chromosomal region, which defines the
H1 and H2 haplotypes, give rise to a clinical
phenotype consisting of mental retardation,
hypotonia, and a characteristic face (Koolen
et al. 2006; Sharp et al. 2006; Shaw-Smith et al.
2006). Besides MAPT, the deleted region com-
prises five additional genes [corticotrophin-
releasing hormone receptor 1 (CRHR1), intra-
membrane protease 5 (IMP5), NP 689679.1,
NP 787078.1, and KIAA1267]. Deletions occur
on the H2 haplotype through low-copy repeat-
mediated nonallelic homologous recombina-
tion. An association has also been described
between the H1 haplotype and idiopathic Par-
kinson’s disease (Pastor et al. 2000), a disease
without tau inclusions. The elevated risk of
PSP and CBD conferred by the H1 haplotype
appears to promote MAPT transcription and
incorporation of exon 10, resulting in increased
levels of four-repeat tau (Caffrey et al. 2006).

Mutations in C9ORF72

The cause of chromosome 9p21-linked FTD-
MND has been identified as a hexanucleotide
(GGGGCC) expansion in the noncoding region
of C9ORF72, a gene that encodes a protein of
unknown function (DeJesus-Hernandez et al.
2011; Renton et al. 2011). The hexanucleotide
expansion leads to the loss of an alternatively
spliced transcript and the formation of nuclear
RNA foci. The latter may be toxic. The repeat
expansion in C9ORF72 is also a common cause
of isolated FTD and MND.

Mutations in GRN

Mutations in GRN account for �5% of cases of
FTD and cause disease by a loss of function
mechanism. Progranulin is a 593 amino acid
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glycoprotein consisting of 7.5 tandem repeats of
a 12-cysteine granulin motif. Although its func-
tion is only incompletely understood, progra-
nulin may be a physiological antagonist of
tumor necrosis a signaling (Tang et al. 2011).
It has been reported to act on nerve cells by
binding to sortilin following release from acti-
vated microglial cells (Hu et al. 2010). Muta-
tions in GRN include gene deletions, as well as
nonsense, frameshift, and splice-site mutations
that cause premature termination, creating null
alleles with the mutant RNAs being degraded by
nonsense-mediated decay (Van Swieten and
Heutink 2008). Known mutations result in hap-
loinsufficiency, implying that progranulin is
critical for the survival of neurons in adult
brain. Reduced levels of plasma progranulin
have been used to identify mutation carriers
(Ghidoni et al. 2008). Mutations in GRN cause
diseases belonging to the whole spectrum of
FTD, with a predominance of bvFTD and
PNFA (Yu et al. 2010). Parietal deficits and
CBS have been observed (Spina et al. 2007).
This is reflected in frontotemporoparietal cor-
tical atrophy. Cases with GRN mutations show
type A TDP-43 inclusions (Mackenzie et al.
2006), showing that a reduction in progranulin
levels causes the accumulation of TDP-43.
Unlike TARDBP mutations, mutations in GRN
do not appear to cause MND. In a genome-wide
study of FTLD-TDP, significant association was
detected with three single nucleotide polymor-
phisms in the transmembrane protein 106B
locus (TMEM106B) (Van Deerlin et al. 2010).
It was most significant in patients with GRN
mutations.

Mutations in TARDBP

Mutations in TARDBP are mostly associated
with inherited forms of MND, consistent with
the presence of TDP-43 inclusions in upper
and lower motor neurons in patients with the
disease (Gitcho et al. 2008; Sreedharan et al.
2008; Yokoseki et al. 2008). TARDBP muta-
tions have also been described in two patients
with bvFTD and SD who went on to develop
MND (Benajiba et al. 2009). Histopathological
changes were not documented. One patient

with a K263E change in TARDBP developed
FTD, supranuclear palsy, and chorea, in the
absence of MND. Abundant neuronal and glial
TDP-43 deposits were in evidence, especially in
brainstem and subcortical nuclei (Kovacs et al.
2009). The mechanisms by which mutations
in TARDBP cause neurodegeneration are un-
clear. Pathological assembly is associated with
a marked reduction in nuclear TDP-43 staining
(Neumann et al. 2006) and the cytoplasmic
accumulation of TDP-43 is believed to be an
early event (Giordana et al. 2010). A combina-
tion of loss of function and gain of toxic func-
tion mechanisms may be at play. Wild-type
TDP-43 is prone to aggregation and disease-
causing mutations increase its aggregation and
toxicity (Johnson et al. 2009). Many disease-
causing mutations are located in the carboxy-
terminal domain of TDP-43.

Mutations in FUS

Mutations in FUS cause inherited forms of
MND (Kwiatkowski et al. 2009; Vance et al.
2009). Patients have FUS inclusions in spinal
cord and cerebral cortex. Cases of FTD and/or
FTD-MND may also be caused by mutations
in FUS (Ticozzi et al. 2009), but larger clinico-
pathological series must be awaited. Like
mutant TDP-43, mutant FUS accumulates in
the cytoplasm, where it is found in stress gran-
ules (Dormann et al. 2010; Nishimoto et al.
2010). Wild-type FUS is prone to aggregation,
but disease-causing mutations do not increase
its aggregation or toxicity (Sun et al. 2011).
The mutations appear to cause cytoplasmic
mislocalization instead. Although several dis-
ease-causing mutations are present in its amino-
terminal region, most mutations are located in
the carboxy-terminus of FUS.

Mutations in VCP

Mutations in VCP cause IBMPFD through what
appears to be a gain of function (Watts et al.
2004), possibly as the result of a dominant neg-
ative effect. IBMPFD affects skeletal muscle,
bone, and nervous system, with dementia devel-
oping in �30% of patients. It is characterized
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by the presence of type D TDP-43 inclusions
(Neumann et al. 2007). Some missense muta-
tions in VCP cause inherited MND (Johnson
et al. 2010) and motor neuron abnormalities
are present in many patients with IBMPFD. Fur-
thermore, a missense mutation in vacuolar pro-
tein sorting 54 (Vps54), the homolog of VCP,
causes motor neuron degeneration in the wob-
bler mouse, a model of MND (Schmitt-John
et al. 2005). VCP belongs to the type II AAAþ

(ATPases associated with a variety of activities)
family and takes part in multiple cellular pro-
cesses, including protein quality control, nuclear
functions, and the regulation of membrane
dynamics. It extracts ubiquitinated proteins
from complexes, so that they can be degraded
by the proteasome. VCP promotes autophagic
protein degradation, with disease-causing mu-
tations giving rise to defective autophagosome
maturation (Ju and Weihl 2010). Transgenic
mice expressing mutant VCP show many char-
acteristics of IBMPFD, including involvement
of skeletal muscle, bone and brain, and show
increased activation of NF-kB signaling (Custer
et al. 2010). In the brain of these mice, TDP-43
is redistributed from the nucleus to the cyto-
plasm, in the absence of nuclear inclusions. In
a Drosophila model of IBMPFD, a genetic
screen has identified TBPH, the fly ortholog
of TDP-43, as one of three RNA-binding pro-
teins that dominantly suppress degeneration
(Ritson et al. 2010). In this model, VCP muta-
tions lead to the redistribution of TDP-43 to the
cytoplasm.

Mutations in CHMP2B

Mutations in CHMP2B appear to cause disease
through a gain of toxic function mechanism
(Skibinski et al. 2005). The early signs are those
of bvFTD, with extrapyramidal symptoms
developing later, resulting in a clinical picture
of CBS (Gydesen et al. 2002). In a Danish family
with a truncating CHMP2B mutation, the
intracytoplasmic inclusions are ubiquitin-posi-
tive, but negative for TDP-43 and FUS (Holm
et al. 2009). CHMP2B is a component of the
endosomal-sorting complex required for trans-
port-III (ESCRT-III), which is involved in the

degradation of proteins in the endocytic and
autophagic pathways. A disruption of these
processes results in the accumulation of auto-
phagosomes, possibly leading to FTD (Lee
et al. 2007).

IMPLICATIONS FOR UNDERSTANDING
ALZHEIMER DISEASE

For a long time, tau inclusions were believed by
many to be epiphenomena of little relevance.
Reasons underlying this negative stance were
the absence of genetic evidence linking dysfunc-
tion of tau to neurodegeneration and the pres-
ence of tau pathology in diseases other than
Alzheimer disease. Things changed with the
identification of mutations in MAPT in cases
of FTDP-17 with filamentous tau pathology,
establishing that dysfunction of tau is suffi-
cient to cause neurodegeneration and dementia
(Hutton et al. 1998; Poorkaj et al. 1998; Spillan-
tini et al. 1998b). Thus, a pathway leading from
soluble to insoluble, filamentous tau is central
to the neurodegenerative process in the human
tauopathies. It is therefore important to under-
stand the mechanisms underlying tau aggrega-
tion and its downstream consequences for cell
function. With the benefit of hindsight, it is
clear that Alzheimer’s description of silver-
positive inclusions in cases with either presenile
dementia or lobar cortical atrophy marked the
beginning of the tauopathy field.

The crucial importance of FTDP-17T is that
it proves that mutations in MAPT can lead
to neurofibrillary assembly, neurodegeneration
and dementia, in the absence of Ab amyloid
deposits. The morphologies of tau filaments
observed in the various forms of FTDP-17T
vary (Crowther and Goedert 2000). Some mu-
tations, such as V337M and R406W, produce fil-
aments that appear identical to the paired
helical and straight filaments of Alzheimer dis-
ease (Spillantini et al. 1996; Reed et al. 1997;
Hutton et al. 1998; Poorkaj et al. 1998). All six
tau isoforms are affected by the mutations and
are incorporated into the filaments, which give
rise to a pattern of tau bands on SDS-PAGE
identical to that seen in Alzheimer disease.
Mutation G389R also affects all six tau isoforms
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and the majority of filaments resemble the
straight filaments of Alzheimer disease (Murrell
et al. 1999), despite the presence of Pick-like
bodies by light microscopy. In contrast, in the
case of mutations that increase the splicing of
exon 10, the filaments appear as irregularly
twisted ribbons, which are made of tau isoforms
with four repeats (Spillantini et al. 1997). In the
case of mutation P301L in exon 10, which
affects only four-repeat tau isoforms, the major-
ity of filaments consists of narrow, irregular-
ly twisted ribbons, with a smaller number of
straight filaments (Spillantini et al. 1998c).

Unlike Alzheimer disease and several other
neurodegenerative diseases with tau inclusions,
most cases of FTD lack extracellular deposits.
However, focal Alzheimer disease pathology is
diagnostic of a significant proportion of cases
of PPA. Crossing mice transgenic for human
mutant amyloid precursor protein with mice
transgenic for human mutant tau results in
increased tau deposition in some brain regions
(Lewis et al. 2001). Similarly, in mice transgenic
for the Danish mutant form of human BRI2
and mutant tau, the extracellular deposition
of Dan-amyloid promotes tau phosphorylation
and aggregation (Coomaraswamy et al. 2010).
Phosphorylation of tau by GSK3b and AMP-
activated protein kinase is a potential mecha-
nism. This is consistent with the coexistence
of extracellular amyloid deposits and intra-
neuronal tau inclusions in Alzheimer disease,
familial British and Danish dementias, and in
some diseases caused by mutations in the prion
protein gene (Ghetti et al. 1994; Vidal et al.
2004; Goedert and Spillantini 2006). It suggests
that extracellular amyloid deposits with a cer-
tain conformation trigger the intraneuronal
assembly of tau into filaments.

Tau is required for Ab toxicity in experi-
mental models (Roberson et al. 2007). The
absence of Ab toxicity in mice lacking MAPT
may result from a reduction in excitotoxicity,
because of the decreased dendritic localization
of the tyrosine kinase Fyn, resulting in hypo-
phosphorylation of the NMDA receptor and a
reduced interaction with postsynaptic density
protein-95 (Ittner at al. 2010). Haploinsuffi-
ciency of p73, a member of the p53 protein

family, has been found to be associated with
the formation of tau aggregates in nerve cells
and to potentiate Ab toxicity, possibly through
the activation of stress-activated protein kinases
(Wetzel et al. 2008).

The intraneuronal pathology of Alzheimer
disease may originate in a single cell and become
self-sustaining, irrespective of upstream factors.
Thus, injection of sonicated brain extract from
mice with abundant tau inclusions into the cer-
ebral cortex and hippocampus of transgenic
mice lacking inclusions induces the assembly
of human wild-type tau into filaments and leads
to the spreading of pathology from the injection
sites to neighboring brain regions (Clavaguera
et al. 2009). Injection of brain extract immuno-
depleted of tau or divided into soluble and
insoluble fractions shows that insoluble tau
induces aggregation, in the absence of obvious
signs of neurodegeneration. Parallel work has
shown the transfer of aggregated tau between
transfected cells (Frost et al. 2009). It thus
appears that the tau species responsible for
transmission and toxicity are not identical. An
uncoupling of prion infective titre and neuro-
toxicity has been described (Sandberg et al.
2011).

Although tau inclusions form in many neu-
rodegenerative diseases, their relevance for neu-
rotoxicity remains a subject for debate. Studies
using transgenic mice overexpressing human
mutant tau in a conditional manner have
reported a dissociation between tangle forma-
tion and nerve cell death (Santacruz et al.
2005). It appears that soluble hyperphosphory-
lated tau can contribute to nerve cell dysfunc-
tion prior to assembly into filaments. This is
reminiscent of Drosophila and Caenorhabditis
elegans lines expressing human wild-type or
mutant tau, in which nerve cell loss and a
reduced lifespan are observed, in the apparent
absence of tau filaments (Wittmann et al.
2001; Kraemer et al. 2003). In genetic modifier
screens in Drosophila, an increase in kinase
activity enhanced tau toxicity, whereas an
increase in phosphatase activity was beneficial
(Feany et al. 2010). Activation of oxidative
defences was also beneficial. In C. elegans, loss
of Sut-2 (suppressor of tau pathology-2),
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eliminated the toxic effects of human mutant
tau, possibly via an increase in autophagic clear-
ance (Guthrie et al. 2009).

The main goal behind work on tauopathies
is to transform the treatment of common neu-
rodegenerative diseases through an understand-
ing of the underlying molecular pathways.
There is an unmet need for mechanism-based
therapies of Alzheimer disease. Tau binds to
microtubules and boosting this interaction may
be beneficial. This may be achieved through a
reduction of the hyperphosphorylation of tau
(Le Corre et al. 2006). In Alzheimer disease,
tau assembles into paired helical and straight fil-
aments. The assembly pathway is being defined
and inhibitors of aggregation are being devel-
oped (Pickhardt et al. 2005; Taniguchi et al.
2005). Immunotherapy has been shown to clear
tau aggregates from transgenic mouse brain and
to reduce functional impairment (Asuni et al.
2007). Because aggregation is a concentration-
dependent process, a reduction in production
and/or increased clearance of tau are also poten-
tial targets (Morris et al. 2011).
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